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Two-fluid MHD

➡ MHD is a fluidistic approach to describe the large scale dynamics of plasmas.  

➡ The standard approach is also known as one-fluid MHD.  

➡ We are going to start from a somewhat  more general approach known as two-fluid MHD,  
which acknowledges the presence of ions and electrons and considers kinetic effects such  
as Hall, electron pressure and electron inertia. 

➡ Physical processes that can be addressed with MHD include: 

o  Magnetic reconnection 
o  Magnetic confinement  
o  Magnetic dynamo 
o  MHD shocks 
o  MHD turbulence 

➡ We will also address the case of plasmas embedded in strong external magnetic fields, which  
allow for an approximation known as reduced MHD, both for one-fluid MHD (RMHD) and  
two-fluid MHD (RHMHD).
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Fluid equations for multi-species plasmas
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➡ For each species s we have (Goldston & Rutherford 1995): 

‣        Mass conservation 

‣        Equation of motion 

‣        Momentum exchange rate 

➡ These moving charges act  as sources for electric and magnetic fields: 

‣        Charge density 

‣        Electric current density
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Small scales: EIHMHD equations

➡ The dimensionless version, for a length scale      , density       and Alfven speed0L 0n 00 4/ nmBv iA π=

➡ We define the Hall parameter 

    as well as the plasma beta                                       and the electric resistivity 

➡ Adding these two equations yields: 

    where  

    and 
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Ideal invariants in EIHMHD
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➡ For each species s  in the incompressible  and  ideal limit 

➡ Using  that                                                              and  

    we can readily show  that  energy is an ideal invariant, where 

➡ We also have a helicity per species which is conserved, where 
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Normal modes in EIHMHD 

➡ If we linearize our equations around  an  equilibrium characterized by a uniform magnetic field, we obtain the  
    following dispersion  relation: 

➡ Asymptotically, at very large k, we have two branches 

    while for very small  k, both branches simply become   
    Alfven modes, i.e. 

➡ Different approximations, just as one-fluid MHD, Hall-MHD and electron-inertia MHD  can clearly be identified  
in this diagram.
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MHD 

RMHD heating of solar coronal loops (Dmitruk & Gomez 1997, 1999) 

Kelvin-Helmholtz instability in the solar corona (Gomez, DeLuca & Mininni 2016) 

Hall-MHD 

3D HMHD turbulent dynamos. (Mininni, Gomez & Mahajan 2003, 2005; Gomez, Dmitruk & Mininni 2010) 

2.5 D HMHD reconnection at Earth magnetopause (Morales, Dasso & Gomez 2005, 2006) 

RHMHD turbulence in the solar wind (Martin, Dmitruk & Gomez 2010, 2012) 

Hall MRI in accretion disks (Bejarano, Gomez & Brandenburg 2011) 

Electron inertia 

1D model of perpendicular shocks (Gomez et al. 2018). 

Two-fluid turbulence in the solar wind (Andres et al. 2014, 2016). 

Fast reconnection in 2.5 D (Andres, Dmitruk & Gomez 2014, 2016).

Some applications



Hall-MHD equations

➡ The dimensionless version, for a length scale     , density       and Alfven speed0L 0n 00 4/ nmBv iA π=
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➡ We define the Hall parameter 

as well as the plasma beta                                         and the electric resistivity 

➡ Adding these two equations yields: 

➡ On the other hand, using 
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RMHD applied to coronal loop heating

➡ The solar corona is a topologically complex  
     array of loops (TRACE movie 171 A) 

➡ Coronal loops are magnetic flux tubes  
     with their footpoints anchored deep in the 
     convective region. 

➡ They confine a tenuous and hot plasma.  
     Typical densities are n = 109 cm-3 and  
     temperatures are T = 2-3.106 K.

➡ The magnetic field provides not just the confinement of the plasma, but also the energy to heat it up to 
coronal temperatures (Parker 1972, 1988; van Ballegooijen 1986; Einaudi et al. 1996).  

➡ One of the key ingredients is the free energy available in the sub-photospheric convective region. 
Convective motions move the footpoints of fieldlines, thus building up magnetic stresses. See Mandrini, 
Demoulin & Klimchuk 2000 for a comprehensive comparison between theoretical models  

     and observations for a large number of active regions. 

➡ However, the  typical length scale of these magnetic stresses is way  
     too large for the Ohmic dissipation to do the job, since ητ /2ℓ≈diss



RMHD Equations

➡These equations describe the evolution of the velocity  
(u) and magnetic field (b)  inside the 
box, assuming periodic boundary  
conditions at the sides. 

➡  We enforce stationary velocity  
 field (Uph) at the top plate.

➡ Reduced MHD is a self-consistent approximation of the full MHD equations whenever: 
  (a) one component of the magnetic field is much stronger than the others and,  
  (b) spatial variations are smoother along  than across (Strauss 1976).
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Current density distribution

Current density

Z=0                     z=0.5                     z=1

time 



RMHD simulations
➡ We perform long time integrations of the RMHD 

equations. Lengths are in units of the photospheric 
motions (      ) and times are in units of the Alfven time 
(tA) along the loop. 

➡ Spatial resolution is 256x256x48 and the integration time 
is 4000 tA. We use a spectral scheme in the xy-plane and 
finite differences along z. 

➡ The time averaged dissipation rate is found to scale like 
(Dmitruk & Gómez 1999) 

➡ It is essentially independent of the Reynolds number, as 
expected for stationary turbulence. 
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➡ Energy cascade 
  - energy flux toward high k 
  - vortex breakdown 

➡ Scale invariance  
   - energy flux in k: 

   - energy power spectrum: 

➡ Therefore
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Dissipative structures: current sheets in 2D

Most of the energy dissipation takes place in current sheets.  We display the current density (upflows & 
downflows) along the loop in a transverse cut.

Versus height. Versus time.



Dissipative structures: current sheets in 3D

➡ 3D distribution of the energy dissipation rate. 

➡ We display the dissipation rate during 20 Alfven 
times with a cadence of 0.1 tA.



Large and small scales: Energy power spectra

➡ The energy spectra are shown here. The 
  red lines correspond to ten spectra taken  
  at different times (separated by 10 tA). The 
  blue trace is the time averaged version. 

➡ The Kolmogorov slope is displayed for  
  reference, but the moderate spatial  
  resolution of these runs is insufficient for  
  a serious spectral analysis.  

➡ Viscosity and resistivity are large enough 
  to spatially resolve the dissipative  
  structures properly. 
   
➡ In one-fluid MHD, the only kinetic effects were  
viscosity and  resistivity. A two-fluid description  
would bring  new physics into play. 

Large Scales 
(one-fluid MHD)

Small Scales 
(two-fluid MHD)



Energy spectra

➡ We also computed energy power spectra for different values of  the Hall parameter     . 

➡ The Kolmogorov slope             is also displayed  for  reference. 

➡ The dotted curves correspond  to the parallel energy spectra. 

➡ The vertical dotted lines indicate the location of the Hall scale                    for each run. 
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Energy spectra 

➡ Energy power spectra for different values of     .  

➡ The dotted curves are the spectra for kinetic energy.
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Current sheets in RHMHD

➡ Energy dissipation concentrates on very small structures known as current  sheets, in which current density  
flows almost parallel to z. 

➡ The picture shows positive and negative current density in a transverse cut at           , for pure RMHD (i.e.               ). 

➡ When the Hall effect is considered, current sheets display the typical Petschek-like structure.
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Parallel electric field

➡ One of the important new features of the Hall effect, is the presence of a parallel electric field,  i.e. 

➡ To order         it can be computed as   

and of course  it can potentially accelerate particles along magnetic field lines.  

➡ Current density is displayed in red and blue, while contours coloured in light blue and pink correspond  to  
the parallel electric field.
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Conclusions

In this second lecture we introduced  the two-fluid description as an extended version of MHD  
that goes beyond the ion and even the electron inertial lengths. 

Below the ion inertial length, we have the Hall-MHD approximation, which is an adequate  
theoretical framework to describe a number of astrophysical and laboratory applications. 

We also presented to so called reduced approximation, which  is appropriate for  plasmas 
embedded in relatively strong magnetic fields.  

We numerically integrated the Hall-MHD equations (spectral and Runge-Kutta) in the presence  
of a strong external magnetic field. 

As a first application, we showed RMHD simulations (no Hall effect yet) to study the  
internal dynamics of magnetic loops in the solar corona. 

We introduce the Hall effect and focused on its potential relevance in the dynamics of small  
scales and magnetic reconnection in the dissipative structures of turbulence. 


