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Learning from examples

» Machine Learning deals with systems that are trained from data
rather than being explicitly programmed.

» These lectures are about building and understanding machine
learning algorithms.
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Outline

Statistical learning
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Machine learning as a paradigm

Texts
ISubject Date Time Body
| has the viagra for 12:23 Hi! | noticed that you are a software engineer

03121992 Yes
pm so here’s the pleasure you were looking for...

4 01:24 . N N
Important business 05/29/1995 Give me your account number and you'll be rich. I'm totally serial Yes
pm

. i ! .
Rusiness Plan 05/23/ 99607' As pe; our conversation, here's the business plan for our new venture Warm
pm regards...

ob Opportunity 02/291 998: Hi !l am trying to fill a position for a PHP ...

No

A few thousand rows ommitted]

Call mom. She's been trying to reach you for a few days now
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Machine learning as a paradigm

Texts
ISubject Date Time Body
| has the viagra for 12:23 Hi! | noticed that you are a software engineer

03121992 Yes
pm so here’s the pleasure you were looking for...

4 01:24 . N N
Important business 05/29/1995 Give me your account number and you'll be rich. I'm totally serial Yes
pm

. i ! .
Rusiness Plan 05/23/ 99607' As pe; our conversation, here's the business plan for our new venture Warm
pm regards...

ob Opportunity 02/291 998: Hi !l am trying to fill a position for a PHP ...

No

A few thousand rows ommitted]

Call mom. She's been trying to reach you for a few days now

0 U 0 0 0 0 Data: (xi,1), - (xn, yn)

) Note: x;'s can be high/huge
: dimensional!

L.Rosasco, Fall 2018



Learning functions
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Learning functions
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Learning functions

(I77‘))
(w6, 7) Q
o (v4,94) 1.7
(:8‘1,3;1) e " (x5,9s5)
(z3,93) 3 |
® (z2,12) . .

‘ Learning is about inference ‘

Problem: given {(x1,y1),- .-, (X0, ¥n)} find (Xnew) ~ Ynew
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Statistical learning

> X x Y probability space, with measure P.

Define the expected risk:

L(f) = Egy~rlly — £(x))?]
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Statistical learning

> X x Y probability space, with measure P.

Define the expected risk:

L(f) = Egy~rlly — £(x))?]

Problem: Solve
min_ L(f),
f:X=Y
given only
Sn = (leyl)v RS (men) ~ Pna

sampled i.i.d. with P fixed, but unknown.
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Learning algorithms

Learning algorithm

3

How to measure the error of an estimate?

Excess risk:

L(f) = fB?L”y L(F).
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Quality of a solution

Consistency: For any € > 0,

lim P (L(?) min L(f) > e) =0.

n— o0 f:X—=Y

Finite sample bounds: For any € > 0,n € N,

P (L)~ i, L) > ) < on(r.0)

f:X—=Y
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Learning algorithms design

How can we design a learning algorithm?
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Outline

ERM
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Empirical risk minimization

Replace
. T )2
f:?l—?vE(X’”NP[(y_ w )T,
by
1 ¢ T2
PRI
Minimize

» an empirical approximate objective,

» over manageable functions?.

ILinear functions are the conceptual building block of most functions. L resasco, Fall 2018



Matrices and linear systems

Let X € R™ and y € R". Then

- = w'x) :1)7—)?W2
Z ;

This is the least squares problem associated to the linear system

Xw=7.
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Overdetermined lin. syst.

n>d
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Least squares solutions

From the optimality conditions

we can derive the normal equation

X Xw=XTy & w=(X"X)"'XTy.
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Underdetermined lin. syst.

n<d

possibly not unique. . .
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Minimal norm solution

There can be many solutions

Xw=y, and Xwo=0 = X(W+w)=y.

Consider

min ||w|?, subj. to  Xw =7y.
weRd

Using the method of Lagrange multipliers, the solution is

w=X"(XXT)"'y.
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Pseudoinverse

S
I
)

<

For n > d, (independent columns)

XT=(XTX)7X".

For n < d, (independent rows)

XF=XT(XXT)™.
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Spectral view

Consider the SVD of X

X=UsVT & Xw= oi(v," w)uj,

here r < n A d is the rank of X.

Then,
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Pseudoinverse and bias

r

b ot 1T
wh =Xy = Z;(UJTY)VJ-
=t

(vj); are principal components of X: OLS “likes” principal components.
Not all linear functions are the same for OLS!

The pseudoinverse introduces a bias towards certain solutions.
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Terminology: regularization or pseudosolutions?

> In signal processing, minimal norm solutions are called regularization.

» In classical regularization theory, they are called pseudosolutions.

» Regularization refers to a family of stable solutions converging to
pseudosolutions...
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Stability and regularization

In practice
L 1¢ T,\2 Ty vTo
Wme'ﬂgc,;;(y/'—w X;) & X' Xw=X"y.
In theory
min Eyyplly = w'xP1 & Beop o Iw = Bpyerbol

The solution 1
Wt = Xiy = g ;
might not be robust since we replace
Eppyoply] = X7y and  Eeoppx ] XX
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Outline

Regularization
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From OLS to ridge regression

Recall, it also holds,

Xt = 1im (XTX +A)7IXT = tim XT(XXT + Al)

A—04 A—=04

Consider for A > 0,

= (XTX+ )Xy

This is called ridge regression.

-1
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Spectral view on ridge regression

W= (XTX+ AN XTy

Considering the SVD of X

r

~\ gj T~
W = Z 02—1—)\(“] y)v.
i=1 7J

Jj=1
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Ridge regression as filtering

The function
o

Fo=Zmx

acts as a low pass filter (low frequencies= principal components).

» For s small, F(o) =~ o/
» For s big, F(o) = 1/0.
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Ridge regression as ERM

W = (XTX+ADIXTy
is the solution of

min

~ 2
weRd y—XwH AWl

Lx(w)

It follows from,

~ 251, o loro 257
ALy(w) = —;XT(y — Xw) + 2w = 2(;XTX +M)w — EXTy.
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Different views on regularization

w =Xy Wy = (XTX+A)IXTy
1 n
. 2 . T.\2 2
min w min — yi—w' x;)+ M||w]
ULV DR

» Introduces a bias towards certain solutions: small norm/principal
components,

» controls the stability of the solution .
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Complexity of ridge regression

Back to computations.

Solving
W= (XTX+ AN X Ty

requires essentially (using a direct solver)
> time O(nd? + d®),
» memory O(nd V d?).

What if n < d?
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Representer theorem in disguise

A simple observation
Using SVD we can see that

XTX +AN)TXT = XT(XXT + ANt
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More on complexity

Then R
wr = XT(XXT + M)y

requires essentially (using a direct solver)
> time O(nd + n),
» memory O(nd V n?).
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Representer theorem

Note that
=XT(XXT +Al)~ Z XiCj.

ceRn

The coefficients vector is a linear combination of the input points.

Then
n
Ax)=x"wr=x"XTc= E x"xici
i=1

The function we obtain is a linear combination of inner products.
This will be the key to nonparametric learning.
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Outline

Nonlinear models
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Nonlinear models

What about non linear models?
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Nonlinear features

So far L R
f(x) =w'x, w=(X"X+M)IXTy.

Now consider

p
)= w o(x) = Y wigy(x) W= (@O )Ty
i=1

with ® € R™ such that (®); = ¢;(x)
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Examples

f(x) = WT¢(X) = Z Wj(pj(X)

Consider X = R and ®(x) = (x?,x,1), hence f polynomial.
Fourier basis,

wave-lets -+ their variations,

vision: SIFT, HOG

audio: MFCC
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Representer theorem a little less in disguise

Analogously to before

n

WA= c= Zd>(x,-)c,- = FA(x) = Z¢(X)T¢(Xi)ci

i=1
c= (0T + A7y, (®07); = d(x)  (x;)

(D(x Z (PS(X 905

We can consider p = o0, as long as the series converges!!!
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An observation

For X = R consider
o) = x> [

with @y (x) = 1.

Then

[e%e} [e%s} ) 2 J—1 . ~ 2 j—1
Y X)) = Y K re @Y i1y [(2)
j=1 _

2 ) 0 (2,_)/)‘/71 P ) >, as?
= e len Z (—1)! (xxy 7t = e e XXX
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Kernel ridge regression

We have

n n

A (x) = Z‘D(X)Tq)(xi)ci = Z k(x, xi)ci

i=1 i=1

c=(K+ )71y, (K)j=d(x) (x) = k(x;, x)

K is the kernel matrix, the Gram (inner products) matrix of the data.

“The kernel trick”
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Kernels

2

A kernel k : X x X — R is symmetric and positive definite..

Examples

> linear k(x,X) = x'x
> polynomial k(x,%) = (x"x + 1)
> Gaussian k(x, X) = e~ Ix=I"v
» kernels on probability distributions
>

kernels on strings, groups, graphs. ..

It is natural to think of a kernel as a measure of similarity.

2j.e. the matrix K is positive semidefinite for all choice of points x,

aTRaZO, Va € R".

cyXn, 1€
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Ideas related to this class

Linear inverse problems.

Max margin theory.

Reproducing kernel Hilbert spaces (RKHS).
Mercer theorem (Karhunen Loéve expansion).
Gaussian processes.

Cameron-Martin spaces.
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Summing up

Statistical learning
ERM

Penalized ERM

Nonlinear functions

Beyond ERM: Optimization & Implicit regularization.
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