

BERKELEY LAB

ENSDF: Structure via particle spectroscopy and a few tips for evaluation

M. Shamsuzzoha Basunia, LBNL Joint ICTP-IAEA Workshop on Nuclear Structure and Decay Data: Experiment, Theory and Evaluation Trieste, Italy, Oct 15 – 26, 2018

Outline:

- Objectives
- Datasets in ENSDF
- Reaction datasets (particle)
- General comments
 Examples
- A few tips for evaluation
 > Workflow: Mass chain evaluation
- Uncertainty
 Examples
- List of some useful references

Objectives:

Evaluation of experimental nuclear structure data:

- Completeness
- Quality and correctness
- Up-to-date

Resources:

- > Guidelines, Manual, mentoring
- > NSR (major), Web of Science, Google, etc.
- > XUNDL
- Existing ENSDF files
- General policies in year's first NDS issue
- > Other evaluations/compilations
- > Codes

ENSDF Datasets

Chart of Nuclides (partial):

Types of Reactions:

Reactions – particle transfer/scattering:

- Stripping and Pickup Reactions
- Multi-particle Transfer Reactions
- Charge-Exchange Reactions
- Inelastic Scattering
- Resonance Reactions …

Reactions with inverse kinematics:

Knock-out, breakup reaction using radioactive ion beam (RIB)

Provides information of nuclear shell structure

Quantities of Interest :

Particle energy spectrum – no γ rays:

- E(level) from particle energy spectrum or excitation function.
- L angular momentum transfer
- S, C²S spectroscopic factors
 Different definition exists in the literature
 'Fingerprints' for deformed nuclei
- $\beta_{2,} \beta_{4}$ deformation parameters (if model independent)
- Γ , Γ_i total or partial widths for level
- $B(E\lambda)$, $B(M\lambda)$ transition probabilities
- $J\pi$, T spin, parity, isospin

Stripping and Pickup:

Examples:

<u>Stripping</u>: (d,p), (pol d,p), (³He,d), (α,³He), *etc*. <u>Pickup</u>: (p,d), (t,α), (³He,α), *etc*.

Provides:

1) Q-values and excitation energies – from measured spectrum

2) L-transfer – from angular distribution of cross sections and DWBA

FIG. 2. (Color online) Spectra for the ⁶⁰Ni(d,p) and (α ,³He) reactions at 15° and 7°, respectively, indicating the strong enhancement of the lower ℓ values in the former reaction and the higher ones in the latter. The inset shows the reason for this: the momentum matching for the two reactions as a function of bombarding energy (deduced from a crude semiclassical picture), where the arrows show the bombarding energies used in this work, and Q is the momentum transfer and R the radius.

Stripping and Pickup:

Provides:

- 3) J-transfer from analyzing power using polarized beams
- 4) Hole or particle character (from relative pickup and stripping strengths)
- 5) Configuration identification and purity (from absolute cross sections)

Quantities of interest:

- E (level)
- L (angular momentum transfer)
- S, C²S spectroscopic factors
- Configuration
- Items to note in dataset:
 - >Target J π (unless 0⁺), spectrum resolution (FWHM), range of angles measured, in *lab* or *c.m. system*

Multi-particle Transfer:

Examples:

(p,t), (pol d, α), (t,p), (α ,p), (α ,d), (⁶Li,d), ...[.]

Quantities of interest:

- E(level)
- L if angular distribution can be fitted by a unique value

Two-nucleon transfer (p,t), (t,p), (³He,n):

• Observation of strong group (Identical nucleons transferred in a relative s state).

Charge Exchange Reactions:

Examples:

```
(p,n), (<sup>3</sup>He,t), (d,<sup>2</sup>He), (<sup>6</sup>Li,<sup>6</sup>He)
```

- Widely used for GT strength

 to study the problem of GT strength quenching in beta decay
- GT⁺ and GT⁻ giant resonances – using (n,p) and (p,n)

Quantities of interest:

- E(level)
- Isobaric analogue state

2017Wi16 - Phys. Rev. C 96, 064309

High-resolution study of $T_z = +1 \rightarrow 0$ Gamow-Teller transitions in the ²⁶Mg(³He, t)²⁶Al reaction Kalayar Win,^{1,*} Y. Fujita,^{2,3,†} Yee Yee Oo,^{1,‡} H. Fujita,² Y. F. Niu,^{4,5} T. Adachi,² G. P. A. Berg,⁶ G. Colò,^{4,7} H. Dohmann,⁸

Inelastic Scattering:

Examples:

(e,e'), (p,p'), (d,d'), (α,α') (projectile energy **above** the Coulomb barrier)

Quantities of interest:

- E(level)
- L if angular distribution is fitted by unique L value
- Natural, unnatural parity (usually from (α, α'))
- B(Eλ), B(Mλ) transition probabilities (typically from (e,e')).
- Isospin (p,p') vs. (d,d'), (α , α ')

Fig. 5-6. Elastic and inelastic proton and deuteron scattering at 7 MeV to various levels in ¹⁰B. The absence of (d, d') scattering to the second excited level is significant in that it illustrates the operation of an isospin selection rule forbidding d' transitions to T = 1 states while permitting them to T = 0 states.

Resonance Reactions:

Charged-particle Resonances:

Examples:

 $(p,p), (p,X), (p,p'\gamma) \dots$

Quantities of interest:

- Level excitation energy deduced from center-of-mass resonances energy and S_n, S_p
- Isobaric analogue states
- Giant resonances
- Level spins and parities, and L-values (when available).
- > Total level widths or partial widths

Resonance Reactions: Cont.

Quantities of interest: Cont.

- Resonance strength
- Cross sections and reaction Q values
- Gamma-ray energies (often measured but not given by authors)
- Gamma-ray intensities generally branching ratios (often missing branches)
- \succ Gamma-ray multipolarities and mixing ratios.

Recommendation:

Adopt charged-particle resonance data

Reactions with Inverse Kinematics

Using Radioactive ion beam (RIB)

• Knock-out, breakup reactions

Example:

²H(²⁵Al,n), (⁹⁶Sr,p),¹H(²¹Na,p), ¹²C(²³O,²²Ox), C(³⁶S,X), etc.

Quantities of interest:

- E (level)
- L transfer from width of longitudinal momentum distribution and model analysis
- Particle removal cross section
- Absolute transition intensities give reliable spectroscopic factors

FIG. 3. Ground-state exclusive momentum distribution for ²²O fragments after one-neutron knockout reaction from ²³O compared with calculations assuming l = 0 and l = 2 (see text).

With future FRIB – more data expected from these reactions

General Comments:

Particle transfer datasets:

- Often level energy with higher uncertainty
- <u>Challenge overlapping levels with different centroid values</u>
- $J\pi$ is helpful to distinguish if available
- For $J\pi$ argument L value, natural or unnatural parity, vector analyzing power, etc.
 - ✓For L value list how it was obtained, i.e. $\sigma(\theta)_{exp}$ compared with DWBA calculations or with shape of level with known J π
 - ✓ Caution for higher L values!
- Options in Adopted Levels
 - Lowercase letters in 'XREF'
 - ✓'XREF' energy as comments

Communicate what is measured/listed by authors

Example: Overlapping levels

$^{26} Mg(t, {}^{3} He) \\ 1974 Fl01, 1987 Pe06, 2006 Ze01 \\$

- 1974Fl01: Triton beam E=23.5 MeV provided by Los Alamos Van de Graff facility impinged upon ²⁶Mg target. Reaction products measured from 15 to 30° at 5° intervals using E- Δ E silicon surface-barrier-detector telescope with a 50 μ m Δ E detector. Excited states in ²⁶Na were populated using charge-exchange (t,³He) reaction and relative d\sigma/d\Omega measured.
- 1987Pe06: ³H⁻ ions accelerated to 36 MeV by tandem Van de Graff accelerator with average beam intensity of 200 nA and incident upon self-supporting foils of ²⁶Mg with thicknesses of 0.20 mg/cm² and 1.50 mg/cm². Recoiling particles measured using Daresbury 1 m scattering chamber in conjunction with five ΔE-E semiconductor telescopes. ΔE detectors were between 118 and 155 µm thick and E detectors 5 mm thick. Particle-energy spectra and differential cross sections obtained over angular range 15 to 50°. Results compared to DWBA calculations.
- 2006Ze01,2007Ze04: E=115 MeV/nucleon. Triton beam produced from 140 MeV/nucleon α beam impinging on a Be target. Measured ³He spectrum, $\sigma(\theta)$ using the s800 spectrometer of two two-dimensional cathode-readout drift detectors (CRDCs). FWHM=300 keV, DWBA analysis. Deduced Gamow-Teller transition strengths.

²⁶Na Levels

$E(level)^{\dagger}$	Jπ§	L#	B(GT)#	Comments
0.0	3+			
88 15	1+	0	0.41 5	
$241 \ 15$	2+			
420 15	2+			
$1.4 \times 10^{3#}$ 2	1+#	0	0.09 2	E(level): A group of unresolved levels between 1450 and 1650 keV is also reported in
V	_			1987Pe06.
1400 ± 200				

Adopted Levels, Gammas

 $Q(\beta^{-})=9354$ 4; S(n)=5574 4; S(p)=12090 50; $Q(\alpha)=-12079$ 13 2012Wa38.

²⁶Na Levels

Cross Reference (XREF) Flags

		A ²⁶ Ne β ⁻ B ¹⁴ C(¹⁴ C) C ²⁵ Na(d,j D ²⁶ Ne(d,j) E Coulom)	Decay ,dγ) pγ) 2nγ) b Excitation	F ²⁶ Mg(n,p) G ²⁶ Mg(t, ³ He) H ²⁶ Mg(⁷ Li, ⁷ Be) I ²⁶ Mg(¹¹ B, ¹¹ C)
$E(level)^{\dagger}$	Jπ	XREF	T _{1/2}	Comments
0.0	3+	ABCDE GHI	1.07128 s 25	$\%\beta^{-}=100; \ \mu=+2.851 \ 2; \ Q=-0.0053 \ 2.$
1408.0 10 1509.0 11 1660.2 12 1808.0 6	(1+) [‡]	B g ABCD g B		XREF: B(1514).

Example: Spin-parity arguments

²⁶Mg Levels

Cross Reference (XREF) Flags

A ²⁶ Na β ⁻ Decay B ²⁶ Al ε Decay (7.17×10 ⁵ y) C ²⁶ Al ε Decay (6.3460 s) D ²⁷ Na β ⁻ n Decay E ¹⁸ O(¹³ C, αnγ) F ²² Ne(⁶ Li,d) G ²³ Na(α, pγ)		I J K I M N C	$\begin{array}{c} {}^{25}{\rm Mg(n,\gamma)} \\ {}^{25}{\rm Mg(n,\gamma),(} \\ {}^{25}{\rm Mg(d,p)} \\ {}^{25}{\rm Mg(\alpha,^{3}{\rm He})} \\ {}^{26}{\rm Mg(pol\ \gamma)} \\ {}^{26}{\rm Mg(\gamma,n):} \\ {}^{26}{\rm Mg(\gamma,n):} \\ {}^{26}{\rm Mg(e,e')} \end{array}$	E=thermal n,n): Res e) ,γ'),(γ,γ') Res	${}^{26}Mg(p,p'),(p,p'\gamma)$ ${}^{26}Mg(\alpha,\alpha'\gamma),{}^{22}Ne(\alpha,n)$ ${}^{27}Al(\mu^-,\nu n\gamma)$ ${}^{27}Al(d,{}^{3}He)$ ${}^{27}Al(t,\alpha)$ ${}^{28}Si(\mu^-,\nu pn\gamma)$		
E(level) [†]	Jπ	XREF		$T_{1/2}^{c}$	Comments		
4835.13 5	2+	A E G	HIKL O	28 fs 6	$J\pi$: L=2 in (t,p).		
5711.2 8	1+,2+	E	нк о		J π : L=2 in (d,p), γ to 0+.		
Partiala transfor (i. l. a) and target $ \pi^{(25)}M\alpha\rangle = 5/2$, viald onin 0 to 5: Parity from (.1)							

Example: Centroid, uncertainty

				_	Adopted L	evels, Gamma	as
$Q(\beta^{-})=-181$ $\Delta Q(\beta^{-})=200$	10 SY; S(n)=1 (syst) (2012V	19040 <i>10</i> Va38).); S(p)	=5513.8 <i>5</i> ;	$Q(\alpha) = -9166.0 \ 3$	2012Wa38.	5 th resonance above Sp in ²⁶ Si
					²⁶ S	i Levels	
					Cross Referen	ce (XREF) Flags	
	A ${}^{26}P \epsilon$ Deca B ${}^{27}S \beta^+p D \epsilon$ C ${}^{1}H({}^{25}Al,p)$ D ${}^{1}H({}^{27}Si,{}^{26}S)$	ay ecay Siγ)			E ¹² C(¹⁶ (F ²⁴ Mg(³) G ²⁴ Mg(³) H Coulon	D.2nγ) He,n) He,nγ) nb Excitation	$ \begin{array}{c c} I & {}^{28}{\rm Si}({\rm p},{\rm p2n\gamma}) \\ J & {}^{28}{\rm Si}({\rm p},{\rm t}) \\ K & {}^{28}{\rm Si}(\alpha,{}^{6}{\rm He}) \\ L & {}^{29}{\rm Si}({}^{3}{\rm He},{}^{6}{\rm He}) \end{array} $
E(level) [†]	$J\pi^{\#}$	X	REF		T _{1/2} e		Comments
5676.2 3	1+	1	DEFG	JL		$\Gamma_{\gamma} = 1.2 \times 10^{-4}$	keV (2009Pe04); other value; $\Gamma_p = 1.3 \times 10^{-12}$ keV;
5890.1 3	0+		G	К		I _γ =1.1×10 Jπ: Proposed of γ rays a Also in 20	in 2015Do07 (3 He,n γ), based on isotropic distribution and absence of 0- analogue states in 26 Al and 26 Mg. 014Ko41.
5929.4 [§] 8	3+c	Α	F	JK		XREF: F(591	2)K(5918).
5945.9‡ 40	(0+) ^{cd}		F	JL		E(level): Wei (2006Ba65	ighted average of 5946 keV 4 (2004Pa42), 5946 keV 4

[‡] The existence of this level as a separate resonance is called into question in 2015Do07 due to lack of evidence in their (³He,nγ) measurement and also argue that 5946 keV level might the same level as that at 5929.4 keV. This inference is refuted in 2016Ch09 on the basis of (³He,nγ) (2004Pa42) and (p,t) (2010Ma43) measurements that have populated both this resonance and the 5929.4-keV resonance simultaneously.

Tips for evaluation: Workflow - mass chain evaluation

Challenges:

Knowledge:

- > Often a beginner has experience with a particular field
- However needs to deal with data sources from many different experiments.
- Conflicting or discrepant data (Physics, experiment type, facility, statistics, etc.)
- Dealing with uncertainties
- Develops slowly with reading and evaluation work

Data management skill:

- Many components data, source ref., data sets, use of codes, organization, txt to pdf, ENSDF policies, etc.
- ➢ Efficiency
 - Keep the latest mass chain txt and pdf files
 - Codes know which one and when to use for a data set
 - Work on a dataset at a time within a nuclide name to differentiate from one to another (may be as Nucl_datatype/projectile.txt)
 - Avoid repetitive work on the same dataset
 - Find mistakes/typos

Workflow: Tips for evaluation

Literature search (completeness): For current and missing references

Nuclear Science References (NSR)
Quick Search Text Search Indexed Search Keynumber Search Combine View
Initialization Parameters
Publication year range: 2005 to 2018
Primary only: 🔍 View All: 🔍 Require measured quantity: 🗹
Output year order: 🤍 Ascending 💿 Descending
Output format:
Search all entries ● Search entries added since 1 ▼ / 1 ▼ / 2005 ▼ (month/day/year)

Search Parameters

Nuclide AND	▼ 21	18Ac	browse	Documentation:
(none)	•		browse	Save the output in a file, print and work on it.
(none)	•		browse	
Search	Rese	Good practice:	Search W	Veb of Science (if available) and Google

Workflow: Tips for evaluation

XUNDL search

Quick Search	By Nuclide	By Reaction	By Decay	Recently Added
Nuclide or mass: 2	218Ac	Search		
(208Pb, pb-208, 144, 1n	(neutron), etc.)			

- ✓ Save in a file
- ✓ Check all retrieved literature (New or already in XUNDL)
- ✓ Check with exiting nuclide XREF, if new data or to be combined

Note:

- XUNDL datasets are in ENSDF format (mainly reflects the paper) not necessarily following the ENSDF policies.
- 2. For ENSDF check the paper and XUNDL dataset for mistake, omission, or extra data

Important: XUNDL dataset will need slight modification to include in the ENSDF evaluation.

Workflow: Tips for evaluation

Decay and reaction datasets

Cross Reference (XREF) Flags

Α	⁵⁹ Cr β^- decay	D	⁶⁴ Ni(³ He, ⁸ B)
В	$^{13}C(^{48}Ca,pn\gamma)$	Е	238 U(70 Zn,X γ)
С	${}^{59}\text{Co}(\pi^-,\pi^+)$		

- ✓ After sorting new datasets from literature create new or combine with existing dataset
- Remember to check if anything taken/needed from Adopted Levels, Gammas dataset

Decay data sets:

Very important one and perhaps the most interesting one too

Presentations: by Kondev (1st week) later this week by McCutchan

Workflow: Adopted levels, Gammas

Helpful for nuclides, lets say \geq 10 source datasets

- Adopt γ-ray energy from measurement (helpful GAMUT outputs and "pandora.gle")
- 2. Level energy from γ -ray least squares fit (use GTOL features ('unc' or '?' for a proper fit).
- 3. Level energy for others (no γ-ray connection) (helpful "pandora.lev" output file)
- 4. Calculated γ -ray energies, if needed (recoil correction?)
- 5. Adopt γ-ray **branching** (helpful **GAMUT** outputs and "pandora.gle")
- 6. Adopt γ -ray multipolarity and mixing ratios (helpful 'pandora.gle')
- 7. Adopt level $T_{1/2}$
- 8. Adopt $J\pi$ for adopted levels

Workflow: Adopted levels, Gammas (con't)

- 9. Run Bricc
- 10. Run RULER (check for unexpected outputs (bug in the code))
- 11. Physics checks using pandora.err output
- 12. Check for format (fmtchk)
- 13. Produce pdf file (JAVA-NDS)
- 14. Check for BANDs, if present (looking through pdf figures)
- 15. Check data back flow from Adopted Levels to source datasets for consistency.

Some variation in the order is ok – but adopt relevant qualities before running a code

Uncertainty: Example

K. S. Toth,¹ X.-J. Xu,^{2,3,4} C. R. Bingham,^{1,4} J. C. Batchelder,^{5,6} L. F. Conticchio,^{7,8} W. B. Walters,⁸ L. T. Brown,^{7,9} C. N. Davids,⁷ R. J. Irvine,¹⁰ D. Seweryniak,^{7,8} J. Wauters,⁴ and E. F. Zganjar⁵ ¹Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831

TABLE I. Summary of results from the present work compared with literature values where available.

	E_{α}	(keV)	Т	$_{1/2}$ (ms)	I_{α} (rel	lative)
Isotope	This work	Previous	This work	Previous	This work	Previous
¹⁸¹ Tl	6186(10)	6180 [12]	3200(300)	3400(600) [12]	100	100 [12]
${}^{181}\text{Tl}^{m}$	6578(10)	6566(20) [5]	1.4(5)	2.7(10) [5]	100	100 [5]
¹⁸⁰ Tl	6208(10)				$18(5)^{a}$	
	6281(10)		1600(400)		$30(6)^{a}$	
	6362(10)		1500(300)		$30(6)^{a}$	
	6470(20)				7(3) ^a	
	6560(10)		1400(300)		$15(3)^{a}$	
¹⁷⁹ Tl	6569(10)	6568(18) [9]	230(40)	430(350) [9]	100	100 [9]
		6560(20) [10]		160^{+90}_{-40} [10]		100 [10]
179Tl^{m}	7213(10)	7201(20) [9]	1.8(4)	$0.7^{+0.6}_{-0.4}$ [9]	80(20)	100 [9]
		7200(10) [10]		1.4(5) [10]		100 [10]
	7096(10)		1.6(8)		20(9)	

^aIntensities deduced from the parent spectrum [Fig. 1(c)] correlated with ¹⁷⁶Au α decay.

Uncertainty (Con't): Example

20(9)/[20(9)+80(20)]=1/[1+80(20)/20(9)]=1/[1+4(2)]*100=20(8)80(20)/[80(20)+20(9)]=1/[1+20(9)/80(20)]=1/[1+0.25(13)]*100=80(8)

¹⁷⁹Tl α Decay (1.5 ms) 2002Ro17,1998To14,1996Pa01

¹⁷⁵Au

Parent ¹⁷⁹T1: E=0.0+x; Jπ=(11/2-); T_{1/2}=1.5 ms 3; Q(g.s.)=6718 8; %α decay≈100. Other: 1983Sc24.

2004Ba89

2002Ro17: Target: 90.4% enriched 202Pb; Projectile: ⁷⁸Kr, E=355 MeV (340 MeV at midtarget); gas-filled separator, parallel-plate avalanche counters, Si strip detector, HPGe detector; deduced T_{1/2}, corrected for random correlation rates.

1998To14: Target: ⁹⁰Zr; Projectile: ⁹²Mo, E=420 MeV (404 MeV at mid-target); fragmented mass analyzer, gas-filled parallel grid avalanche counter, double-sided Si strip detector with 40 horizontal and 40 vertical strips; measured: Ea, t, Ia.

α radiations

Еα	E(level)	Iα ^{‡§}	HF	Comments
7096 10		20 <i>8</i>		Eα: Observed only in 1998To14. An expected level of 116 keV above the (11/2-) state at (0.0+x) keV level, calculated from the 7209α and 7096α energy difference, has not been
7209 <i>8</i>	0.0+x	80 <i>8</i>	≈1.1 [†]	observed in ¹⁷⁵ Au level scheme (2001Ko44). Eα: Weighted average of 7213 <i>10</i> (1998To14), 7201 <i>20</i> (1996Pa01), and 7200 <i>20</i> (1983Sc24).

[†] Using $r_0=1.537$; average of $r_0(^{174}Pt)=1.545$ 10, and $r_0(^{176}Hg)=1.53$ 4 (1998Ak04). [‡] For α intensity per 100 decays, multiply by ~1.00.

§ Normalized from 1998To14 values.

Code: PABS

PABS: A Computer Program to Normalize Emission Probabilities and Calculate Realistic Uncertainties

D. S. Caron^{*}, E. Browne[#], and E. B. Norman^{*}

* Nuclear Engineering Department, University of California, Berkeley, California 94720

- 0 X 📤 PABS v.1.0 Enter data below or select from the options at the right. Title Card 179TI Alpha Decay ID I [relative] dl [relative] p [%] dp [%] Help 7096-keV 20 9 20. 8 80 7209-keV 20 80. 8 Insert Row Remove Row Import Data Save Input Calculate

*Nuclear Science Division

August, 2009

🛃 PABS v.1.0							
Enter data b	Enter data below or select from the options at the right.						
Title Card 2	Title Card 240Pu Alpha Decay						
ID	I [relative]	dl [relative]	p [%]	dp [%]	Help		
5168-keV	100.00	0.49	73.53	0.18	neib		
5123-keV	35.90	0.29	26.40	0.18	Insert Row		
5021-keV	0.0966	0.0014	0.0710	0.0011			
					Remove Row		

E. Browne, Nuclear Instruments and Methods in Physics Research A265, 541 (1988)

Uncertainty: Excited state β feeding in ²³Ne β - decay (example)

Uncertainty (con't): 440-keV γ ray absolute intensity (²³Ne β - decay)

Uncertainty:

In weighted average, if yields more precise value than the input uncertainties, consider the lowest input in final result

GTOL: Default $\Delta E=1$ -keV for $E\gamma$ without uncertainty. For other values see "Read Me" file to apply.

GABS: Recently modified to yield %I γ (if normalized from decay scheme) - to avoid double consideration of $\Delta I \gamma$.

LOGFT: Sometime yields uncertainty up to three decimal places – may be reduced to one or two

RULER: Check outputs – for overlapping zero values (bug in the code) – need fixing manually

In brief:

Inter connected data

Any changes in one dataset may prompt changes in other datasets

Many different experiments, experimental setup, analytical approaches

Sometimes documentation is poor

- Identify mistakes or inconsistent data
- Many special cases: In decay datasets, mass region related issues
- Remember to use latest version of the analysis programs
- Keep notes of important observations to list those in the abstract

List of some useful references:

- 2017Wa10 Atomic mass evaluation
- 2017Au03 The NUBASE evaluation of nuclear properties
- 2013Ma15 Ground state spin (compilation)
- 2014StZZ, 2016St16 Nuclear and quadrupole moments (compilation)
- 1998Ak04 r₀ radius parameter for alpha hindrance factor calculation (revision ongoing)
- $2015Bi05 \beta$ -delayed neutron emission prob. and half-life (Z=2 to 28) (evaluation)
- 2016Ba?? β-delayed proton and alpha emission In press
- 2016Pr01 B(E2) values from 1st 2+ states (compilation and evaluation)
- 2006MuZX Atlas of neutron resonances
- 2015Ja04 Atlas of Nuclear Isomers
- 1997Mo25 Nuclear properties (calculation)
- Also many reports, documents, presentations, etc.

Nuclear Data Sheets: (User's info)

NUCLEAR DATA SHEETS

GENERAL POLICIES - Presentation of Data

The Nuclear Data Sheets are prepared from the Evaluated Nuclear Structure Data File (ENSDF), a computer file maintained by the National Nuclear Data Center on behalf of the International Network for Nuclear Structure and Decay Data Evaluations. See page iii for a list of the members of this network and their evaluation responsibilities. The presentation of material in the Nuclear Data Sheets reflects the organization of ENSDF, which is a collection of "data sets". For each nuclear species, these data sets present the following types of information:

- The adopted properties of the nucleus.
- The evaluated results of a single type of experiment, such as a

For the nuclide:

- 1. $Q(\beta)$: β decay energy [always presented as $Q(\beta)=M(A,Z)-M(A,Z+1)$] and α decay energy $[Q(\alpha)]$ for the ground state.
- 2. S(n) and S(p): Neutron and proton separation energies.
- XREF: Cross-reference symbol assignments for the various experimental data sets.

For each level:

- 1. E(lev): Excitation energy (relative to the ground state).
- 2. J^{II}: Spin and parity with arguments supporting the assignment.

Nuclear Data Sheets Symbols and Abbreviations

A A2, A4 av B(EL), B(ML) calc, CA CCBA ce chem circ c.m. coef	mass number [*] , $A = Z + N$ coefficients of Legendre polynomials in angular-correlation or angular-distribution measurement average reduced EL, ML transition probability in $e^2 \times (barn)^L$, $\mu_N^2 \times (barn)^{L-1}$ calculated, calculation coupled-channel Born approximation conversion electron chemical separation circular center of mass coefficient	pol priv comm PWBA Q $Q(\varepsilon)$ $Q(\beta-)$ $Q(\alpha)$ R RDM RUL rel res	polarized, polarization private communication plane-wave Born approximation (1) reaction energy*, (2) disintegration energy*, (3) quadrupole moment*, in units of barns, (4) quadrupole total disintegration energy in ε decay total disintegration energy in β – decay total disintegration energy in α decay, $E(\alpha) + E(recoil)$ $r_0 A^{1/3}$, nuclear radius* recoil distance measurement recommended upper limit for γ -ray strength relative resonance
---	---	--	---

Useful to have handy (available at Nuclear Data Sheet publication web site – https://www.sciencedirect.com/journal/nuclear-data-sheets/issues)

Thank you

Questions/Comments

