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Outline of Part I

➢Introduction to plasma complex dynamics

➢Methods to simulate the Vlasov equation. Focus on the Eulerian approach

➢ Discretization of the equations, basic numerical schemes and numerical stability

➢ Advanced numerical schemes for simulations of plasma turbulence
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Plasma in the Universe

A plasma is a ionized gas where charged particles 
interact via electromagnetic forces

More than 99.9 % of matter in the Universe can be 
considered as a plasma

Plasma is mostly collisionless

Observations are somehow limited 
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Turbulence in space plasmas
Richardson et al, GRL, 1995Richardson et al, GRL, 1995

Most of the plasma energization (plasma heating 
and particle acceleration) occurring in turbulent 
collisionless plasmas, such as those permeating 
the solar system is expected to occur at kinetic 

scales (scales ~ particle gyroradii and below)
How are plasmas heated and 

particle accelerated?

Solar wind is turbulent and intermittent
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Temperature anisotropy in space plasmas

Astrophysical plasmas are 
turbulent, intermittent and 

show many kinetic (non-fluid) 
phenomena

Hellinger et al. GRL (2006); Hellinger et al. GRL (2006); 
Kasper et al. Kasper et al. JGR (JGR (2006); 2006); 
Kasper et al., (2002)Kasper et al., (2002)

Kinetic instabilities 
influence the solar wind

Proton cyclotron
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We need 
simulations!
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Π(x , t)=m∫∫∫ [ v−V bulk (x , t)] [v−V bulk(x ,t )] f (x , v ,t )d
3 v

Π= p⊥ I +( p∥− p⊥)b b

b=
B
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Simulations of Plasma Turbulence

Karimabadi et al, PoP, 2013Karimabadi et al, PoP, 2013
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Kinetic equations for a collisionless plasma

The Vlasov-Maxwell system

6D + time!6D + time!
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Two numerical philosophies 

Method 2: the Lagrangian approach
Vlasov is solved via a Montecarlo technique. The equations of motion of a large 
number of (macro) particles are solved and the distribution function is 
reconstructed. Maxwell equations are evaluated on a grid, through interpolation

Very cheap from the computational point of view
Numerical noise

Method 1: the Eulerian approach
The Vlasov equation is solved directly for the particle distribution function, on a 
phase space grid. Moments (density and current)  are evaluated by direct 
integration of the distribution function

Zero noise
Very computationally demanding because of memory limitations

We will use both methods, depending on the problem 
that we want to study. We will start with Method 1

We will use both methods, depending on the problem 
that we want to study. We will start with Method 1
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Method 1: Eulerian

Nonlinear integro-differential equation in 6D phase 
space + time

Very hard and time demanding to solve 
numerically!

To date, numerical solutions are available for 
approximated, reduced systems

Full Vlasov–MaxwellFull Vlasov–Maxwell

Hybrid Vlasov–MaxwellHybrid Vlasov–Maxwell 1D-1V Vlasov–Poisson1D-1V Vlasov–Poisson

easier

easier
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Numerical technique for Eulerian-Vlasov

Vlasov equation is an advection equation in phase space 

- Let us consider the 1D-1V case (we will discuss later the generalization to full phase space)

- Let us focus on advection in x first (later we will discuss how to couple it to advection in v)

                  Three main steps:

1) Discretize (x,t) plane

2) Approximate derivatives in discretized 
    plane (allowed operations are +,-,x,/)

3) Create algorithm to solve the equation

For simplicity, periodic boundary conditions
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Spatial derivatives

x

(x
i
,t

n
)

Δx

Δt
t

Derivatives approximation (finite differences): Euler forward

Euler backward

Centered differences

t
Discretization:
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Phase error for finite differences

Keep phase error under control!Keep phase error under control!

Let’s consider the centered difference scheme:

Let’s take for example:

By applying centered-difference formula one gets:

When solving advection equations through 
finite difference schemes:
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A naive try….

Explicit finite difference scheme

Euler forward Centered
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A naive try → numerical instabilities

Different times in 
sequence
(black, blue, .., 
yellow)→
(t

0
, t

1
, …, t

N
)

Explicit finite difference scheme

Something 
weird is going 
on, numerical 
solution is out 

of control!

Something 
weird is going 
on, numerical 
solution is out 

of control!
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Von Neumann stability analysis (1)

➢Let us  perform an analysis of the finite difference scheme by expressing the 
solution as a Fourier series

➢Since the equation is linear, we only examine the behavior of a single mode. 
Consider a trial solution of the form

➢This is a spatial Fourier expansion. Plugging in the difference formula:

➢Let us define the amplification Factor as:

A method is well-behaved or stable when A ≤ 1 

f n(x i)=∑ f̂ n(k )e j k x i= f̂ n(k )ei j k Δ x
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Von Neumann stability analysis (2)

For our “forward-central scheme” one gets

Lax–Wendroff method

Replace by average

CFL stability condition
Check the CFL 

condition before 
running a simulation!

Check the CFL 
condition before 

running a simulation!

Let us play a bit with our scheme

Independently of the CFL number, all 
Fourier modes increase in magnitude 

as time advances
This method is unconditionally 

unstable…
We are in trouble!
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Lax-Wendroff solution

Signals are 
slowly decaying:

What’s 
happening now?

Signals are 
slowly decaying:

What’s 
happening now?
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Analysis of the Lax-Wendroff scheme

Rearranging the RHS

Check the consistency of an algorithm before running a simulationCheck the consistency of an algorithm before running a simulation

We have an additional term! 
We are not solving anymore 

the original equation
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Upwind schemes (first-order Godunov method)

V > 0

V < 0

xi i+1i-1

CFL stability conditionCFL stability condition
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Upwind schemes (first-order Godunov method)

Upwind 
schemes work 

quite well!

Upwind 
schemes work 

quite well!
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Van Leer scheme (higher order accuracy)
Widely adopted for integration of the Vlasov equation

Van Leer, JCP, 1974, 1977a, 1977b, 1979; Mangeney+, JCP, 2000Van Leer, JCP, 1974, 1977a, 1977b, 1979; Mangeney+, JCP, 2000

The unknowns are the spatial 
averages of the function itself

Averaging and integrating advection equation in time gives:

xi i+1i-1
i-1/2 i+1/2
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Implicit scheme

Explicit scheme

LHS: Linear 
combination of 

unknowns:
fully implicit 

schemes

n+1
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Implicit schemes

Example: N
x
=6 and periodic boundary conditions

The solution for f at step n+1 is obtained by 
solving this linear system, through standard 
linear algebra routines

M is a tridiagonal matrix with full corners

Fully implicit schemes are 
unconditionally STABLE!
… but there is a big matrix to invert!

Fully implicit schemes are 
unconditionally STABLE!
… but there is a big matrix to invert!

n+1
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Phase space integration: the splitting scheme

Let’s go back to our  1D-1V 
Vlasov equation

Now we know how to solve advection equations. Let’s split the evolution in 2 parts:

The splitting scheme 
Cheng & Knorr, JCP, 1976; Cheng & Knorr, JCP, 1976; 
Generalized to 6D in Generalized to 6D in Mangeney et al. JCP, 2000Mangeney et al. JCP, 2000

Couple f
x
(x,t) and f

v
(x,t) to get a solution for f(x,v,t):
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Take-home messages from Part I
➢ Equations that describe the plasma in a self-consistent way are very complex and 

computationally demanding

➢ There are two approaches to study plasma dynamics: the Eulerian (solve Eq.s for the 
distribution function) and the Lagrangian approach (solve equations for particles)

➢ Basic numerical scheme do not work properly. Test your scheme BEFORE running 
“important simulations”

➢ Advanced, high order methods give satisfactory results

➢ Numerical simulations are complementary to observational data. Understanding the 
reality cannot rely on simulations or observation alone, comprehension is given by a 
right balance among the two.

““Calculators can only calculate - Calculators can only calculate - 
they cannot do mathematics.” they cannot do mathematics.” 

J. A. Van de WalleJ. A. Van de Walle
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