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Learning algorithm design so far

» ERM + Optimization

n

. .1 ~
Wy = argmin Z(y,- —wx)2 4+ A w|?, Wi = we—7: VLN (wy).
weRd i—1

™ (w)

> Learning by optimization (GD/SGD)

L ~ 1
Wep1 = We — 7 VL(we), ~D> i wix)?

Non linear extensions via features/kernels.
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Statistics and computations

> Regularization by penalization separates statistics and computations.

» Implicit regularization: training time controls statistics and
computations.

What about memory?
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Large scale learning

In many modern applications, space is the real constraint,

X, XX, XX or K.
N~ N—— N—_———
nxd dxd nxn

Think n ~ d large!
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Projections and dimensionality reduction

Let S be a d x M matrix and

Xy = XS.

Equivalenty

xeRY = xy= (szx)j’\il eR™,

with sy, ..., sy columns of S.
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Learning with projected data

n

o1 T 2
min Zé(y,-, w (xm)i) + X lwl]|”, A>0.

i=

We will focus on ERM based learning and least squares in particular.
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Principal component analysis (PCA)

The SVD of X is R
X=Uuzv'.

Consider V) the matrix d x M of the first M columns of V.

A corresponding projection is given by

)?M:)?S, SZVM
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Representer theorem for PCA

Note that
X=UxvT o XT=vzuT o V=XTuxr!

and Viy = X UnZ;t.

Then
% % v -1
Xu =XV =XX" UuX,, = Uuium
K
and for any x '
n u/
Ty=Y s
i=1 k(x,xi)

with (Uj,UjQ)j eigenvectors/eigenvalues of K.
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Kernel PCA

If ® is a feature map, then the SVD in feature space is
®=uUzv’
and if Vj, is the matrix d x M of the first M columns of V,

Oy = DV

Equivalently using kernels
Oy = KUnZyt = UnZwm,

and for any x

O(x) v = Zk X, X;)
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PCA+ERM for least squares

Consider (no penalization)

1~ 12
min *HXMW* YH .
weRM n

The solution is!

)

<A
=<

W = Xy Xp) ™!

1 Assuming invertibility for simplicity. In general replace with pseuduwiwesses2o/s.860 2018



PCA+ERM for least squares

It is easy to see that that , for all x

M
fn(x) = X W Z

qm
<>

where xy = Viyx.
Essentially due to the fact that

Xy Xu = Vg X X Vi

is the covariance matrix projected on its first M eigenvectors.
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PCR, TSVD, Filtering

M
1

Z* UJT TX
oj

=17

» PCA-+ERM is called Principal component regression in statistics
» ...and truncated singular value decomposition in linear algebra.

» [t corresponds to the spectral filter
L j<wm
F(oj) = {UJ I =

Compare to Tikhonov and Landweber,
Fric(o7) = 0j/(1+20j)  Fiana (0) = (1 = (1 = 707)")o; ",
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Projection and complexity

Then,
> PCA + ERM = regularization.

» In principle, down stream learning is computationally cheaper. ..

... however SVD requires time
O(nD? v d°)

or with kernel matrices
O(n*Ck V n?).
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Sketching

Let S be a d x M matrix s.t. S; ~ N(0,1) and

Xy = XS.

Computing Xy is time O(ndM) and memory O(nd).
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Dimensionality reduction with sketching

Note that if xpy = ST x and Xy = STx', then

M

1 1 1

W E[xyxm] = o E[x"SS"x']=x"E[SST]x' = MXT ZE[SJSJT] X' =xTx.
/=1 Identity

» Inner products, norms distances preserved in expectation..

» ... and with high probability for given M (Johnson-Linderstrauss
Lemma).
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Least squares with sketching

Consider

10~ 12
min fHXMW—YH FAwl?, A>o.
weRM n

Regularization is needed. For sketching
Xj % = STRTXS,
is not the covariance matrix projected on its first M eigenvectors, but
E[XuXg] = E[XSSTXT] = XXT.

There is extra variability.
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Least squares with sketching (cont.)

Consider ) )
min — H)A(MW — )A/H +Aw]?, A>o.

weRM n

The solution is

Y

W m = ()A(,\;)A(M + )\nl)_l)A(,\—,r,

Computing Wy um is time O(nM? + ndM) and memory O(nM).
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Beyond linear sketching

Let S be a d x M random matrix and
Xy = o(XS)

where 0 : R — R is a given nonlinearity.

Then consider functions of the form,

M
fm(x) = x,\—,r,w = Z Wja(.sJTx).

j=t
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Learning with random weights networks

M
fan(x) = xpyw = Z Wja(szx).
j=1

1

Here, w!,...,wM can be computed solving a convex problem

1 n
min = "(yi — fu(x)> + M wl®, A>0,

in time O(nM? + ndM) and memory O(nM).
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Neural networks, random features and kernels

frlx) = 3 w5 x)

» |t is a one hidden layer neural network with random weights.
> It is defined by a random feature map ®p(x) = (S x).

» There are a number of cases in which
E[®wm(x)" Om(x)] = k(x,x)

with k a suitable pos. def. kernel k.
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Random Fourier features

Let X =R, s ~ A(0,1) and

. 1 )
V()= = €7

complex exp.
712 .
For k(x,x") = e~ *=*'I"7 it holds
b

B[ (x) T du(x)] = k(x,x').

Proof: from basic properties of the Fourier transform

2

«»

isx —isx

712
e X" = const. [ ds e e e
~~

=|

~— =

Inv. transf. - Transl. - Tranf. of Gaussian
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Random Fourier features (cont.)

» The above reasoning immediately extends to X = R9.

» Using symmetry one can show the same result holds for
. 1 T
P, (x) = NI cos(s; x + bj)

with b; uniformly distributed.
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Other random features

The relation
B[ (x) T dp(x)] = k(x,x').
is satisfied by a number of nonlinearities and corresponding kernels:
» ReLU o(a) = |a|+ ...
» Sigmoidal o(a), ...
| I

As for all feature map the relation with kernels is not one two one.
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Infinite networks and large scale kernel methods

» One hidden layer network with infinite random weights= kernels.

» Random features are an approach to scaling kernel methods:

from
timeO(n*Cy V n®) memoryO(n?)

to
timeO(ndM v nM?) memoryO(nM).
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Subsampling aka Nystrom method

Through the representer theorem, the ERM solution has the form,

n
w = E XiCji = XTC.
i=1

For M < n, choose a set of centers {x1,...,Xm} C {x1,...,%,} and let

M
Wy = ZX,‘(C,\//),’ = XA—;CM.

i=1
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Least squares with Nystrom centers

Consider

min HXWM— YH + A wml?, A>o0.
wy€ERY N

Equivalently

min *H XXM M — Y||2 + /\CM XMXM cv, A > 0.
c€ERM N~ ~ N——

Kom Km
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Least squares with Nystrom centers

min ,H XX e — Y2+ Aegy XuXdy em, A > 0.
ceRM N~~~ ——

Kom Kum

The solutions is
E)\,M = (R:MRM + n)\RM)ilkr;l—M?

requiring
timeO(ndM v nM?) memory O(nM).
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Nystrom centers and sketching

Note that Nystrom corresponds to sketching
Xu = XS,

with _
S = Xu.
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Regularization with sketching and Nystrom centers

Considering regularization as we did for sketching leads to

1 o~ .
min — XXy v — Y2+ Aeyem, A > 0.
ceRM n

In the Nystrom derivation we ended up with Equivalently

1 ~~ ~ ~
min = XXyem — Y2 + ey XmXppem, A > 0.
ceRM n

Different regularizers are considered.
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Nystrom approximation

A classical discrete approximation to integral equations.
For all x

/k(x,x’)c(x')dx' = y(x) = Z k(x, %)c(%) = y(%)-

Jj=1

Related to to quadrature methods.

From operators to matrices.
Foralli=1,...,n

M-

n
Skoa—y o SoknE)—y.
j=1

-
Il
-
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Nystrom approximation and subsampling

Foralli=1,...,n
n M
Yokax)g =y = D> k(i %)a =y
j=1 j=1

The above formulation highlights connection to columns subsampling

RC: ? — R,,MCM: ?
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In summary

> Projection (dim. reductions) regularizes.

» Reducing computations by sketching.

» Nystrom approximation and columns subsampling.
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