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Statistical learning

I X × Y probability space, with measure P.

Problem: Solve
min

f :X→Y
E(x,y)∼P [(y − f (x))2],

given only
Sn = (x1, y1), . . . , (xn, yn) ∼ Pn,

sampled i.i.d. with P fixed, but unknown.
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Learning algorithm design so far

I ERM, penalized/constrained

min
w∈Rd

1

n

n∑
i=1

(yi − w>xi )
2 + λ ‖w‖2︸ ︷︷ ︸

L̂λ(w)

I Direct solver
ŵλ = (X̂>X̂ + λnI )−1X̂>Ŷ

Non linear extensions via features/kernels.

L.Rosasco, Fall 2018



Beyond ERM

I Are there other algorithm design principles?

Today we will see how optimization regularizes implicitly.
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Least squares (recap)

X̂w = Ŷ

min
w∈Rd

1

n

∥∥∥Ŷ − X̂w
∥∥∥2︸ ︷︷ ︸

n>d

min
w∈Rd

‖w‖2 , subj. to X̂w = Ŷ︸ ︷︷ ︸
n<d

⇒ ŵ† = X̂ †Ŷ .
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Iterative solvers for least squares

Let

L̂(w) =
1

n

∥∥∥Ŷ − X̂w
∥∥∥2 .

The gradient descent iteration is

ŵt+1 = ŵt − γ
2

n
X̂>(X̂ ŵt − Ŷ ).

For suitable γ
L̂(ŵt)→ min L̂(w)
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Implicit bias/regularization

It is easy to see that gradient descent

ŵt+1 = ŵt − γ
2

n
X̂>(X̂ ŵt − Ŷ ),

converges to the minimal norm solution for suitable w0.

Reminder: the minimal norm solution ŵ† satisfies

ŵ† = X̂>c , c ∈ Rn that is ŵ† ⊥ Null(X̂ ).
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Implicit bias/regularization

Then,
ŵt 7→ ŵ†.

Gradient descent explores solutions with a bias towards small norms.

Regularization is not achieved via explicit constraint/penalties.

In this sense it is implicit.
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Terminology: regularization and pseudosolutions?

I In signal processing minimal norm solutions are called regularization.

I In classical regularization theory, they are called pseudosolutions.

I Regularization refers to a family of solutions converging to
pseudosolutions, e.g. Tikhonov’s. See later.
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Terminology: implicit or iterative regularization?

I In machine learning, implicit regularization has recently become
fashionable.

I It refers to regularization achieved without imposing constraints or
adding penalties.

I In classical regularization theory, it is called iterative regularization
and it is a classic idea.

I We will see the idea of early stopping is also very much related.
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Back for more regularization

According to classical regularization theory: among different regularized
solutions, one ensuring stability should be selected.

I For example, in Tikhonov regularization

ŵλ → ŵ†

as λ→ 0.

I But in practice λ 6= 0 is chosen, when data are noisy/sampled.
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Regularization by gradient descent?

Gradient descent converges to the minimal norm solution, but:

I does it define meaningful regularized solutions?

I Where is the regularization parameter?
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An intuition: early stopping
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An intuition: early stopping

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

Fitting on the training set
Iteration #2

L.Rosasco, Fall 2018



An intuition: early stopping

0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

Fitting on the training set
Iteration #7

L.Rosasco, Fall 2018



An intuition: early stopping
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Is there a way to formalize this intuition?
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Interlude: geometric series

Recall for |a| < 1

∞∑
j=0

aj = (1− a)−1,
t∑

j=0

aj = (1− at)(1− a)−1.

Equivalently for |b| < 1

∞∑
j=0

(1− b)j = b−1,
t∑

j=0

(1− b)j = (1− (1− b)t)b−1.
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Interlude II: Neumann series

Assume I − A invertible matrix and ‖A‖ < 1

∞∑
j=0

Aj = (I − A)−1,
t∑

j=0

Aj = (I − At)(I − A)−1.

or equivalently B invertible1 and ‖B‖ < 1

∞∑
j=0

(I − B)j = B−1,
t∑

j=0

(I − B)j = (I − (I − B)t)B−1.

1Argument can be extended to pseudoinverses. L.Rosasco, Fall 2018



Rewriting GD

By induction

ŵt+1 = ŵt − γ
2

n
X̂>(X̂ ŵ − Ŷ )

can be written as

ŵt+1 = γ
2

n

t∑
j=0

(I − γX̂>X̂ )j X̂>Ŷ .
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Rewriting GD (cont.)

I Write

ŵt+1 = ŵt − γ
2

n
X̂>(X̂ ŵ − Ŷ ) = (I − γ 2

n
X̂>X̂ )ŵt + γ

2

n
X̂>Ŷ .

I Assume

ŵt = γ
2

n

t−1∑
j=0

(I − γ 2

n
X̂>X̂ )j X̂>Ŷ .

I Then

ŵt+1 = (I − γ 2

n
X̂>X̂ )γ

2

n

t−1∑
j=0

(I − γ 2

n
X̂>X̂ )j X̂>Ŷ + γ

2

n
X̂>Ŷ

= γ
2

n

t∑
j=0

(I − γ 2

n
X̂>X̂ )j X̂>Ŷ .
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Neumann series and GD

This is pretty cool

ŵt+1 = γ
2

n

t∑
j=0

(I − γ 2

n
X̂>X̂ )j X̂>Ŷ .

GD is a truncated power series approximation of the pseudoinverse!

If γ is such that2
∥∥∥I − γ 2

n X̂
>X̂
∥∥∥ < 1, then for large t

γ
2

n

t∑
j=0

(I − γ 2

n
X̂>X̂ )j X̂> ≈ X̂ †

and we recover ŵt → ŵ†.

2Compare to classic conditions. L.Rosasco, Fall 2018



Stability properties of GD

For any t

ŵt = (I − (I − γ 2

n
X̂>X̂ )t)(X̂>X̂ )−1X̂>Ŷ

(assume invertibility for simplicity).

Then
ŵt ≈ (X̂>X̂ )−1X̂>Ŷ︸ ︷︷ ︸

large t

, ŵt ≈
γ

n
X̂>Ŷ︸ ︷︷ ︸

small t

.

Compare to Tikhonov ŵλ = (X̂>X̂ + λnI )−1X̂>Ŷ

ŵλ ≈ (X̂>X̂ )−1Ŷ︸ ︷︷ ︸
small λ

, ŵλ ≈ λnX̂>Ŷ︸ ︷︷ ︸
large λ

.
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Spectral view and filtering

Recall for Tikhonov

ŵλ =
r∑

j=1

σj
σ2
j + λ

(u>j Ŷ )vj .

For GD

ŵλ =
r∑

j=1

(1− (1− γ 2
nσ

2
j )t)

σj
(u>j Ŷ )vj .

Both methods can be seen as spectral filtering

ŵλ =
r∑

j=1

F (σj)(u>j Ŷ )vj ,

for some suitable filter function F .
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Implicit regularization and early stopping

The stability of GD decreases with t, i.e. higher condition number for

(I − (I − γ 2

n
X̂>X̂ )t)(X̂>X̂ )−1X̂>.

Early-stopping the iteration as a (implicit) regularization effect.
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Summary so far

ŵt+1 = ŵt − γ
2

n
X̂>(X̂ ŵ − Ŷ ) = γ

2

n

t∑
j=0

(I − γX̂>X̂ )j X̂>Ŷ .

I Implicit bias: gradient descent converges to the minimal norm
solution.

I Stability: the number of iteration is a regularization parameter.

Name game: gradient descent, Landweber iteration, L2-Boosting.
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A bit of history

These ideas are fashionable nowt but has also a long history.

I The idea that iterations converge to pseudosolutions is from the 50’s.

I The observation that iterations control stability dates back at least
to the 80’s.

Classic name is iterative regularization (there are books about it).
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Why is it back in fashion?

I Early stopping is used as a heuristic while training neural nets.

I Convergence to minimal norm solutions could help understanding
generalization in deep learning?

I New perspective on algorithm design merging statistics and
optimization.
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Statistics meets optimization

GD offers a new a perspective on algorithm design.

I Training time= complexity?

I Iterations control statistical accuracy and numerical complexity.

I Recently, this kind of regularization is called computational or
algorithmic.
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Beyond least squares

I Other forms of optimization?

I Other loss functions?

I Other norms?

I Other class of functions?
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Other forms of optimization

Largely unexplored there are results on:

I Accelerated methods and conjugate gradient.

I Stochastic/incremental gradient methods.

It is clear that other parameters control regularization/stability, e.g
step-size, mini-batch-size, averaging etc.
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Other loss functions

There are some results.

For ` convex, let

L̂(w) =
1

n

n∑
i=1

`(yi ,w
>xi ).

The gradient/subgradient descent iteration is

ŵt+1 = ŵt − γt∇L̂(ŵt).
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Other loss functions (cont.)

ŵt+1 = ŵt − γt∇L̂(ŵt)

An intuition: note that, if supt

∥∥∥∇L̂(ŵt)
∥∥∥ ≤ B

‖ŵt‖ ≤
∑
t

γtB,

the number of iterations/stepsize control the norm of the iterates.
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Other norms

Largely unexplored.

I Gradient descent needs be replaced to bias iterations towards desired
norms.

I Bregman iterations, mirror descent, proximal gradients can be used.
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Other class of functions

Extensions using kernel/features are straight forward.

Considering neural nets is considerably harder.

In this context the following perspective has been considered:

I given a the function class (neural nets),

I given an algorithm (SGD),

I find which norm the iterates converge to.
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Summary

A different way to design algorithms.

I Implicit/iterative regularization.

I Iterative regularization for least squares.

I Extensions.
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