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Let us play with digits...

.. the MNIST database
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k, A parametrized function...
How to construct it?

Feed-Forward Neural Networks
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Feed-Forward Neural Networks...
...the architecture

hidden layers
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Feed-Forward Neural Networks...
...universal function approximators

[Cybenko, G. (1989) Approximations by superpositions of sigmoidal functions]
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Network for MNIST handwritten digit

classification

Input layer:
784 neurons
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Minimize a cost (or loss) function:
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The backpropagation algorithm

From the activity of the output layer...
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1. Feed-forward

For every input &

The backpropagation algorithm
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The backpropagation algorithm

For every nput @
5 (2) = (aF (2) - ys(2) ) o' (F)
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The mini-batch update

:%Zcx = VC:%ZVQE

Divide the training dataset into M mini-batches of sizeS: N =M x S
{training data} = { {mini-batch 1}, {mini-batch 2}, ... {mini-batch M} }
Average within mini-batches first...

Z(J = V—m:%ZVQp

mini- batch mini-batch
m™m

... and use the mini-batch estimate of the gradient for gradient descent

w <+ w—nVy,C,, b<—b—nV,C,,

(then iterate over all mini-batches) Stochastic Gradient Descent (SGD)



Put your hands on the code!

Open the terminal
$ cd <directory>/Lecturel

$ Jjupyter—notebook MNIST_notebook.ipynb
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