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Learning from examples

I Machine Learning deals with systems that are trained from data
rather than being explicitly programmed.

I These lectures are about building and understanding machine
learning algorithms.
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Machine learning as a paradigm

Texts

Images

Data: (x1, y1), . . . , (xn, yn)

Note: xi ’s can be high/huge
dimensional!
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Learning functions

(x2, y2)

(x3, y3)

(x4, y4)
(x5, y5)(x1, y1)

Learning is about inference

Problem: given {(x1, y1), . . . , (xn, yn)} find f (xnew) ∼ ynew
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Statistical learning

I X × Y probability space, with measure P.

Define the expected risk:

L(f ) = E(x,y)∼P [(y − f (x))2]

Problem: Solve
min

f :X→Y
L(f ),

given only
Sn = (x1, y1), . . . , (xn, yn) ∼ Pn,

sampled i.i.d. with P fixed, but unknown.
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Learning algorithms

Learning algorithm
Sn → f̂ = f̂Sn .

How to measure the error of an estimate?

Excess risk:
L(f̂ )− min

f :X→Y
L(f ).

L.Rosasco, Fall 2018



Quality of a solution

Consistency: For any ε > 0,

lim
n→∞

P
(
L(f̂ )− min

f :X→Y
L(f ) ≥ ε

)
= 0.

Finite sample bounds: For any ε > 0, n ∈ N,

P
(
L(f̂ )− min

f :X→Y
L(f ) ≥ ε

)
≤ δP(n, ε).
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Learning algorithms design

How can we design a learning algorithm?
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Empirical risk minimization

Replace
min

f :X→Y
E(x,y)∼P [(y − w>x)2],

by

min
w∈Rd

1

n

n∑

i=1

(yi − w>xi )
2.

Minimize

I an empirical approximate objective,

I over manageable functions1.

1Linear functions are the conceptual building block of most functions. L.Rosasco, Fall 2018



Matrices and linear systems

Let X̂ ∈ Rnd and ŷ ∈ Rn. Then

1

n

n∑

i=1

(yi − w>xi )
2 =

1

n

∥∥∥ŷ − X̂w
∥∥∥

2

.

This is the least squares problem associated to the linear system

X̂w = ŷ .
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Overdetermined lin. syst.

n > d

Rd Rd
bX

bYbw

Rn

���bY � bXw
���

@ ŵ s.t. X̂w = ŷ
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Least squares solutions

From the optimality conditions

∇w
1

n

∥∥∥ŷ − X̂w
∥∥∥

2

= 0

we can derive the normal equation

X̂>X̂w = X̂>ŷ ⇔ ŵ = (X̂>X̂ )−1X̂>ŷ .
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Underdetermined lin. syst.

n < d

Rd Rn

Rd

bX

bYbw

∃ ŵ s.t. X̂w = ŷ

possibly not unique. . .
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Minimal norm solution

There can be many solutions

X̂ ŵ = ŷ , and X̂w0 = 0 ⇒ X̂ (ŵ + w0) = ŷ .

Consider
min
w∈Rd

‖w‖2
, subj. to X̂w = ŷ .

Using the method of Lagrange multipliers, the solution is

ŵ = X̂>(X̂ X̂>)−1ŷ .
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Pseudoinverse

ŵ = X̂ †ŷ

For n > d , (independent columns)

X̂ † = (X̂>X̂ )−1X̂>.

For n < d , (independent rows)

X̂ † = X̂>(X̂ X̂>)−1.
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Spectral view

Consider the SVD of X̂

X̂ = USV> ⇔ X̂w =
r∑

j=1

σj(v
>
j w)uj ,

here r ≤ n ∧ d is the rank of X̂ .

Then,

ŵ† = X̂ †ŷ =
r∑

j=1

1

σj
(u>j ŷ)vj .
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Pseudoinverse and bias

ŵ† = X̂ †ŷ =
r∑

j=1

1

σj
(u>j ŷ)vj .

(vj)j are principal components of X̂ : OLS “likes” principal components.

Not all linear functions are the same for OLS!

The pseudoinverse introduces a bias towards certain solutions.
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Terminology: regularization or pseudosolutions?

I In signal processing, minimal norm solutions are called regularization.

I In classical regularization theory, they are called pseudosolutions.

I Regularization refers to a family of stable solutions converging to
pseudosolutions...
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Stability and regularization

In practice

min
w∈Rd

1

n

n∑

i=1

(yi − w>xi )
2 ⇔ X̂>X̂w = X̂>ŷ .

In theory

min
w∈Rd

E(x,y)∼P [(y − w>x)2] ⇔ Ex∼PX
[xx>]w = E(x,y)∼P [xy ].

The solution

ŵ† = X̂ †ŷ =
r∑

j=1

1

σj
(u>j ŷ)vj .

might not be robust since we replace

E(x,y)∼P [xy ] 7→ X̂>ŷ and Ex∼PX
[xx>] 7→ X̂>X̂

L.Rosasco, Fall 2018



Outline

Statistical learning

ERM

Regularization

Nonlinear models

L.Rosasco, Fall 2018



From OLS to ridge regression

Recall, it also holds,

X̂ † = lim
λ→0+

(X̂>X̂ + λI )−1X̂> = lim
λ→0+

X̂>(X̂ X̂> + λI )−1.

Consider for λ > 0,

ŵλ = (X̂>X̂ + λI )−1X̂>ŷ .

This is called ridge regression.
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Spectral view on ridge regression

ŵλ = (X̂>X̂ + λI )−1X̂>ŷ

Considering the SVD of X̂ ,

ŵλ =
r∑

j=1

σj
σ2
j + λ

(u>j ŷ)vj .
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Ridge regression as filtering

ŵλ =
r∑

j=1

σj
σ2
j + λ

(u>j ŷ)vj

The function
F (s) =

σ

σ2 + λ
,

acts as a low pass filter (low frequencies= principal components).

I For s small, F (σ) ≈ σ/λ.

I For s big, F (σ) ≈ 1/σ.
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Ridge regression as ERM

ŵλ = (X̂>X̂ + λI )−1X̂>ŷ

is the solution of

min
w∈Rd

∥∥∥ŷ − X̂w
∥∥∥

2

+ λ‖w‖2

︸ ︷︷ ︸
L̂λ(w)

.

It follows from,

∆L̂λ(w) = −2

n
X̂>(ŷ − X̂w) + 2λw = 2(

1

n
X̂>X̂ + λI )w − 2

n
X̂>ŷ .
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Different views on regularization

ŵ = X̂ †ŷ ŵλ = (X̂>X̂ + λI )−1X̂>ŷ

min
w∈Rd s.t. X̂w=ŷ

‖w‖2 min
w∈Rd

1

n

n∑

i=1

(yi − w>xi )
2 + λ ‖w‖2

I Introduces a bias towards certain solutions: small norm/principal
components,

I controls the stability of the solution .
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Complexity of ridge regression

Back to computations.

Solving
ŵλ = (X̂>X̂ + λI )−1X̂>ŷ

requires essentially (using a direct solver)

I time O(nd2 + d3),

I memory O(nd ∨ d2).

What if n� d?
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Representer theorem in disguise

A simple observation
Using SVD we can see that

(X̂>X̂ + λI )−1X̂> = X̂>(X̂ X̂> + λI )−1
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More on complexity

Then
ŵλ = X̂>(X̂ X̂> + λI )−1ŷ .

requires essentially (using a direct solver)

I time O(n2d + n3),

I memory O(nd ∨ n2).
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Representer theorem

Note that

ŵλ = X̂> (X̂ X̂> + λI )−1ŷ︸ ︷︷ ︸
c∈Rn

=
n∑

i=1

xici .

The coefficients vector is a linear combination of the input points.

Then

f̂ λ(x) = x>ŵλ = x>X̂>c =
n∑

i=1

x>xici

The function we obtain is a linear combination of inner products.

This will be the key to nonparametric learning.
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Nonlinear models

What about non linear models?
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Nonlinear features

So far
f (x) = w>x , ŵ = (X̂>X̂ + λI )−1X̂>ŷ .

Now consider

f (x) = w>Φ(x) =

p∑

i=1

w jϕj(x) ŵλ = (Φ̂>Φ̂ + nλI )−1Φ̂>ŷ

with Φ̂ ∈ Rnp such that (Φ̂)ij = ϕj(xi )
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Examples

f (x) = w>Φ(x) =

p∑

i=1

w jϕj(x)

I Consider X = R and Φ(x) = (x2, x , 1), hence f polynomial.

I Fourier basis,

I wave-lets + their variations,

I vision: SIFT, HOG

I audio: MFCC

I . . .
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Representer theorem a little less in disguise

Analogously to before

ŵλ = Φ̂>c =
n∑

i=1

Φ(xi )ci ⇔ f̂ λ(x) =
n∑

i=1

Φ(x)>Φ(xi )ci

c = (Φ̂Φ̂> + λI )−1ŷ , (Φ̂Φ̂>)ij = Φ(xi )
>Φ(xj)

Φ(x)>Φ(x̄) =

p∑

s=1

ϕs(x)ϕs(x̄).

We can consider p =∞, as long as the series converges!!!
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An observation

For X = R consider

ϕj(x) = x j−1e−x
2γ

√
(2γ)(j−1)

(j − 1)!
, j = 2, . . . ,∞

with ϕ1(x) = 1.

Then

∞∑

j=1

ϕj(x)ϕj(x̄) =
∞∑

j=1

x j−1e−x
2γ

√
(2γ)j−1

(j − 1)!
x̄ j−1e−x̄

2γ

√
(2γ)j−1

(j − 1)!

= e−x
2γe−x̄

2γ
∞∑

j=1

(2γ)j−1

(j − 1)!
(xx̄)j−1 = e−x

2γe−x̄
2γe2xx̄2γ

= e−|x−x̄|
2γ
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Kernel ridge regression

We have

f̂ λ(x) =
n∑

i=1

Φ(x)>Φ(xi )ci =
n∑

i=1

k(x , xi )ci

c = (K̂ + λI )−1ŷ , (K̂ )ij = Φ(xi )
>Φ(xj) = k(xi , xj)

K̂ is the kernel matrix, the Gram (inner products) matrix of the data.

“The kernel trick”
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Kernels

A kernel k : X × X → R is symmetric and positive definite.2.

Examples

I linear k(x , x̄) = x>x̄

I polynomial k(x , x̄) = (x>x̄ + 1)s

I Gaussian k(x , x̄) = e−‖x−x̄‖
2γ

I kernels on probability distributions

I kernels on strings, groups, graphs. . .

It is natural to think of a kernel as a measure of similarity.

2i.e. the matrix K̂ is positive semidefinite for all choice of points x1, . . . , xn, i.e.

a>K̂a ≥ 0, ∀a ∈ Rn.
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Ideas related to this class

I Linear inverse problems.

I Max margin theory.

I Reproducing kernel Hilbert spaces (RKHS).

I Mercer theorem (Karhunen Loéve expansion).

I Gaussian processes.

I Cameron-Martin spaces.
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Summing up

I Statistical learning

I ERM

I Penalized ERM

I Nonlinear functions

I Beyond ERM: Optimization & Implicit regularization.
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