Investigation of magnetic rotational band and new isomeric level in 204At

Debasmita Bondyopadhaya Raiganj Surendranath College, India

Features of TRANS-LEAD Nuclei (Z > 82 & N < 126)

Difficulties & Challenges

- Poor ER yield.
- Huge fission back ground (70-80%).
- Resulting large amount of unwanted fission gamma-rays.
- Random presence of isomers (few ns to ms or even more).
- Presence of highly converted low energy transitions.

Possible technical solution

- Large array of detectors to get sufficient statistics.
- Recoil separators for recoil selection.
- LEPs detector to detect low energy γ-rays.
- Solenoid and Si detectors for conversion electrons.
- Various focal plane detectors for recoil selection.
- Time stamping in data acquisition

Some n- deficient isotopes of <u>Astatine</u> : Z = 85²⁰⁴At : N = 119, T_{1/2} = 9.12 min, g.s spin = 7+ ²⁰⁵At : N = 120, T_{1/2} = 26.9 min, g.s spin = 9/2-²⁰⁶At : N = 121, T_{1/2} = 30.6 min, g.s spin = 7+ 3 valence protons filling 1h_{9/2} & neutron holes largely in 3p_{1/2}, 2f_{5/2} & 3p_{3/2} shell

NV M

Experiment at TIFR, India

Beam taken:- ¹²C Target taken :- ¹⁹⁷Au (99.95% purity) Target thickness :- 5 mg / cm² Beam Energy :- 65 and 75 MeV Clover position :- 3 at -23°, 2 at -40°, 2 at -65°, 4 at 90°, 2 at 65 & 2 at 40° DAQ :- Pixie-16 module based fast DSP Data sorting :- MARCOS

Excitation function based on PACE4

Coincidence spectra (*a*) 75 MeV

<u>₭</u>∿\/,\\//

N N>

• By gating on the known transitions of the $\Delta I = 1$ band, reveal a few new transitions including the weak cross over E2 transitions.

• A few new γ rays linking the $\Delta I = 1$ sequence to the main branch including 601 and 491 keV transitions could be seen in the spectrum.

Coincidence spectra (*a*) **75** MeV

N NA

• Gates on the main sequence of transitions involving 601 and 491 keV γ -rays and also on the Astatine X-rays reveal a significant number of new transitions in the above spectrum (Fig 2).

• Further investigations into the cross-correlation of the transitions would possibly reveal the main yrast sequence.

Multopolarity determination from observed directional correlations

$$R_{DCO} = \frac{I\gamma_1 at 90^\circ, gated with \gamma_2 at 157^\circ}{I\gamma_1 at 157^\circ, gated with \gamma_2 at 90^\circ}$$

Polarisation Measurement : Electric or Magnetic ?

Nature of B(M1)/B(E2) with spin in M1 band

Summery and Results

 High spin states & isomeric levels in 204At are investigated starting from a few transitions and Tentative level scheme for 204At is obtained analyzing γ-γ coincidence spectra.

> By putting gates on 601 and 491 keV gamma rays, and also on Astatine X-

rays, a significant number of transitions were identified.

> DCO and PDCO are measured whenever possible for tentative assignment of the spin-parity. Based on this, the sequences in band $\nabla I = 1$ is found to be $\Delta I = 1$ magnetic in nature involving h9/2 and i13/2 proton and neutron holes.

>There also may be a few more isomeric levels, that can not be observed due

to limited statistics.

Thank You