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Two-fluid MHD
= MHD is a fluidistic approach to describe the large scale dynamics of plasmas.

= The standard approach is also known as one-fluid MHD.

= \We are going to start from a somewhat more general approach known as two-fluid MHD,
which acknowledges the presence of ions and electrons and considers kinetic effects such
as Hall, electron pressure and electron inertia.

= Physical processes that can be addressed with MHD include: Eo
o Magnetic reconnection

o Magnetic confinement 7
o Magnetic dynamo \

o MHD shocks

o MHD turbulence 1

= \We will also address the case of plasmas embedded in strong external magnetic fields, which
allow for an approximation known as reduced MHD, both for one-fluid MHD (RMHD) and
two-fluid MHD (RHMHD).




Fluid equations for multi-species plasmas

= For each species s we have (Goldston & Rutherford 1995):
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= These moving charges act as sources for electric and magnetic fields:
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Swall scales: EIHMHD aqu&%éams

= The dimensionless version, for a length scale L, , density 72, and Alfven speed v, = B, / \/4mum;n,
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Ideal Uvarianks in EIHMHD

= For each species s in the incompressible and ideal limit
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we can readily show that energy is an ideal invariant, where




Normal modes i EIHMHD

= If we linearize our equations around an equilibrium characterized by a uniform magnetic field, we obtain the

following dispersion relation:
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= Different approximations, just as one-fluid MHD, Hall-MHD and electron-inertia MHD can clearly be identified
in this diagram.



Some appiita&ioms

MHD
RMHD heating of solar coronal loops (Dmitruk & Gomez 1997, 1999)

Kelvin-Helmholtz instability in the solar corona (Gomez, DelLuca & Mininni 2016)

Hall-MHD
3D HMHD turbulent dynamos. (Mininni, Gomez & Mahajan 2003, 2005; Gomez, Dmitruk & Mininni 2010)
2.5 D HMHD reconnection at Earth magnetopause (Morales, Dasso & Gomez 2005, 2006)

RHMHD turbulence in the solar wind (Martin, Dmitruk & Gomez 2010, 2012)

Hall MRI in accretion disks (Bejarano, Gomez & Brandenburg 2011)
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1D model of perpendicular shocks (Gomez et al. 2018).

Two-fluid turbulence in the solar wind (Andres et al. 2014, 2016).

Fast reconnection in 2.5 D (Andres, Dmitruk & Gomez 2014, 2016).



Haoll-MHD equ&%ic}v\s

= The dimensionless version, for a length scaleL,, density 7, and Alfven speed v, =B,/ \/dumn,
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RKMHD QPPLL@.C@L o coronal Lc;}c::-p heating

= The solar corona is a topologically complex
array of loops (TRACE movie 171 A)

= Coronal loops are magnetic flux tubes
with their footpoints anchored deep in the
convective region.

= They confine a tenuous and hot plasma.
Typical densities are n = 109 cm-3 and
temperatures are T = 2-3.10¢ K.

= The magnetic field provides not just the confinement of the plasma, but also the energy to heat it up to
coronal temperatures ( ).

= One of the key ingredients is the free energy available in the sub-photospheric convective region.
Convective motions move the footpoints of fieldlines, thus building up magnetic stresses. See Mandrini,
Demoulin & Klimchuk 2000 for a comprehensive comparison between theoretical models
and observations for a large number of active regions.

= However, the typical length scale of these magnetic stresses is way fz /
too large for the Ohmic dissipation to do the job, since T giss = i




RKMHD Equ&ﬁoms

= Reduced MHD is a self-consistent approximation of the full MHD equations whenever:
(a) one component of the magnetic field is much stronger than the others and,
(b) spatial variations are smoother along than across (Strauss 1976).
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= These equations describe the evolution of the velocity Z
(u) and magnetic field (b) inside the
box, assuming periodic boundary
conditions at the sides.

= We enforce stationary velocity
field (U,) at the top plate.
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RMHD sinmulakions

= We perform long time integrations of the RMHD

equations. Lengths are in units of the photospheric

motions ( / ,) and times are in units of the Alfven time
(t,) along the loop.
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= Spatial resolution is 256x256x48 and the integration time
1s 4000 t,. We use a spectral scheme in the xy-plane and
finite differences along z.
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= The time averaged dissipation rate is found to scale like o./ S S S
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expected for stationary turbulence.




= Energy cascade

- energy flux toward high k

- vortex breakdown

= Scale invariance

- energy flux in k:

= Therefore
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”Dissipaﬁve skructures: current sheeks it 2D

Most of the energy dissipation takes place in current sheets. We display the current density (
) along the loop in a transverse cut.
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Versus height. Versus time.



mssipaﬁve skructures:

= 3D distribution of the energy dissipation rate.

= We display the dissipation rate during 20 Alfven
times with a cadence of 0.1 t,.
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Large and small scales: Energy power spectra

= The energy spectra are shown here. The
red lines correspond to ten spectra taken
at different times (separated by 10 t,). The

blue trace is the time averaged version.

= The Kolmogorov slope is displayed for
reference, but the moderate spatial
resolution of these runs is insufficient for
a serious spectral analysis.

= \/iscosity and resistivity are large enough
to spatially resolve the dissipative
structures properly.

= |n one-fluid MHD, the only kinetic effects were
viscosity and resistivity. A two-fluid description
would bring new physics into play.
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Energy spectra

= We also computed energy power spectra for different values of the Hall parameter € .
= The Kolmogorov slope k‘5/3 is also displayed for reference.
= The dotted curves correspond to the parallel energy spectra.

= The vertical dotted lines indicate the location of the Hall scale ks = % for each run.
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Energy spectra

= Energy power spectra for different values of € .

= The dotted curves are the spectra for kinetic energy.
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Current sheeks in RHMHD

= Energy dissipation concentrates on very small structures known as current sheets, in which current density
flows almost parallel to z.

= The picture shows positive and negative current density in a transverse cut at =z = 15, for pure RMHD (i.e. € = 0).

= When the Hall effect is considered, current sheets display the typical Petschek-like structure.




Parallel electric field
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= One of the important new features of the Hall effect, is the presence of a parallel electric field, i.e. E,= i;;
= To order .’ it can be computed as E, =¢(d.b-[a,b])

and of course it can potentially accelerate particles along magnetic field lines.

= Current density is displayed in red and blue, while contours coloured in and pink correspond to

the parallel electric field.



Conclusions
In this second lecture we introduced the two-fluid description as an extended version of MHD

that goes beyond the 1on and even the electron inertial lengths.

Below the ion inertial length, we have the Hall-MHD approximation, which is an adequate
theoretical framework to describe a number of astrophysical and laboratory applications.

We also presented to so called reduced approximation, which is appropriate for plasmas
embedded in relatively strong magnetic fields.

We numerically integrated the Hall-MHD equations (spectral and Runge-Kutta) in the presence
of a strong external magnetic field.

As a first application, we showed RMHD simulations (no Hall effect yet) to study the
internal dynamics of magnetic loops in the solar corona.

We introduce the Hall effect and focused on its potential relevance in the dynamics of small
scales and magnetic reconnection in the dissipative structures of turbulence.



