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Processors are general-purpose

(more or less – Intel and ARM more, GPUs less)
The good arithmetic in a processor is the most generally useful:
additions, multiplications, and then?

Should a processor include a divider and square root?

Should a processor include elementary functions (exp, log
sine/cosine)

Should a processor include decimal hardware?

...
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Should a processor include a divider? (1)

How do you divide X by D?

As in decimal, but simpler:

The iteration of the paper-and-pencil algorithm

find the next quotient digit binary: it can be 0 or 1, so try 1

multiply this digit by the dividend this one is easy

subtract from the divisor one subtraction here

if the result is negative,

the quotient digit should have been zero,
therefore we should have subtracted 0,
it will be easy to fix.

start again, one digit to the right

Very light iteration (one subtraction and one test),
but each iteration provides only one bit of the quotient:

(more than) 53 cycles for double-precision floating-point.
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Should a processor include a divider? (2)

Answer in 1993 is : YES (Oberman & Flynn, 1993)

And this divider should be a fast one, because of Amdahl law.
Although division is not frequent, (...) a high latency divider can
contribute an additional 0.50 CPI to a system executing SPECfp92

Digit recurrence algorithms

Generalizations of the paper-and-pencil algorithm

large radix: from 23 to 26

fancy internal number systems to speedup

digit-by-number product
subtraction
finding the next quotient digit

Heavier iterations,
giving one digit (2 to 5 bits) per iteration.

A lot of research, worth one full book (Ercegovac and Lang, 1994)
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Should a processor include a divider? (3)

Answer in 2000 is : NO (Markstein)

The Itanium: a brand new processor without a divide instruction.
Instead of a hardware divider,
a second FMA (fused multiply and add) is more generally useful

and can even be used to compute divisions.

Multiplicative division algorithms

Executive summary: approximate 1/D

Various iterations involving 2 multiplications

Newton-Raphson, Goldschmidt, ...
Polynomial approximation (Taylor-like), ...

Each iteration doubles the number of correct
quotient digits

Heavy iterations, but few of them,
and all the freedom of software.

... and two more books.
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Should a processor include a divider? (4)

Answer in 2018 is : YES again (Bruguera, Arith 2018)

Bruguera designs floating-point units for ARM (low-power processors)
Their current divisor is the most expensive you could think of

Digit-recurrence, but 6 quotients bits per iteration

11 cycles for double precision (better than intel, IBM, ...)

Achieved thanks to a totally redneck implementation

speculation all over the place

prescaling and other tricks

iteration hardware: 20 fast 58-bit adders, 12 58-bit muxes, and
more...

We do this to reduce overal energy consumption!
There is this huge superscalar ARM core that consumes a lot,
we save energy if we can switch it off a few cycles earlier
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A good example of dark silicon made useful

Dark silicon?

In current tech, you can no longer
use 100% of the transistors 100% of the time

without destroying your chip.

“Dark silicon” is the percentage that must be off at a given time

(picture from a 2013 HiPEAC keynote by Doug Burger)
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Pleasant times to be an architect

One way out the dark silicon apocalypse (M.B. Taylor, 2012)

Hardware implementations of rare (but useful) operations:

when used, dramatically reduce the energy per operation (compared
to a software implementation that would take many more cycles)

when unused, serve as radiator for the used parts
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Should a processor include elementary functions? (1)

Dura Amdahl lex, sed lex

SPICE Model-Evaluation, cut from Kapre and DeHon (FPL 2009)

Current performance of exp or log is 10 to 100 cycles, to compare with
1 to 5 cycles for add and mult.
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Should a processor include elementary functions? (2)

Answer in 1976 is YES (Paul&Wilson)

... and the initial x87 floating-point coprocessor was designed with a
basic set of elementary functions

implemented in microcode

with some hardware assistance, in particular the 80-bit extended
format.
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Should a processor include elementary functions? (3)

Answer in 1991 is NO (Tang)

Table-based algorithms

Moore’s Law means cheap memory

Fast algorithms thanks to huge (tens of Kbytes!)
tables of pre-computed values

Software beats micro-code, which cannot afford such tables

None of the RISC processors designed in this period
even considers elementary functions support
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Should a processor include elementary functions? (4)

Answer in 2018 is... maybe?

A few low-precision hardware functions in NVidia GPUs
(Oberman & Siu 2005)

The SpiNNaker-2 chip includes hardware exp and log
(Mikaitis et al. 2018)

Intel AVX-512 includes all sort of fancy floating-point instructions
to speed up elementary function evaluation (Anderson et al. 2018)
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I won’t answer the other questions here

... because we are working on them

X Should a processor include a divider and square root?

X Should a processor include elementary functions (exp, log
sine/cosine)

Should a processor include decimal hardware?

...
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At this point of the talk...

... everybody is wondering when I start talking about FPGAs.
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One nice thing with FPGAs

... is that there is an easy answer to all these questions

X divider? square root? Yes iff your application needs it

X elementary functions? Yes iff your application needs it

X decimal hardware? Yes iff your application needs it

X multiplier by log(2)? By sin 17π
256 ? Yes iff your application needs it

there probably never will be an instruction “multiply by log(2)”
in a general purpose processor.

...

In FPGAs, useful means: useful to one application.
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In an FPGA, you pay only for what you need

If your application is to simulate jfet,

... you want to build a floating-point unit with 13 adds, 31 mults,
2 divs, 2 exps, and nothing more.
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Conclusion so far: FPGA arithmetic is ...

... all sorts of operators that just wouldn’t make sense in a processor.

4 recipes to exploit the flexibility of FPGAs

operator parameterization

operator specialization

operator fusion

tabulation of precomputed values

(I hesitated to add a fifth: fancy number systems)
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Operator parameterization

Anti-introduction: the arithmetic you want in a processor

Operator parameterization

Operator specialization

Operator fusion

Tabulation of pre-computed values

Conclusion: the FloPoCo project
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Example: an architecture for floating-point exponential

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

1 + wF + g

wF + g − k

wF + g + 2 − kMSB wF + g + 2 − k

wF + g + 1 − k

MSB wF + g + 1 − 2k

1 + wF + g

wE + wF + g + 1

wE + 1

wE + wF + g + 1

wE + wF + g + 1

k
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Don’t move useless bits around!

In software, you have to make dramatic choices between
a few integer formats and a few floating-point ones.

When designing for FPGAs, bit-level freedom!

in this exponential, some signals are 12 bits, some 69 bits.

Overwhelming freedom! Too many parameters!

Fortunately, we have constraints:

Computing just right:
a high-level constraint of overal accuracy (to be defined).

A few resource/performance constraints:

dimensions of DSP and RAM blocks
LUT cluster size,
...

... to guide you when navigating the implementation space
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Example: single precision exponential

Shift to fixed−point

normalize / round
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A Z
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wF + g + 1 − k
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1 BlockRAM,

1 DSP,
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Adapting to the performance context

1 + wF 1 + wF 1 + wF

2 + wF + g2 + wF + g

2 + wF + g2 + wF + g

2 + wF + g

wE + wF + g

2 + wF + g

EC

EB
MB2 MC 2

X Y Z

MXEZEYEX MY MZ

MA2

R

4 + wF + g

shifter

sort

sort
squarer squarer

shifter

squarer

add

normalize/pack

unpack

One operator does not fit all

Low frequency, low resource consumption

Faster but larger (more registers)

Combinatorial
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Frequency-directed pipelining

The good interface to pipeline construction

“Please pipeline this operator to work at 200MHz”

Not the choice made by the early core generators of FPGA vendors ...

Better because compositional

When you assemble components working at frequency f , you obtain a
component working at frequency f .
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Conclusion about operator parameterization

Designing heavily parameterized operators
is a lot more work,

but it is the easy part

Chosing the value of the parameters
is the difficult part

Error analysis needed
... context-specific implicit knowledge

Parameterization is useful

at the application level,
but also when designing compound
components.

Fancy situations will occur
example: the multiplier by log(2):

I small input (12 bits for FP64)
I large output (69 bits for FP64)
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Conclusion about operator parameterization
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Operator specialization

Anti-introduction: the arithmetic you want in a processor

Operator parameterization

Operator specialization

Operator fusion

Tabulation of pre-computed values

Conclusion: the FloPoCo project
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Specializing an operator to its context

First idea: design a specific architecture when one input is constant

multiplier by a constant
more efficient than inputting the constant to a standard multiplier

xxxxx
× 11001

xxxxx
00000
00000
xxxxx
xxxxx

.yyyyyyyyyy

→

xxxxx
× 11001

xxxxx
xxxxx
xxxxx

.yyyyyyyyyy

two competitive well-researched techniques, tens of publications
(well beyond what synthesis tools would optimize out – details later)

divider by 3
much more efficient than inputting 3 to a standard divider

and even more efficient than multiplying by 1/3
(technique shown later)
Here, we use a completely different algorithm

(addition of a constant doesn’t save much on an FPGA in general)
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Specializing an operator to its context

Second idea: shared inputs

squarer more efficient than multiplier

each digit-by digit product is computed twice in a squarer
2321

× 2321

2321
4642

6963
4642

5387041

→

2321
× 2321

2321
464
69
4

5387041

Same idea works for x3, etc

...
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More subtle operator specialization (1)

truncated multiplier in fixed point
.10101

× .11001

10101
00000
00000
10101
10101

.0100001101

.01000rounded to

→

.10101
× .11001

10101
00000
00000
10101
101011

.0100001

.01000rounded to

same accuracy with truncated(n+1) as with standard(n)
almost half the cost
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More subtle operator specialization (2)

Floating-point addition of two numbers of the same sign
This happens in sum of squares, etc – or when physics tells you!
one leading-zero counter and one shifter can be saved:

λ

LZC/shift

p + 1

p + 1

p + 1

p + 1

2p + 2

p p

p + 1

p

x y

z

exp. difference / swap

rounding,normalization
and exception handling

mxex +/–c/f ex − ey

close path c/f

ex

ez

my

shift

|mx − my |

my

1-bit shift

ex

ez

mx

far path
mz , r

mz , r

sticky

s

gr

prenorm (2-bit shift)

s
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More subtle operator specialization (3)

Fixed-point large accumulator of floating-point values

... when the physics tells you so
(to be detailed later)

Elementary functions that work only on a smaller range
... when the physics tells you so

...
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Conclusion on operator specialization

Look at your equations,
they are full of operations waiting to be specialized
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Operator fusion

Anti-introduction: the arithmetic you want in a processor

Operator parameterization

Operator specialization

Operator fusion

Tabulation of pre-computed values

Conclusion: the FloPoCo project
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x√
x2 + y 2

really more complex than x/y ?

From the hardware point of view: same black box

From the mathematical point of view: both are algebraic functions
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A simpler example: floating-point sum of squares

x2 + y2 + z2

(not a toy example but a useful building block)

A square is simpler than a multiplication
half the hardware required

x2, y2, and z2 are positive:
one half of your FP adder is useless

Accuracy can be improved:
5 rounding errors in the floating-point version
(x2 + y2) + z2 : asymmetrical

Operator fusion

provide the floating-point interface

optimize a fixed-point architecture

ensure a clear accuracy specification
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A floating-point adder

λ

LZC/shift

p + 1

p + 1

p + 1

p + 1

2p + 2

p p

p + 1

p

x y

z

exp. difference / swap

rounding,normalization
and exception handling

mxex +/–c/f ex − ey

close path c/f

ex

ez

my

shift

|mx − my |

my

1-bit shift

ex

ez

mx

far path
mz , r

mz , r

sticky

s

gr

prenorm (2-bit shift)

s
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A floating-point sum-of-product architecture

1 + wF 1 + wF 1 + wF

2 + wF + g2 + wF + g

2 + wF + g2 + wF + g

2 + wF + g

wE + wF + g

2 + wF + g

EC

EB
MB2 MC 2

X Y Z

MXEZEYEX MY MZ

MA2

R

4 + wF + g

shifter

sort

sort
squarer squarer

shifter

squarer

add

normalize/pack

unpack
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Savings

A few (old) results for floating-point sum-of-squares on Virtex4:
(classic: assembly of classical FP adders and multipliers,
custom: the architecture on previous slide)

Simple Precision area performance

LogiCore classic 1282 slices, 20 DSP 43 cycles @ 353 MHz

FloPoCo classic 1188 slices, 12 DSP 29 cycles @ 289 MHz

FloPoCo custom 453 slices, 9 DSP 11 cycles @ 368 MHz

Double Precision area performance

FloPoCo classic 4480 slices, 27 DSP 46 cycles @ 276 MHz

FloPoCo custom 1845 slices, 18 DSP 16 cycles @ 362 MHz

all performance metrics improved, FLOP/s/area more than doubled

Plus: custom operator more accurate, and symmetrical
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Second fusion example: the floating-point exponential

Everybody knows FPGAs are bad at floating-point

Versus the highly optimized FPU in a processor,

basic operations (+,−,×) are 10x slower in an FPGA

This is the inavoidable overhead of programmability.

If you lose according to a metric, change the metric.

Peak figures for double-precision floating-point exponential

Software in a PC: 20 cycles / DPExp @ 4GHz: 200 MDPExp/s

FPExp in FPGA: 1 DPExp/cycle @ 400MHz: 400 MDPExp/s

Chip vs chip: 6 Pentium cores vs 150 FPExp/FPGA

Power consumption also better

Single precision data even better

(Intel MKL vector libm, vs FPExp in FloPoCo version 2.0.0)
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Not all FLOPS are equal

SPICE Model-Evaluation, cut from Kapre and DeHon (FPL 2009)
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Tabulation of pre-computed values

Anti-introduction: the arithmetic you want in a processor

Operator parameterization

Operator specialization

Operator fusion

Tabulation of pre-computed values

Conclusion: the FloPoCo project
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We have seen it already

Shift to fixed−point

normalize / round

27

17

99

17

9

18 Kbit ROM
(dual−port)

DSP

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

Other examples:

The KCM constant multiplication
technique

The state of the art division by 3

Computing A× B mod N as

1

4
((A + B)2 − (A− B)2 mod N

where X 2 mod N is tabulated

...
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Conclusion: the FloPoCo project

Anti-introduction: the arithmetic you want in a processor

Operator parameterization

Operator specialization

Operator fusion

Tabulation of pre-computed values

Conclusion: the FloPoCo project
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Summing up: not your PC’s exponential

multiplier

generic
polynomial

truncated

precomputed

ROM

Constant
multipliers

evaluator

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R
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Summing up: not your PC’s exponential

Never compute
1 bit more accurately
than needed!

multiplier

generic
polynomial

truncated

precomputed

ROM

Constant
multipliers

evaluator

Shift to fixed−point

normalize / round

Fixed-point X

SX EX FX

A Z

E

E
×1/ log(2)

× log(2)

eA eZ − Z − 1

Y

R

1 + wF + g

wF + g − k

wF + g + 2 − kMSB wF + g + 2 − k

wF + g + 1 − k

MSB wF + g + 1 − 2k

1 + wF + g

wE + wF + g + 1

wE + 1

wE + wF + g + 1

wE + wF + g + 1

k
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Fixed-point X

SX EX FX

A Z

E
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Y

R
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Hey, but I am a physicist !

... I don’t want to design all these fancy operators !

You don’t have to, it is my job

And it is a very comfortable niche

An infinite list of operators to keep me busy until retirement

small arithmetic objects, relatively technology-independent
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The FloPoCo project

http://flopoco.gforge.inria.fr/

e

x

√
x2 +y2 +z2

πx

sin
e x+

y

n∑
i=

0
x i

√
x log x

A generator framework
written in C++, outputting VHDL
open and extensible

Goal: provide all the application-specific arithmetic operators
you want (even if you don’t know yet that you want them)

open-ended list, about 50 in the stable version, and a few others in
“obscure branches”
integer, fixed-point, floating-point, logarithm number system
all operators fully parameterized
flexible pipeline for all operators

Approach: computing just right
Interface: never output bits that are not numerically meaningful
Inside: never compute bits that are not useful to the final result
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Where do we stop?

My own personal definition of an arithmetic operator

An arithmetic operation is a function (in the mathematical sense)

few well-typed inputs and outputs
no memory or side effect

I (even filters are defined by a transfer function)

An operator is the implementation of such a function

... mathematically specified in terms of a rounding function
e.g. IEEE-754 FP standard: operator(x) = rounding(operation(x))

→ Clean mathematic definition, even for floating-point arithmetic

An operator, as a circuit...

... is a direct acyclic graph (DAG):

easy to build and pipeline

easy to test against its mathematical specification
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One small problem

FloPoCo can generate an infinite number of operators, I don’t want to
test them all...

Solution

Each operator comes with its testbench generator

expected outputs built from the mathematical specification,

not by emulating the operator architecture!
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Here should come a demo

Command line syntax: a sequence of operator specifications

Options: target frequency, target hardware, ...

Output: synthesizable VHDL.

FloPoCo is open-source and freely available from

http://flopoco.gforge.inria.fr/
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