

Joint ICTP-IAEA College on Plasma Physics Vlasov simulatons of plasma turbulence

Sergio Servidio Dipartimento di Fisica Università della Calabria <u>sergio.servidio@fis.unical.it</u> https://sergioservidio.wixsite.com/sergio

UNIVERSITÀ DELLA CALABRIA DIPARTIMENTO DI FISICA

Part I

Numerical methods for kinetic simulations of plasmas

Part II

Direct numerical simulations of plasma turbulence: Eulerian simulations

Part III

Comparison between simulations and observations; Particle in cell simulations of turbulence

Part I

Numerical methods for kinetic simulations of plasmas

- >Introduction to plasma complex dynamics
- > Methods to simulate the Vlasov equation. Focus on the Eulerian approach
- > Discretization of the equations, basic numerical schemes and numerical stability
- > Advanced numerical schemes for simulations of plasma turbulence

Plasma in the Universe

- A plasma is a ionized gas where charged particles interact via electromagnetic forces
- More than 99.9 % of matter in the Universe can be considered as a plasma
- Plasma is mostly collisionless
- Observations are somehow limited

Turbulence in space plasmas

Most of the plasma energization (plasma heating and particle acceleration) occurring in turbulent collisionless plasmas, such as those permeating the solar system is expected to occur at kinetic scales (scales ~ particle gyroradii and below)

How are plasmas heated and particle accelerated?

Temperature anisotropy in space plasmas

Simulations of Plasma Turbulence

Karimabadi et al, PoP, 2013

9

The Vlasov-Maxwell system

UNIVERSITÀ DELLA CALABRIA

Method 1: the Eulerian approach

The Vlasov equation is solved directly for the particle distribution function, on a phase space grid. Moments (density and current) are evaluated by direct integration of the distribution function

- Zero noise
- Very computationally demanding because of memory limitations

Method 2: the Lagrangian approach

Vlasov is solved via a *Montecarlo* technique. The equations of motion of a large number of (macro) particles are solved and the distribution function is reconstructed. Maxwell equations are evaluated on a grid, through interpolation
Very cheap from the computational point of view
Numerical noise

We will use both methods, depending on the problem that we want to study. We will start with Method 1

Method 1: Eulerian

Full Vlasov-Maxwell

$$\frac{\partial f_{\alpha}}{\partial t} + \mathbf{v} \cdot \nabla f_{\alpha} + \frac{q_{\alpha}}{m_{\alpha}} \Big[\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \Big] \cdot \nabla_{v} f_{\alpha} = 0$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \cdot \mathbf{E} = 4\pi \sum_{\alpha} q_{\alpha} \int f_{\alpha}(\mathbf{x}, \mathbf{v}, t) d\mathbf{v}$$

$$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \frac{4\pi}{c} \sum_{\alpha} q_{\alpha} \int \mathbf{v} f_{\alpha}(\mathbf{x}, \mathbf{v}, t) d\mathbf{v} + \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}$$

- Nonlinear integro-differential equation in 6D phase space + time
- Very hard and time demanding to solve numerically!
- To date, numerical solutions are available for approximated, reduced systems

Hybrid Vlasov-Maxwell

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{e}{m} \left[\mathbf{E} + \frac{\mathbf{v} \times \mathbf{B}}{c} \right] \cdot \nabla_{v} f = 0$$

$$\mathbf{E} = -\frac{\mathbf{u} \times \mathbf{B}}{c} + \frac{1}{nec} (\mathbf{j} \times \mathbf{B}) - \frac{1}{ne} \nabla P_{e}$$

$$\nabla \times \mathbf{E} = -\frac{1}{c} \frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \times \mathbf{B} = \frac{4\pi \mathbf{j}}{c}$$

$$n_{e} \simeq n_{i} \simeq n$$

$$P_{e} = P_{e}(n)$$

$$\mathbf{D} - \mathbf{1} \vee \mathbf{V} \mathbf{lasov} - \mathbf{Poisson}$$

$$\frac{\partial f_{e}}{\partial t} + v \frac{\partial f_{e}}{\partial x} - \frac{eE}{m} \frac{\partial f_{e}}{\partial v} = 0$$

$$\frac{\partial E}{\partial x} = 4\pi e \left[n_{0} - \int f_{e}(x, v, t) dv \right]$$

DELLA CALABRIA

Vlasov equation is an advection equation in phase space

- Let us consider the 1D-1V case (we will discuss later the generalization to full phase space) $\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + a \frac{\partial f}{\partial v} = \frac{\partial f}{\partial t} + \frac{\partial (vf)}{\partial x} + \frac{\partial (af)}{\partial v} = 0$ $f = f(x, v, t); \quad a = a(x)$
- Let us focus on advection in x first (later we will discuss how to couple it to advection in v) $\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} = 0$

$$f = f(x, t); \quad x \in [0, L]; \quad t \in [0, T]; \quad v = const.$$

 $f(x,0) = f_0(x); \quad f(0,t) = f(L,t), \ \forall t \in [0,T]$

For simplicity, periodic boundary conditions

Three main steps:

1) Discretize (x,t) plane

2) Approximate derivatives in discretized plane (allowed operations are +,-,x,/)

3) Create algorithm to solve the equation

DELLA CALABRIA

Spatial derivatives

Discretization:

$$x_i = (i-1)\Delta x; \quad i = 1, \cdots, N_x; \quad \Delta x = \frac{L}{N_x}$$

 $x_0 = 0, \quad x_{N_x} = L - \Delta x$
 $t_n = n\Delta t; \quad n = 0, \cdots, N_t; \quad \Delta t = \frac{T}{N_t}$
 $t_0 = 0, \quad t_{N_t} = T$

Derivatives approximation (finite differences): $f(x_{i+1}) = f(x_i) + \Delta x \left(\frac{df}{dx}\right)_{x_i} + \frac{1}{2} \Delta x^2 \left(\frac{d^2 f}{dx^2}\right)_{x_i} + \frac{1}{3!} \left(\frac{d^3 f}{dx^3}\right)_{x_i} + o(\Delta x^4)$ $f(x_{i-1}) = f(x_i) - \Delta x \left(\frac{df}{dx}\right)_{x_i} + \frac{1}{2} \Delta x^2 \left(\frac{d^2 f}{dx^2}\right)_{x_i} - \frac{1}{3!} \left(\frac{d^3 f}{dx^3}\right)_{x_i} + o(\Delta x^4)$ (1) $f(x_{i-1}) = f(x_i) - \Delta x \left(\frac{df}{dx}\right)_{x_i} + \frac{1}{2} \Delta x^2 \left(\frac{d^2 f}{dx^2}\right)_{x_i} - \frac{1}{3!} \left(\frac{d^3 f}{dx^3}\right)_{x_i} + o(\Delta x^4)$ (2) $f(x_{i-1}) = f(x_i) - f(x_{i-1}) + o(\Delta x)$ $(1) - (2) \Rightarrow \left(\frac{df}{dx}\right)_{x_i} = \frac{f(x_{i+1}) - f(x_{i-1})}{2\Delta x} + o(\Delta x^2)$ $(1) + (2) \Rightarrow \left(\frac{d^2 f}{dx^2}\right)_{x_i} = \frac{f(x_{i+1}) + f(x_{i-1}) - 2f(x_i)}{\Delta x^2} + o(\Delta x^2)$ (3) $f(x_{i-1}) = f(x_i) - f(x_{i-1}) + o(\Delta x)$ (4) $f(x_{i-1}) = f(x_i) - f(x_{i-1}) + o(\Delta x)$ (5) $f(x_{i-1}) = f(x_i) - f(x_{i-1}) + o(\Delta x)$ (6) $f(x_{i-1}) = f(x_i) - f(x_{i-1}) + o(\Delta x)$ (7)

Let's consider the centered difference scheme:

$$\left(\frac{df}{dx}\right)_{x_i} = \frac{f(x_{i+1}) - f(x_{i-1})}{2\Delta x} + o(\Delta x^2)$$

Let's take for example:

 $f(x) = \sin(kx) \Rightarrow f'(x) = k\cos(kx) \Rightarrow f'(x_i) = k\cos(kx_i)$

By applying centered-difference formula one gets: $f'(x_i)^{num} = \frac{\sin [k(x_i + \Delta x)] - \sin [k(x_i - \Delta x)]}{2\Delta x} = \cos (kx_i) \left[\frac{\sin (k\Delta x)}{k\Delta x} \right] = C(k)f'(x_i)$

When solving advection equations through finite difference schemes:

$$\frac{\partial f}{\partial t} + v C(k) \frac{\partial f}{\partial x} = 0$$

Keep phase error under control!

A naive try....

Explicit finite difference scheme

$$f_i^{n+1} = f_i^n - v\Delta t \left(\frac{f_{i+1}^n - f_{i-1}^n}{2\Delta x}\right), \quad \forall i = 1, \cdots, N_x$$

A naive try \rightarrow numerical instabilities

Explicit finite difference scheme

UNIVERSITÀ DELLA CALABRIA

Let us perform an analysis of the finite difference scheme by expressing the solution as a Fourier series

Since the equation is linear, we only examine the behavior of a single mode. Consider a trial solution of the form

$$f^{n}(x_{i}) = \sum \hat{f}^{n}(k) e^{jkx_{i}} = \hat{f}^{n}(k) e^{ijk\Delta x} \qquad \Longrightarrow \qquad f^{n}_{i} = f^{n} e^{jik\Delta x}$$

This is a spatial Fourier expansion. Plugging in the difference formula:

$$\hat{f}^{n+1} = \hat{f}^n - \frac{C}{2}\hat{f}^n \left(e^{jik\Delta x} - e^{jik\Delta x}\right); \quad C = \frac{v\Delta t}{\Delta x}$$

Let us define the amplification Factor as:

$$A = \left| \frac{\hat{f}^{n+1}}{\hat{f}^n} \right|^2$$

A method is well-behaved or stable when $A \le 1$

Von Neumann stability analysis (2)

For our "forward-central scheme" one gets $A = [1 - jC\sin(k\Delta x)]^2 = 1 + C^2\sin(k\Delta x)^2 \le 1$ Independently of the CFL number, all Fourier modes increase in magnitude as time advances This method is unconditionally unstable... We are in trouble!

Let us play a bit with our scheme

$$\begin{split} f_i^{n+1} = & \begin{pmatrix} f_i^n - v\Delta t \left(\frac{f_{i+1}^n - f_{i-1}^n}{2\Delta x} \right), & \forall i = 1, \cdots, N_x \\ \text{Replace by average} \\ f_i^{n+1} = & \frac{(f_{i+1}^n + f_{i-1}^n)}{2} - v\Delta t \left(\frac{f_{i+1}^n - f_{i-1}^n}{2\Delta x} \right) & \text{Lax-Wendroff method} \\ A \leq 1 \Rightarrow \Delta t \leq & \frac{\Delta x}{|v|} & \underline{\text{CFL stability condition}} & \begin{array}{c} \text{Check the CFL} \\ \text{condition before running a simulation!} \\ \end{array} \end{split}$$

Lax-Wendroff solution

Analysis of the Lax-Wendroff scheme

$$f_i^{n+1} = \frac{(f_{i+1}^n + f_{i-1}^n)}{2} - v\Delta t \left(\frac{f_{i+1}^n - f_{i-1}^n}{2\Delta x}\right)$$

Rearranging the RHS

$$f_i^{n+1} = \frac{(f_{i+1}^n + f_{i-1}^n)}{2} - v\Delta t \left(\frac{f_{i+1}^n - f_{i-1}^n}{2\Delta x}\right) + f_i^n - f_i^n \Rightarrow$$

$$\Rightarrow \quad f_i^{n+1} = \frac{(f_{i+1}^n + f_{i-1}^n - 2f_i^n)}{2\Delta x^2} \Delta x^2 - v\Delta t \left(\frac{f_{i+1}^n - f_{i-1}^n}{2\Delta x}\right) + f_i^n \Rightarrow$$

$$\Rightarrow \quad \frac{f_i^{n+1} - f_i^n}{\Delta t} + v \left(\frac{f_{i+1}^n - f_{i-1}^n}{2\Delta x}\right) - \frac{(f_{i+1}^n + f_{i-1}^n - 2f_i^n)}{2\Delta x^2} \frac{\Delta x^2}{\Delta t} = 0$$

$$\Delta t, \ \Delta x \to 0$$

 $\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} - \left(\nu \frac{\partial^2 f}{\partial x^2} \right) = 0; \quad \nu = \frac{\Delta x^2}{2\Delta t} \quad \begin{array}{l} \text{We nave an additional term:} \\ \text{We are not solving anymore} \\ \text{the original equation} \end{array}$

We have an additional term!

Check the consistency of an algorithm before running a simulation

DELLA CALABRA **IF** I Upwind schemes (first-order Godunov method)

21

$$f_i^{n+1} = f_i^n - |v| \Delta t \left(\frac{f_i^n - f_{i-1}^n}{\Delta x}\right), \quad v > 0$$

$$f_i^{n+1} = f_i^n + |v| \Delta t \left(\frac{f_{i+1}^n - f_i^n}{\Delta x}\right), \quad v < 0$$

$$A \le 1 \Rightarrow \Delta t \le \frac{\Delta x}{|v|}$$
 CFL stability condition

Upwind schemes (first-order Godunov method) UNIVERSITÀ DELLA CALABRIA (CTP)

$$f_i^{n+1} = f_i^n - |v| \Delta t \left(\frac{f_i^n - f_{i-1}^n}{\Delta x}\right), \quad v > 0$$

$$f_i^{n+1} = f_i^n + |v| \Delta t \left(\frac{f_{i+1}^n - f_i^n}{\Delta x}\right), \quad v < 0$$

х

Upwind schemes work quite well!

25

25

22

Widely adopted for integration of the Vlasov equation

UNIVERSITÀ

Van Leer, JCP, 1974, 1977a, 1977b, 1979; Mangeney+, JCP, 2000

Van Leer scheme (higher order accuracy)

$$\bar{f}_i(t) = \frac{1}{\Delta x} \int_{x_i - \frac{\Delta x}{2}}^{x_i + \frac{\Delta x}{2}} f(x, t) dx$$

The unknowns are the spatial averages of the function itself

Averaging and integrating advection equation in time gives:

$$\bar{f}_i(t + \Delta t) = \bar{f}_i(t) - \frac{v\Delta t}{\Delta x} \int_t^{t+\Delta t} dt' \int_{x_i - \frac{\Delta x}{2}}^{x_i + \frac{\Delta x}{2}} \frac{\partial f(x, t')}{\partial x} dx =$$
$$= \bar{f}_i(t) - \frac{v\Delta t}{\Delta x} \int_t^{t+\Delta t} dt' \left[f\left(x_i + \frac{\Delta x}{2}, t'\right) - f\left(x_i - \frac{\Delta x}{2}, t'\right) \right]$$

Implicit scheme

LHS: Linear combination of unknowns: fully implicit schemes

Implicit schemes

$$-\alpha f_{i-1}^{n+1} + f_i^{n+1} + \alpha f_{i+1}^{n+1} = f_i^n; \quad \forall i = 1, \cdots, N_x; \ \alpha = \frac{v\Delta t}{\Delta x}$$

$$\binom{M}{\binom{f_i^{n+1}}{i}} = \binom{f_i^n}{f_i^n}$$
 The solution for f at step $n+1$ is obtained by solving this linear system, through standard linear algebra routines

Example: $N_{v}=6$ and periodic boundary conditions

$$M = \begin{bmatrix} 1 & \alpha & 0 & 0 & 0 & -\alpha \\ -\alpha & 1 & \alpha & 0 & 0 & 0 \\ 0 & -\alpha & 1 & \alpha & 0 & 0 \\ 0 & 0 & -\alpha & 1 & \alpha & 0 \\ 0 & 0 & 0 & -\alpha & 1 & \alpha \\ \alpha & 0 & 0 & 0 & -\alpha & 1 \end{bmatrix}$$

M is a tridiagonal matrix with full corners

Fully implicit schemes are unconditionally STABLE! ... but there is a big matrix to invert!

Λ .

Let's go back to our 1D-1V Vlasov equation

$$\frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} + a \frac{\partial f}{\partial v} = \frac{\partial f}{\partial t} + \frac{\partial (vf)}{\partial x} + \frac{\partial (af)}{\partial v} = 0$$
$$f = f(x, v, t); \quad a = a(x)$$

Now we know how to solve advection equations. Let's split the evolution in 2 parts:

$$\frac{\partial f_x}{\partial t} + v \frac{\partial f_x}{\partial x} = 0$$

$$f_x(t + \Delta t) = \Lambda_x(\Delta t) f_x(t)$$

$$\frac{\partial f_v}{\partial t} + a \frac{\partial f_v}{\partial v} = 0$$

$$f_v(t + \Delta t) = \Lambda_v(\Delta t) f_v(t)$$

26

Couple f(x,t) and f(x,t) to get a solution for f(x,v,t):

 $f(n\Delta t) = \{\Lambda_x(\Delta t/2)\Lambda_v(\Delta t)\Lambda_x(\Delta t/2)\}^n f_0 + o(\Delta t^3)$

The splitting scheme Cheng & Knorr, JCP, 1976; Generalized to 6D in Mangeney et al. JCP, 2000

27

- Equations that describe the plasma in a self-consistent way are very complex and computationally demanding
- There are two approaches to study plasma dynamics: the Eulerian (solve Eq.s for the distribution function) and the Lagrangian approach (solve equations for particles)
- Basic numerical scheme do not work properly. Test your scheme BEFORE running "important simulations"
- Advanced, high order methods give satisfactory results
- Numerical simulations are complementary to observational data. Understanding the reality cannot rely on simulations or observation alone, comprehension is given by a right balance among the two. **Calculators can only calculate -**

they cannot do mathematics."

J. A. Van de Walle