Activation bremsstrahlung yields of the $^{112}Sn(\gamma,n)^{111}Sn and ^{112}Sn(\gamma,p)^{111m,g}In$ reactions and the following ¹¹¹Sn decay y-ray branching coefficients

A. Chekhovska ^{1,2} I. Semisalov² V. Kasilov² Ye. Skakun²

1. V. N. Karazin Kharkiv National University, Kharkiv, Ukraine [http://www.univer.kharkov.ua]

2. National Science Center "Kharkiv Institute of Physics and Technology", Kharkiv, Ukraine [https://www.kipt.kharkov.ua]

Joint ICTP-IAEA Workshop on Nuclear Structure and Decay Data: Theory, Experiment and Evaluation

The Abdus Salam International Centre for Theoretical Physics

The valley of stability

Abundance of chemical elements in nature

depending on mass number

 $A \le 11 - primordial$ nucleosynthesis A = 12-56 - fusion reactions A > 56 - r - and s - process neutron radiation capture

List of p-nuclei							
⁷⁴ Se	⁷⁸ Kr	⁸⁴ Sr	⁹² Mo	⁹⁴ Mo	⁹⁶ Ru	⁹⁸ Ru	
¹⁰² Pd	¹⁰⁶ Cd	¹⁰⁸ Cd	¹¹³ In	^{}	114 Sn	115 Sn	
¹²⁰ Te	¹²⁴ Xe	¹²⁶ Xe	¹³⁰ Ba	¹³² Ba	¹³⁸ La	¹³⁶ Ce	
¹³⁸ Ce	¹⁴⁴ Sm	¹⁵² Gd	¹⁵⁶ Dy	¹⁵⁸ Dy	162 Er	¹⁶⁴ Er	
¹⁶⁸ Yb	¹⁷⁴ Hf	^{180m} Ta	^{180}W	¹⁸⁴ Os	¹⁹⁰ Pt	¹⁹⁶ Hg	

3

List of n nuclei

Gamma-activation method

The statistical theory of nuclear reactions

$$\sigma_{AB} = \pi \lambda_A^2 \frac{1}{(2I+1)(2i+1)} \sum_{I^{\pi}} (2J+1) \frac{1}{2} \frac{1}{(2J+1)} \frac{1}{(2J+1)} \frac{1}{2} \frac{1}{(2J+1)} \frac{1}{(2J+1)} \frac{1}{2} \frac{1}{(2J+1)} \frac{1}{$$

Hauser-Feshbach model

- i the spin of the incident particle;
- J the spin of the compound nucleus;
- T coefficients of particle permeability;
- $T_{A}^{J^{\pi}} = \sum_{i=0}^{\omega} T_{A}^{i}(J^{\pi}) + \int_{\varepsilon_{\omega}}^{\varepsilon^{max}} \sum_{I' = \pi'} T_{A}^{i}(\varepsilon^{i}, J'^{\pi'}) \rho(\varepsilon^{i}, J'^{\pi'}) d\varepsilon^{i}$

 $\rho_F(E,J) = \rho_F(E)g(E,J) \approx \frac{\sqrt{\pi}}{12} \frac{\exp(2\sqrt{aE})}{a^{1/4}E^{5/4}} \frac{(2J+1)\exp\left[-\left(J+\frac{1}{2}\right)^2/2\sigma^2\right]}{2\sqrt{2\pi}\sigma^3}$ Fermi-gas model

 $f_{E1}(\varepsilon_{\gamma}) = 8.68 \cdot 10^{-8} (mb^{-1}MeV^{-2}) \frac{\sigma_{0}\varepsilon_{\gamma}\Gamma^{2}}{(\varepsilon_{\gamma}^{2} - E^{2})^{2} + \varepsilon_{\gamma}^{2}\Gamma^{2}}$ Brink-Axel approximation

- E, J the excitation and spin energies of the excited state of the nucleus, respectively;
- a the density parameter of the levels;
- σ the spin dependence parameter.

The scheme of the experiment on a beam <u>of bremsstrahlung y-quanta</u>

Calculation of the integral yields

$$\begin{array}{c}
 112Sn \xrightarrow{(\gamma,n)} 111Sn \xrightarrow{EC,\beta^{-}} 111m In \xrightarrow{IT} 111g In \xrightarrow{EC} 111Cd \\ \hline (\gamma,p) \end{array}$$

The simple activation equation:

$$N = \frac{\varepsilon \cdot B \cdot n \cdot \phi \cdot Y}{\lambda} \cdot (1 - e^{-\lambda \cdot t_1}) \cdot e^{-\lambda \cdot t_2} \cdot (1 - e^{-\lambda \cdot t_3})$$

 (γ, p)

- N number of events
- ε efficiency
- B branching
- n number of nuclei
- ϕ incident particles flux
- Y yield
- λ decay constant

The activation equation for genetically coupled pair:

$$\frac{N_{\gamma}}{\varepsilon \cdot B \cdot n \cdot \phi} = Y_{p} \cdot \frac{\lambda_{p} \cdot \lambda_{d}}{\lambda_{d} - \lambda_{p}} \left[\frac{1 - e^{-\lambda_{p} \cdot t_{1}}}{\lambda_{p}^{2}} \cdot e^{-\lambda_{p} \cdot t_{2}} \cdot (1 - e^{-\lambda_{p} \cdot t_{3}}) - \frac{1 - e^{-\lambda_{d} \cdot t_{1}}}{\lambda_{d}^{2}} \cdot e^{-\lambda_{d} \cdot t_{2}} \cdot (1 - e^{-\lambda_{d} \cdot t_{3}}) \right] + Y_{d} \cdot \frac{1 - e^{-\lambda_{d} \cdot t_{1}}}{\lambda_{d}} \cdot e^{-\lambda_{d} \cdot t_{2}} \cdot (1 - e^{-\lambda_{d} \cdot t_{3}})$$

 Y_p – yield of the parent nuclei; Y_d – yield of the daughter nuclei λ_p , λ_d – decay constants of the parent and daughter nuclei responsible; t_1 – irradiation time; t_2 – cool time; t_3 – measure time.

□ <u>Calc</u>	ulation of .	Branching	<u>Coefficie</u>		
$B_{x} = \frac{1}{\varepsilon \cdot n \cdot \phi \cdot Y}$	$\frac{N_{\gamma} \cdot \lambda}{\cdot (1 - e^{-\lambda \cdot t_1}) \cdot e^{-\lambda \cdot t_1}}$	for the decay of $t_{1} \cdot t_{2} \cdot (1 - e^{-\lambda \cdot t_{3}})$	of a nucleus II X=1.64		
	Branching coefficient [%]				
Ε γ [κε ν]	NUDAT	LBLN	Our data		
372.3	0.42 ± 0.08	0.42 ± 0.02	0.26 ± 0.05		
457.1	0.38 ± 0.08	0.38 ± 0.02	0.23 ± 0.04		
564.3	0.30 ± 0.08	0.30 ± 0.02	0.19 ± 0.03		
761.9	1.47 ± 0.01	1.48 ± 0.05	0.90 ± 0.08		
954.1	0.50 ± 0.08	0.50 ± 0.02	0.31 ± 0.03		
1101.1	0.63 ± 0.02	0.64 ± 0.05	0.39 ± 0.04		
1152.9	2.7	2.7	1.65 ± 0.11		
1610.0	1.31 ± 0.01	1.31 ± 0.05	0.80 ± 0.07		
1914.7	1.98 ± 0.03	1.99 ± 0.08	1.21 ± 0.08		

Conclusions

$\checkmark 112 Sn(\gamma, n)^{111} Sn$

The Fermi gas model for the density of nuclear levels. The Brink-Axel model for radiation strength function.

 $\int \frac{112}{Sn} (\gamma, p)^{111m} In$

The Fermi gas model for the density of nuclear levels. The Hartree–Fock model for radiation strength function.

 \checkmark ¹¹²Sn(γ , p)¹¹¹^gIn

The Fermi gas model for the density of nuclear levels. The Hartree–Fock model for radiation strength function.

The new values of the branching coefficients of the γ -transitions following the decay of the ¹¹¹Sn nucleus are determined, which differ from the base values by a weighted average coefficient of *1.64*.

The decay spectrum of the ¹¹¹Sn nucleus</sup>

- A<56 => nucleus fusion
- A>56 => neutron capture processes (n,γ) -reaction :
 - s-process (slow)
 - r-process (rapid)
- p-nuclei (35) forming in p-process ((p,γ)-reaction) or in (γ ,n), (γ ,p) and (γ , α) reactions.

$$\lambda(T) = \int_0^\infty c n_\gamma (T, E_\gamma) \sigma_{(\gamma, n)}(E_\gamma) dE_\gamma$$

□ <u>Nucleosynthesis</u>

- $$\begin{split} \lambda \left(T \right) \ \ \ the \left(\gamma, n \right) \ \ reaction \ rate \ for \ a \\ nucleus \ disposed \ in \ a \ thermal \\ photon \ bath \ of \ a \ stellar \ medium \\ having \ temperature \ T; \end{split}$$
- c the speed of light ;
- $\begin{aligned} \sigma_{(\gamma,n)}(E) & \text{the reaction cross section} \\ & \text{depending on photon energy E;} \\ n(E,T) & \text{the number of photons per unit} \\ & \text{energy and volume of a star} \\ & \text{interior.} \end{aligned}$

The computational code TALYS uses

OPTICAL	DENSITY	MODEL OF
POTENTIAL	LEVEL	RADIATION
MODEL	MODEL	STRENGTH FUNCTION

 Spherical OMP: Neutrons and protons;
 Spherical dispersive OMP: Neutrons;
 Spherical OMP: Complex particles;
 Semi-microscopic optical model (JLM). Constant temperature + Fermi gas model;
 Back-shifted Fermi gas model;

3. Generalised superfluid model;

4. Microscopic level densities (Skyrme force) from Goriely's tables;
5. Microscopic level densities (Skyrme force) from Hilaire's combinatorial tables. Kopecky-Uhl generalized Lorentzian;
 Brink-Axel Lorentzian;
 Hartree-Fock BCS tables;
 Hartree-Fock-Bogolyubov tables;
 Goriely's hybrid model.

۰,

112 48Cd