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RS o) () Structure of the course

Part |

Numerical methods for kinetic simulations of plasmas

Part I

Direct numerical simulations of plasma turbulence: Eulerian simulations

Part lli

Comparison between simulations and observations;
Particle in cell simulations of turbulence
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Part |

Numerical methods for kinetic simulations of plasmas



L 5 ©1P) (1) Outline of Part |

» Introduction to plasma complex dynamics
» Methods to simulate the Vlasov equation. Focus on the Eulerian approach
» Discretization of the equations, basic numerical schemes and numerical stability

» Advanced numerical schemes for simulations of plasma turbulence



B S c®) () Plasma in the Universe

@ A plasma is a ionized gas where charged particles
interact via electromagnetic forces

@ More than 99.9 % of matter in the Universe can be
considered as a plasma

@ Plasma is mostly collisionless

@ Observations are somehow limited




0/ \
UNIVERSITA == ¥ B
e AN =57 (CTP) {f@g

Turbulence in space plasmas

Richardson et al, GRL, 1995 7

Solar wind is turbulent and intermittent
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Most of the plasma energization (plasma heating
and particle acceleration) occurring in turbulent
collisionless plasmas, such as those permeating
the solar system is expected to occur at kinetic
scales (scales ~ particle gyroradii and below)

Sorriso Valvo, 1999
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=S em (1) Temperature anisotropy in space plasmas
Distribution PDF( Tl/T“, /3” )
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T, and T, =

parallel and perpendicular
proton temperatures with
respect to the ambient B

Hellinger et al. GRL (2006);

Kasper et al. JGR (2006); e e st D
Kasper et al., (2002) Bl Biw
Astrophysical plasmas are
Kinetic instabilities turbulent, intermittent and m@ We need
influence the solar wind - show many kinetic (non-fluid) simulations!

phenomena
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SRS ©®) (5) Simulations of Plasma Turbulence

Karimabadi et al, PoP, 2013



WS €@ () Kinetic equations for a collisionless plasma
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The Vlasov-Maxwell system
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ot Me c
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ol ) () Two numerical philosophies

Method 1: the Eulerian approach

The Vlasov equation is solved directly for the particle distribution function, on a
phase space grid. Moments (density and current) are evaluated by direct
integration of the distribution function

@ Zero noise

> Very computationally demanding because of memory limitations

Method 2: the Lagrangian approach

Vlasov is solved via a Montecarlo technique. The equations of motion of a large
number of (macro) particles are solved and the distribution function is
reconstructed. Maxwell equations are evaluated on a grid, through interpolation
» Very cheap from the computational point of view

» Numerical noise

We will use both methods, depending on the problem
that we want to study. We will start with Method 1
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Method 1: Eulerian

a4

Full Vlasov-Maxwell
%_’_v.vf&_;_q_“[E_FVXB] X, iy =D space + time
ot Mey,
V-B=0
V'E=4W§q‘*/f‘"(x"””d" numerically!
10B
V’><E=—Ea
4 10K
Vsz—;’r;qQ/vﬂx(x:v t)dv+z(8_t

Ny

/e/.

Hybrid Vlasov-Maxwell

v X B

of
SHVVi S ~E+ |-vor=o0
E:—“XB+ 1(J><B)——VP
C nec
1 9B
VXE=-T%0
v « B*47T‘]

G
Ne™MN; =N

Pe:Pe(n)

easier

—

@ Very hard and time demanding to solve

@ To date, numerical solutions are available for
approximated, reduced systems

@ Nonlinear integro-differential equation in 6D phase

1D-1V Vlasov-Poisson

ofe  9Of. ebof.

ot +U8x_m8v_o
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kRS ) (1) Numerical technique for Eulerian-Vlasov

Vlasov equation is an advection equation in phase space

- Let us consider the 1D-1V case (we will discuss later the generalization to full phase space)

af (9f af of o(f) Odaf)
T i Ml T e

f=f(z,v,t); a=a(x)

- Let us focus on advection in x first (later we will discuss how to couple it to advection in v)

of  of
o Vog " .
f=f(z,t); xze€l0,L]; tel0,T]; v=const. Three main steps:
f(z,0) = folx); f(0,t)= f(L,t), Vtel0,T] 1) Discretize (x,t) plane

@ 2) Approximate derivatives in discretized

. . . . ee lane (allowed operations are +,-,x,
For simplicity, periodic boundary conditions P ( P /)

3) Create algorithm to solve the equation




B S c) () Spatial derivatives

th

(x.1) Discretization:
- T 2= (i—1)Az; i=1,--,Ny;: A:}::%
./ 20=0, zny, =L — Ax
= t, =nAt: n=0 Ny At — L
<¢ lp = NAL; 1= U, =, INg Jfﬁt
to e O: tNg = T
-< > >
AXx X
Derivatives approximation (finite differences): » fE(uler)fO"V]\{?mS
» 2 3 p S\ Tig1) — J (T
fl@in) = f(rz)+Ar(ji) +%Ar2(%) +%(%) to(Azt) (1) @ dr| = Az +o(Az)
Flit) = flz:) — Ag;(j—i) " %Aﬁ(%) -3 (2?; ) + o(Ax?) Euler backward
T/ . @ LS 1 f(:l?z f(il?l 1) I O(AQZ‘)
Ax
_ df ~ f@ig) = f(@ima) 2
m-o=(f) -l o

Centered differences
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o B (1) () Phase error for finite differences

Let’s consider the centered difference scheme:
(ﬁ) _ f(@ip) — f(zim1) + o(Az?)

dx 2Ax

Let’s take for example:
f(x) =sin (kz) = f'(x) = kcos (kx) = f'(x;) = kcos (kx;)

By applying centered-difference formula one gets: _..--.. 5

1 mum _ Sin[k(zi + Az)] —sin [k(z; — Az)] | :'SIH(ICALE)“ B ,

f ('x%) - QACE = COS (kx't) ' ]fAI "' - C(k)f ('CC?)
When solving advection equations through o 1 Ck) = Smk(zix)
finite difference schemes:

of NN df

— +viC(k)=— =0

ot ()(’):z:

Keep phase error under control! | " |
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A naive try....
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Explicit finite difference scheme

Euler forward Centered
1

ff?—'_ _'ff?:_v ’L?}Fl_fén—l
At 201

f2”+1_ff—vAt( AL T “), Vi =

2Ax

1,

7N.’E
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Explicit finite difference scheme

- _U<511 )
Exact selutio At 2A$

o/ A naive try = numerical instabilities

1 —r 7] 15_
5L 7 5, 7
e £ NN NN NP

Different timesin ¢ ] oy :
sequence B - S a— B w  wm wm m
(black, blue, .., * ‘
yellow)é . Numerical solution .
(to, tl, . tN)

Something
weird is going
on, numerical
solution is out

of control!
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MRS o) () Von Neumann stability analysis (1)

> Let us perform an analysis of the finite difference scheme by expressing the
solution as a Fourier series

» Since the equation is linear, we only examine the behavior of a single mode.
Consider a trial solution of the form

~ . ~ . n rn _jikAx
)= (k) =f"(k)e K > fi = [T
» This is a spatial Fourier expansion Plugging in the difference formula:
vAL

fn—f—l fn o fn (ejzkA:c ejikA:c) : C = A_x

» Let us define the amplification Factor as:
fn—i—l 2
fn

A method is well-behaved or stable when A< 1

A=




\
)

S o) () Von Neumann stability analysis (2)

For our “forward-central scheme” one gets II:nde.pendeatly.of the CFL number, 3"
. . 5 ourier modes increase in magnitude
A=[1-jCsin(kAx)]* =1+ C?sin (kAz)” <1 as time advances
This method is unconditionally

unstable...

We are in trouble!
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Let us play a bit with our scheme

fin—l_l UAt( +1 72—1)j VZ:].,,Nx

2Ax

Replace by average

el (i ;F fita) vAt( QHQA z‘n1> Lax-Wendroff method
&

Az Check the CFL
A< 1= At < — CEL stability condition condition before

v running a simulation!
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S o) (1) Lax-Wendroff solution
( zn 1 + fz'n—l) zn 1 z'n—l
n+1l __ + . 4
fi = 2 vl ( ONT )
Signals are
slowly decaying:

What's
happening now?

L 1 1 1 1 L 1 il il L L
o 20 40 50 50 o 5 10 15 20 25
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RS ) (£1) Analysis of the Lax-Wendroff scheme

n+l _ ( ’L'T—Ll—l +fzn—1) — vA ﬁl—l _fin—l
L= 2 VAL THAS

Rearranging the RHS

n zn —'_fzn— in _fzn— n n
fi+1:( +12 l)_vAt(—+12Ax 1)“‘]2'_1&i

w1 _ S+ — fo)A 2 _ WA = Jita n
=% g = SAL? i~ —wIXE N + [ =

AR i i — fit (fPg + fly = 2f7) Ax®
- T A " ( IR ) — T oA Ar
@ At, Az — 0
af af ¢ S-Zf A2 Wehave an additional term!
= == v=—==0; v= We are not solving anymore
o Ov . 0x*; 2A¢ the original equation

_____

Check the consistency of an algorithm before running a simulation |

20
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e e® () Upwind schemes (first-order Godunov method)

= ol At (fi - ) >0

L

=g e (B )

A
A<= At< —T CFL stability condition
v
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e e® () Upwind schemes (first-order Godunov method)

fiTL—l-l:fin_'UlAt (fz ; i—1)7 v >0
X

f{l+1=fi”+|v\At( HlA_fi), v<0
x

Exact solution

|
/

:
%/
"4

A
. .
0 20 40
Nu

Upwind

schemes work
quite well!

merical solution
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it e () Van Leer scheme (higher order accuracy)

Widely adopted for integration of the Vlasov equation
Van Leer, JCP, 1974, 1977a, 1977b, 1979; Mangeney+, JCP, 2000

fi(t) = L/ " flz,t) do The unknowns are the spatial

Az [, _as ’ averages of the function itself
% 2

Averaging and integrating advection equation in time gives:
fit+ At = fi(t) —U—At/HAt dt’/mhLTm @ t) 4y —

Az 827

T3
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LS o) (1) Implicit scheme

f’n,—l—l n n
i1 11) Explicit scheme

) \

forward a
£ — tn+1

@ n+1
LHS: Linear

n+l __ gn H‘l fn+1
I = f;' — vAt —
combination of

vAt '@ vAt f unknowns:
; fully implicit
- 2Ax 20z schemes

backward

8t




RS o) () Implicit schemes -

vAt
Ax

. _ The solution for f at step n+1 is obtained by
M| | = | fI''| solving this linear system, through standard
linear algebra routines

—afft 4 R afiil = fr Yi=1,- Ny a=

7 1

Example: NX=6 and periodic boundary conditions

1 a 0 0 0 -«
& 1 = O 0 0 M is a tridiagonal matrix with full corners
0 —a 1 o 0 0
M =
0 0 —a 1 a 0
000 0 —a 1 a Fully implicit schemes are
@ 0 0 0 —a 1 | unconditionally STABLE!

... but there is a big matrix to invert!
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s ©®) (1) Phase space integration: the splitting scheme
of , of , of _of o(vf) N olaf) _,

Let’s go back to our 1D-1V g TV TA5 T o T g By
Vlasov equation f=flo ot o=alz)
Now we know how to solve advection equations. Let’s split the evolution in 2 parts:
Ofr . Ofz ”
o0 gy RHAN=A20L0)
0 fu +aafv —0 fv(t+At) :AU(At)f'v(t) o
ot v e T

Couple fx(x,t) and fv(x,t) to get a solution for f(x,v,t): L1

F(nAL) = {Au(At/2)A (A AL (AL/2)}" fo + o( AFP)

The splitting scheme

Cheng & Knorr, JCP, 1976;
Generalized to 6D in Mangeney et al. JCP, 2000
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S 7 i©1P) () Take-home messages from Part |

» Equations that describe the plasma in a self-consistent way are very complex and
computationally demanding

» There are two approaches to study plasma dynamics: the Eulerian (solve Eq.s for the
distribution function) and the Lagrangian approach (solve equations for particles)

» Basic numerical scheme do not work properly. Test your scheme BEFORE running
“important simulations”

» Advanced, high order methods give satisfactory results
» Numerical simulations are complementary to observational data. Understanding the

reality cannot rely on simulations or observation alone, comprehension is given by a
right balance among the two. =

Calculators can only calculate -
they cannot do mathematics.”

J. A. Van de Walle
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