%TRIUMF

β-delayed neutron measurements at RIKEN for nuclear structure, astrophysics and applications

Roger Caballero-Folch Postdoc researcher | TRIUMF

ICTP-IAEA Workshop Miramare, Grignano - Trieste, Italia, UE, 19 d'octubre de 2018

Discovery, accelerated

1

2018-10-19

Beta-delayed neutron emission

R. B. Roberts et al. "The Delayed Neutron Emission Which Accompanies Fission of Uranium and Thorium," Phys. Rev. 55, 664 (1939).

Beta-delayed neutron emission

Beta-delayed neutron emission in nuclear reactors

4

- Important role in the reactor control $t_{\beta n} \gg t_{prompt}$
- Maintaining the reactor in prompt subcritical condition.

Beta-delayed neutron emission to understand the origin of the elements

s process: slow n-capture and β - decay near valley of β stability at kT = 30 keV

5

Beta-delayed neutron emission and the r-process

Beta-delayed neutron emission and the r-process

Core-collapse supernovae

Neutron star mergers

Neutron stars

Data from Looders et al. Vol. VI/4B, Chap. 4.4 (2009).

State of the art of beta-delayed neutron emission measurements

More info: I. Dillmann, A. Tarifeño-Saldivia Nucl. Phys News Vol.28, 1 (2018).

IAEA coordinated Research Projects (CRP)

Coordinated Research Projects (CRP) on the Development of a Reference Database for Beta-Delayed Neutron Emission and on β -delayed neutron emission EVALUATION

A >				IAE	A Nuclear Data	Section									
		Refe	erence Data	abase for B	leta-Dela	yed Neut	tron Emi	ssion Da	ta						
Search Nuclide 8he or h ≤ Z ≤ ≤ N ≤ ≤ T _{1/2} [ms] ≤ < P(1n)% ≤ P(2n)% ≤ P(2n)%					$\begin{tabular}{ c c c c c c } \hline \hline Data plotting \\ X Axis & A & Z & N & T_{1/2} & P1n \\ & P2n & QB'n \\ Y Axis & A & Z & N & T_{1/2} & P1n \\ \hline \end{tabular}$			Published tables Range Evaluation Compilation Z ≤ 28 III 29 ≤ Z III 57 III 57 < III III			m				
Search Nuclides found:650			(j) Clear		د کو]				It has been included a high priori	n a tv		
Click a label to show	/hide table col	lumns ()Legend	& References											list of nucle	i to
Compilations Comm	ents Qvalues	Theory Mo	eller et al. 03	Marketin e	et al. 16									De measure	EU
Recommended v	values								[
Nuclide	Isomer	T _{1/2}	%P(1n)	%P(2n)	%P(3n)	# of neutrons per decay	Reference	Spectra							
⁸ ₂ He ₆		119.4(15) ms	16 (1)	10 <u></u>		0.16	2015BI05	1	-						
⁹ ₃ Li [*] ₆		178.2(4) ms	50.5 (10) ^a			0.505	2015BI05	2							

https://www-nds.iaea.org/relnsd/delayedn/delayedn.html

D. Abriola, B. Singh, and I. Dillmann, Beta-Delayed Neutron Emission Evaluation, Tech. Rep. (INDC(NDS)-0599 - IAEA, 2011). I. Dillmann, P. Dimitriou, and B. Singh, Development of a Reference Database for Beta-delayed Neutron Emission Evaluation, Tech. Rep. (INDC(NDS)-0643 - IAEA, 2014).

I. Dillmann, P. Dimitriou, and B. Singh, et al. Development of a Reference Database for Beta-Delayed Neutron Emission, Tech. Rep. (INDC(NDS)-0735 - IAEA, 2017).

BRIKEN project background: BELEN detector (2009-2014) – BRIKEN 2016...

20 ³He counters in 2 rings. IGISOL Jyväskylä (2010). $\varepsilon_{1n} \approx 47\%$

30 ³He counters in 2 rings. GSI-FRS (2011). $\varepsilon_{1n} \approx 38\%$

48 ³He counters in 3 rings. IGISOL Jyväskylä (2014). $\epsilon_{1n} \approx 40\%$ (HPGe) $\epsilon_{1n} \approx 60\%$ 140 ³He counters in 7 rings. BRIKEN (2016...) $\varepsilon_{1n} \approx 68.6\%$ (HPGe)

$$^{3}He + n \rightarrow ^{3}H + p + 764 keV$$

All efficiencies are up to 1MeV

Fragmentation facilities (GSI & RIKEN)

ISOL facilities (IGISOL – Jyväskylä)

Very clean beam!

Implantation in a tape

BRIKEN experimental campaign

14

next committee in Ca region.

BRIKEN: Technical design

Advanced Implantation Detector Array (AIDA) – Univ. of Edinburgh, UK.

- Stack of 6 DSSD Si layers (8 in further exp.).
- 1 mm thickness per strip
- Area: 71.68 mm x 71.68 mm with 128 horizontal (X) and 128 vertical (Y) strips 0.51 mm wide.

https://www2.ph.ed.ac.uk/~td/AIDA/

WASABI detector (RIKEN)

- Stack of 4 DSSD Si layers.
- Area: 40 mm x 60 mm with strips 3 mm wide.
- This allowed to increase γ efficiency.

S.Nishimura et al. RIKEN Accel. progress report 46 (2013) 182

Beta delayed neutron at RIKEN (BRIKEN):

A.Tarifeño-Saldivia, et al, Journal of Instr. 12, P04006 (2017).I. Dillmannand A. Tarifeño-Saldivia, Nucl. Phys. News 28,28 (2018).

BRIKEN Parasitic beam at N=28 region (Fall 2016)

annual report

BRIKEN project preliminary results in ⁷⁸Ni region

⁷⁸Ni P_{1n} value: Comparison with theory

Picture adapted from Zhi et al., PRC87 (2013)

BRIKEN project preliminary results PID experiment A~130

BRIKEN project preliminary results (A=130 region)

QRPA+Hauser Feshbach FRDM 2012 + AME2012 masses

Courtesy of Alfredo Estradé et al.

Moeller, Mumpower, Kawano et al., At. Data Nucl. Data Tabl. **109** (2016) 1 https://t2.lanl.gov/nis/molleretal/publications/ADNDT-BETA-2018.html

Results: Half-lives and P_{1n} in A>200 and N~126 region (GSI)

¹³⁶Sb measurement (β2n emitter)

Model P_{2n} (%) 6.19 FRDM+ORPA 4.15(1.05)DF3+cQRPA+RQRPA **KTUY** RHB+RQRPA **QRPA-HF** Semiempirical 0.28 Microscopic Finite Fermi-system theory

¹³⁶Sb and ¹³⁶Te and calibration isotopes P_{1n} results

Exp. ALTO Not published / Isobars Estimation P_{2n} $=1.4\pm0.2\%$

6 days of

beamtime

0.0

0.2

0.0

0

RCF Acta Physica Polonica B, 48 (2017) 517-522. RCF EPJ Web of Conferences, 146 (2017) 01005. RCF et al., Physical Review C 98 (2018) 034310.

Summary and outlook

Estimations on new Pn values within the BRIKEN project data:

Emission type	Energetically allowed	Already measured	New Pn values expected
β1n	621	298	~250
β2n	300	23 + 2 approx	~50
β3n	138	4	~10
β4n	58	1	~5

Be able to determine information on gamma-neutron competition above Sn.

Certify β n is the dominant decay in very exotic neutron-rich region.

Relevant input for theoretical models to predict properties in the neutron-rich region either for nuclear structure and astrophysics.

First scientific papers have been already submitted. So far 4 experiments done and two approved

Moltes gràcies Thank you Merci Grazie!

www.triumf.ca Follow us @TRIUMFLab

Discovery, accelerated

BRIKEN Experimental setup

More details at: http://ribf.riken.jp/BigRIPSInfo/daq/fig/pid.pdf

26