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I Part I: Waves in relativistic plasmas
I Part II: Electro–Vortical formulation
I Part III: Generalized Connetion and Reconnection

1felipe.asenjo@uai.cl; felipe.asenjo@gmail.com



ICTP-IAEA College on Plasma Physics, 2018

Part III:
GENERALIZED CONNECTION
AND RECONNECTION



Newcomb’s Connection Theorem

In 1958, Newcomb showed that in a plasma that satisfies the ideal
Ohms law, two plasma elements connected by a magnetic field line at
a given time will remain connected by a field line for all subsequent
times. This occurs because the plasma moves with a transport velocity
that preserves the magnetic connections between plasma elements.
This is one of the most fundamental and relevant ideas in plasma
physics.



Proof: d/dt is the convective derivative

Ohm’s law ~E +~v× ~B = 0 implies

∂t~B = ∇× (~v× ~B) =
d~B
dt
− (~v · ∇)~B

Be d~l = ~x′ −~x the 3D vector connecting two infinitesimally close
fluid elements.

d
dt

d~l = ~v(~x′)−~v(~x) = ~v(~x + d~l)−~v(~x) = (d~l · ∇)~v

Then

d
dt

(d~l× ~B) = −(d~l× ~B)(∇ ·~v)−
[
(d~l× ~B)×∇

]
×~v

Wich means that if d~l× ~B = 0, it always remains null
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Why is important? Because when the Connetion Theorem is
violated, then it can occur reconnection



Pegoraro’s covariant generalization for ideal MHD in
flat–spacetime



Ideal MHD in flat–spacetime

Ohm’s law
uµ =

dxµ

dτ
Fµνuν = 0

dFµν
dτ

= (∂µuα)Fνα − (∂νuα)Fµα

d/dτ = uµ∂µ

d
dτ

dlµ = dlα∂αuµ

where dlµ is the 4D displacement of a plasma fluid element.

d
dτ

(dlµFµν) = −(∂νuβ)dlαFαβ

This means that if dlµFµν = 0, it always remains null



What about ideal MHD in curved spacetimes?



Ideal MHD in curved–spacetime

uµuµ = gµνuµuν = −1 ; Fµν = ∇µAν−∇νAµ ; d/dτ = uµ∇µ

Ohm’s law
Fµνuν = 0 =

dAµ
dτ
− uν∇µAν

dFµν
dτ

= uα∇µ∇αAν − uα∇ν∇αAµ + uαRβνµαAβ − uαRβµναAβ

= (∇µuα)Fνα − (∇νuα)Fµα

d
dτ

dlµ = dlα∇αuµ

d
dτ

(dlµFµν) = −(∇νuβ)dlαFαβ

This means that if dlµFµν = 0, it always remains null
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3+1 foliation of spacetime

ds2 = gµνdxµdxν = −α2dt2 + γij(dxi + βidt)(dxj + βjdt)

where α is the lapse function, βi is the shift vector (rotation), and γij

is the 3-metric of spacelike hypersurfaces

nµ = (−α, 0, 0, 0) ; nµ = (1/α,−βi/α) ; γµν = gµν + nµnν

γµνnµ = 0 ; nµnµ = −1

Eµ = nνFµν ; Bµ =
1
2

nρερµστFστ ; Fµν = Eµnν−Eνnµ−εµνρσBρnσ

uµ = αΓnµ+Γγµνvν ; Γ =
[
α2 − γij(β

iβj + βivj + βjvi + vivj)
]−1/2



The connected field in ideal MHD in curved spacetimes for
simultaneous events nµdlµ = 0

dlµFµν = 0

nµ(dlαEα)− εµνρσdlνBρnσ = 0

dliEi = 0

ε0ijkdljBk = 0

The connected magnetic field is

Bi =
−α
2
ε0ijkFjk

with gravitational corrections



The connected field in ideal MHD in curved spacetimes for
simultaneous events nµdlµ = 0

dlµFµν = 0

nµ(dlαEα)− εµνρσdlνBρnσ = 0

dliEi = 0

ε0ijkdljBk = 0

The connected magnetic field is

Bi =
−α
2
ε0ijkFjk

with gravitational corrections



What happens if we include resistivity in MHD?

I The Connection Theorem does not hold
I Reconnection in flat or curved spacetimes!



Reconnection around rotating black holes

∇ν(Huµuν) = −∇µp + JνFµν
uνFµν = η(Jµ + uαJαuµ)

∇νFµν = Jν

ds2 = gµνdxµdxν = −α2dt2 +
3∑

i=1

(hidxi − αβidt)2

α2 = h2
0 +

3∑
i=1

(hiωi)
2 ; βi = hiωi/α ; h0 =

√
−g00

h0 = (1− 2rgr/Σ)1/2 ; h1 = (Σ/∆)1/2 ; h2 = Σ1/2 ; h3 = (A/Σ)1/2 sin θ

ω1 = 0 = ω2 ; ω3 = 2rg2ar/Σ ; A = (r2 + a2r2
g)2 −∆a2r2

g sin2 θ

Σ = r2 + a2r2
g cos2 θ ; ∆ = r2 − 2rgr + a2r2

g ; rg = GM ; a = J/GM2 ≤ 1



Reconnection around rotating black holes

The inflow velocity (reconnection rate)

vi ≈ S−1/2

(
1−

a2r2
g

4r2
o

)
; S = Lc/η



Let’s go further: Electro-Vortical unification

Is a Connetion Theorem for a general one–fluid plasma?

Consider two oppositely charged plasma fluids under the
Electro-Vortical unification

en+uν+Mµν
+ = 0

en−uν−Mµν
− = 0



The general one–fluid plasma under the Electro-Vortical
unification

momentum equation

JνDµν + 2neUνZµν = 0

Ohm’s law
JνZµν + 2neUνDµν = 0

Uµ = Uµ − ∆µ

2ne
Jµ ; n =

m+n+ + m−n−
m+ + m−

; ∆µ =
m+ − m−
m+ + m−

Uµ =
m+n+uµ+ + m−n−uµ−

m+n+ + m−n−
; Jµ = en+uµ+−en−uµ− ; ∂µ(nUµ) = 0

Zµν =
1
2

(Mµν
+ −M

µν
− )

Dµν =
1
2

(Mµν
+ +Mµν

− )



Connection Theorem?

Ohm’s law
UνDµν = Γµ =

JνZνµ

2ne

d
dτ

= Uµ∂µ

d
dτ

dlµ = dlν∂νUµ

d
dτ

(dlαDαµ) = −(dlαDαν)∂µUν + dlα(∂αΓµ − ∂µΓα)

I If initially dlαDαµ = 0, then later dlαDαµ 6= 0.
I THE CONNECTION THEOREM DOES NOT HOLD IN

GENERAL.
I This implies general reconnection.
I For ideal MHD, Γµ → 0



Condition for Connection Theorem

If
Γµ =

JνZνµ

2ne
= ΛµDµν

for some Λµ, then

d
dτ

= (Uµ + Λµ)∂µ

d
dτ

(dlαDαµ) = −(dlαDαν)∂µ(Uν + Λν)

However, it is very difficult to justify physically Λµ, as it depends on
the electromagnetic properties of the fluid.



Thanks!


	Presentacion
	Rp


