

Auger and conversion electron spectroscopy of medical radioisotope ¹²⁵I

A magic bullet for cancer therapy

Presented by: *Bryan Tee Pi-Ern* Date: 19th October 2018 Supervised by *Dr Tibor Kibédi, A/Prof Maarten Vos and Professor Andrew Stuchberry*

Strand of human DNA

ß

C

Strand of human DNA Auger e-

ß

Decay scheme of ¹²⁵I

Decay scheme of ¹²⁵I

Decay scheme of ¹²⁵I

- Resulting in heaps of Auger electrons
- Energy range: a few eV to 30 keV (for ¹²⁵I case)

Note: X = X-ray transition, A = Auger transition

- Calculate the Auger and X-ray spectra using a Monte Carlo approach
- Transition probabilities from Evaluated Atomic Data Library (EADL) (Perkins 1991)
- Transition energies are calculated using the relativistic self-consistent-field Dirac Fock method, using RAINE code (Band 2002)

Measure an accurate Auger yield from medical radioisotope ¹²⁵I

Approach

- I. Determine the nuclear parameters (λ and δ)
- II. Measure the Auger to conversion electrons intensity ratios.
- III. Deduce the absolute intensity of Auger electrons from the conversion coefficients.

- Measure an accurate Auger yield from medical radioisotope ¹²⁵I
- Test and benchmark the model

Source preparation

Monolayer of ¹²⁵I on top of a gold substrate

High-energy electrostatic spectrometer

Australian

National University

High-energy electrostatic spectrometer

Conversion electron measurements

Conversion electron line shapes

ANU data only

Australian

National University

- ♦ Chi-square fitting method
 ♦ Reduced $\chi^2 = 0.63$
- * $\lambda = 5.0(21), \delta = 0.0000(84)$

	Experiment			
Atomic shell	Present work	Literature		
100/(1+Tot)		6.68(14) [12]		
		6.55(13) [13]		
Tot		12.95(28) [15] ^a		
		14.25(64) [8]		
K/(1+Tot)		0.80(5) [16]		
$\pi/(1+10t)$		0.804(10) [17]		
L/(1+Tot)		0.11(2) [16]		
M/(1+Tot)		0.020(4) [16]		
K		11.78(18) ^a [15]		
		11.90(31) [8]		
L		1.4(1) [18]		
K/L		12.3(25) [10]		
L/M		5.21(26) [9]		
M/N		4.87(20) [9]		
		1:0.089(4):0.024(2) [7]		
TerTerTe	$1 \cdot 0.085(2) \cdot 0.010(2)$	1:0.106(22):0.041(2) [10]		
$L_1.L_2.L_3$	1.0.085(2).0.019(2)	1:0.082(4):0.019(3) [8]		
		1:0.095(2):0.023(5) [9]		
$L_1:M_1$	1: 0.204(7)	-		
$M_1:M_2:M_3$	1:0.094(6):0.022(7)	1:0.092(5):0.044(3) [8]		
		1:0.101(5):0.030(5) [9]		
$L_1:M_2$	1:0.0173(26)	-		
$M_1:N_1$	1:0.179(20)	1:0.214(6) [9]		

^a Corrected ω_K to 0.875

Nuclear parameters determination

All data

✤ Chi-square fitting method ♣ Reduced $\chi^2 = 1.55$

* $\lambda = 0.2(7), \delta = 0.0132(71)$

	Experiment		
Atomic shell	Present work	Literature	
100/(1+Tot)		$\begin{array}{c} 6.68(14) \ [12] \\ 6.55(13) \ [13] \end{array}$	
Tot		12.95(28) [15] ^a 14.25(64) [8]	
K/(1+Tot)		$\begin{array}{c} 0.80(5) \ [16] \\ 0.804(10) \ [17] \end{array}$	
$\frac{L/(1+Tot)}{M/(1+Tot)}$		$\begin{array}{c} 0.11(2) \ [16] \\ 0.020(4) \ [16] \end{array}$	
K	$ \begin{array}{c} 11.78(18) & [15] \\ 11.90(31) & [8] \end{array} $		
$L \over K/L$		1.4(1) [18] 12.3(25) [10]	
L/M M/N		5.21(26) [9] 4.87(20) [9]	
$L_1:L_2:L_3$	1:0.085(2):0.019(2)	$\begin{array}{c} 1:0.089(4):0.024(2) \ [7]\\ 1:0.106(22):0.041(2) \ [10]\\ 1:0.082(4):0.019(3) \ [8]\\ 1:0.095(2):0.023(5) \ [9] \end{array}$	
$L_1:M_1$	1: 0.204(7)	-	
$M_1:M_2:M_3$	1:0.094(6):0.022(7)	$\begin{array}{c} 1:0.092(5):0.044(3) \ [8] \\ 1:0.101(5):0.030(5) \ [9] \end{array}$	
$L_1:M_2\\M_1:N_1$	$\begin{array}{c} 1:0.0173(26) \\ 1:0.179(20) \end{array}$	1:0.214(6) [9]	
^a Corrected ω_{K}	to 0.875		

KLL Auger electron measurements

KLL Auger electron measurements

KLM Auger electron measurements

KLM Auger electron measurements

K fluorescence yield determination

		Karttunen (1969)	
$\omega_{\rm K}$ + $a_{\rm K}$ = 1		Tolea (1974)	
/ 0.87 5%	۲ 0 13	Singh (1990)	
	30%	Ozdemir (2002)	⊢ I
0.85	0.15	Yashoda (2005)	
2%	10%	Present (2017)	
0.88 3%	0.12 20%	EADL (1991)	
• / •		0.65 0.7 0.75 0 W K	0.8 0.85 0.9

K fluorescence yield determination

		Karttunen (1969)
$\omega_{\rm K} + a_{\rm K} = 1$		Tolea (1974) Semi-empirical value (Schonfeld, 1996)
/ \ 0.87 0.13	Singh (1990)	
5%	30%	Ozdemir (2002)
0.85	0.15	Yashoda (2005)
2%	10%	Present (2017)
88.0	0.12	
3%	20%	EADL (1991)
		0.65 0.7 0.75 0.8 0.85 0.9 WK

K fluorescence yield global fit curve

- Quantify the Auger electrons with energy
 < 1 keV
- Effects of electron shake-off following internal conversion and Auger transition (the tails)
- Atomic structure effect: What is the atomic field after electron capture
- Potential medical isotopes to study: ^{80m}Br, ^{99m}Tc, ⁹⁹Mo, ¹¹⁹Sc, ¹⁵³Sm, ¹⁷⁷Lu, ^{193m}Pt, ^{195m}Pt, ²⁰¹Tl, ^{80m}Br

Acknowledgement

- Supervisors
- 1. Dr. Tibor Kibédi
- 2. A/Prof. Maarten Vos
- 3. Prof. Andrew Stuchbery
- <u>Collaborators</u>
- 1. M. Alotiby
- 2. B.Q Lee
- 3. ANSTO (Australian Nuclear Science and Technology Organisation)

