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Part I:
VORTICITY AND WAVES IN
RELATIVISTIC PLASMAS

I Vortical model for relativistic plasmas
I Circular polarized waves



Relativistic Plasma equations

I the rest-frame density of the fluid n.
I the energy density ε, pressure p, enthalpy density h = ε+ p, and

temperature T .
I relativistic velocities and the Lorentz factor γ = (1− v2)−1/2.
I coupled to Maxwell equations via the current density nγv.

Plasma fluid equation for specie j

mjγj

(
∂

∂t
+ vj · ∇

)
(fjγjvj) = qjγj (E + vj × B)− 1

nj
∇pj

Continuity equation

∂(γjnj)

∂t
+∇ · (γjnjvj) = 0

f ≡ h
mn

= f (T)

And an equation of state for pressure and density.



We re-write the fluid equation as...

Let us assume constant rest-frame density n and constant temperature

mjfj
∂(γjv)

∂t
− mjfjvj ×∇× (γjvj) = qj (E + vj × B)− 1

2
∇(vj · vj)

where we have used a× (∇× b) = (∇b) · a− (a · ∇)b
Now, we notice

mjfj
∂(γjvj)

∂t
= qj

[
E + vj ×

(
B +

mjfj
qj
∇× (γjvj)

)]
− 1

2
∇(vj · vj)

it appears the interesting field

Ωj = B +
mjfj
qj
∇× (γjvj) = ∇× Pj

that will be a generalized vorticity with the potential [the canonical
momentum]

Pj = A +
mjfj
qj
γjvj



Generalized vorticity equation

Taking the curl of the previous equation

mjfj
qj

∂∇× (γjvj)

∂t
= ∇× E +∇× (vj × ΩJ)

and remembering that∇× E = −∂tB we obtain

∂Ωj

∂t
= ∇× (vj × Ωj)

The plasma dynamics becomes simplified in terms of the Generalized
vorticity!

Ωj = B +
mjfj
qj
∇× (γjvj)



Maxwell equations

E,B electric and magnetic fields

∂B
∂t

= −∇× E

∂E
∂t

+
∑

i

qiniγivi = ∇× B

∇ · B = 0

∇ · E =
∑

i

qiniγi



From Maxwell equations we obtain...

∂B
∂t

= −∇× E

∂E
∂t

+
∑

i

qiniγivi = ∇× B

∇ · B = 0

∇ · E =
∑

i

qiniγi

———————————————————————————–

∇× (∇× B) +
∂2B
∂t2 =

∑
i

qi∇× (niγivi)



Vorticity and helicity

The vorticity field is any psedovector that is the rotational (curl) of a
vector field (potential).
The vorticity field has associated a quantity called helicity
For example, the magnetic helicity is

h =

∫
A · B d3x

such that
∂h
∂t

=

∫
∂A
∂t
· B d3x +

∫
A · ∂B

∂t
d3x

=

∫
(−E−∇φ) · B d3x−

∫
A · ∇ × E d3x

≡ −2
∫

E · B d3x−
∫

(φB + E× A) · d2x

≡ −2
∫

E · B d3x

is not always conserved!



Plasma fluid generalized helicity

The helicity associated to the relativistic plasma fluid (for constant
density and pressure) is

h =

∫
P · Ω d3x

which satisfies

∂h
∂t

=

∫
∂P
∂t
· Ω d3x +

∫
P · ∂Ω

∂t
d3x

=

∫
(v× Ω) · Ω d3x +

∫
P · [∇× (v× Ω)] d3x

≡ 0

the Generalized Helicity is conserved2

2Mahajan & Yoshida, Phys. Plasmas 18, 055701 (2011).



If pressure is not constant...

∂Ω

∂t
= ∇× (v× Ω) +

1
n2∇n×∇p

the last term is so-called Biermann battery. It can generate vorticity
from plasma thermodynamical inhomogenities.



I The conservation of helicity establishes topological constraints.
It can forbid the creation (destruction) of vorticity in plasmas.

I We can see that the generalized helicity remains unchanged in
ideal dynamics. This conservation implies serious contraints on
the origin and dynamics of magnetic fields.

I Otherwise, the nonideal effects can change the helicity. For
example, if gradients of pressure and temperature have different
directions [Biermann battery].

I An anisotropic pressure tensor may also generate vorticity.



Dimensionless system. Positive (q = e) and negative
(q = −e), two-fluids plasma

Magnetic fields are normalized to background magnetic field B0
(measured in rest frame), time to Ω0, distance to Ω−1

0 , with the
generalized cyclotron

Ω0 =
eB0

(m+f+ + m−f−)c

The equations are now

∂Ω±
∂t

= ∇× (v± × Ω±)

Ω± = B± µ±∇× (γ±v±) ; µ± =
m±f±

m+f+ + m−f−

∇× (∇× B) +
∂2B
∂t2 =

1
U2

A0
∇× (γ+v+ − γ−v−)

with the normalzied Alfven speed UA0 = B0/
√

4πn0(m+f+ + m−f−)



Exact propagation circularly polarized waves

No background flow, background magnetic field in ẑ. Transverse
waves propagating in ẑ direction, with constant frequency and
constant wavevector. Hence, v · ẑ = 0 and B · ẑ = 0

v± =
v±
2
[
(x̂ + iŷ)eikz−iωt + c.c.

]
; B =

B
2
[
(x̂ + iŷ)eikz−iωt + c.c.

]
where v± and B are constant amplitudes. Notice that

γ =
1√

1− v± · v±
=

1√
1− v2

±

is now constant.
The system is reduced to

ωB + ωk µ+γ+v+ = kv+

ωB− ωk µ−γ−v− = kv−

(k2 − ω2)B =
k

U2
A0

(γ+v+ − γ−v−)



Dispersion relation for pair plasmas3

Consider m+ = m− = m and f+ = f− = f . Then µ+ = µ− = 1/2.

ω2
± =

k2

2
+

2
U2

A0
+

2
γ2
+γ

2
−
± 2

([
k2

4
+

1
U2

A0
+

1
γ2
+γ

2
−

]2

− k2

γ2
+γ

2
−

)1/2

High–frequency modes in physical units

ω2
+ ≈ c2k2 +

ω2
p

f
+

Ω2
c

f 2γ2
+γ

2
−

Low–frequency modes in physical units

ω2
− ≈

V2
Ak2

fγ2
+γ

2
−

(
1 +

c2k2

ω2
p

+
V2

A

c2fγ2
+γ

2
−

)−1

with ωp =
√

8πn0e2/m, Ωc = eB0/(mc), and VA = B0/
√

8πn0m.
3Mahajan & Lingam, Phys. Plasmas 25, 072112 (2018).



Amplitude–dependent dispersion relation

High–frequency wave cut–off

c2k2 = ω2 − ω2
cut−off

ω2
cut−off =

ω2
p

f

(
1 +

Ω2
c

fω2
pγ

2
+γ

2
−

)

if γ+γ− � 1 =⇒ c2k2 = ω2−
ω2

p

f
approaches to a light wave in a plasma!

For high–amplitude, the plasma wave behaves as if the plasma were
unmagnetized. Simiarly, the Alfven mode frequency decreases



Estimations

For a pair plasma with n0 ≈ 108cm−3, and then ωp ≈ 3× 108s−1, in a
magnetosphere in a pulsar with magnetic field B0 ≈ 1010G, then
Ωc ≈ 2× 1017s−1. For high temperatures, f ≈ 4kBT/(mc2). For
T ∼ 1011K, then f ≈ 100.
The cut–off

ωcut−off ≈
ωp√

f

√
1 +

1016

γ2
+γ

2
−

Then if γ+ ∼ γ− ∼ 105, the wave behaves as a light wave with
ωcut−off ≈ ωp/

√
f .



That’s all (for now).
Thanks!
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