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...the architecture
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= 47 parameters

one weight per arrow
one bias per neuron
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Open Firefox:   www.geogebra.org
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The backpropagation algorithm
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The backpropagation algorithm
4. Calculate the derivativesFor every input
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The mini-batch update

{training data} = { {mini-batch 1}, {mini-batch 2}, … {mini-batch M} }

Divide the training dataset into M mini-batches of size S: 

Average within mini-batches first…

mini-batch mini-batch

… and use the mini-batch estimate of the gradient for gradient descent

(then iterate over all mini-batches) Stochastic Gradient Descent (SGD)



  

Put your hands on the code!

Open the terminal

$  cd <directory>/Lecture1

$  jupyter-notebook MNIST_notebook.ipynb
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