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Motivation

e Two main alternatives for firmware development for microcontrollers
- Baremetal

- BasedonaO.S.

* The baremetal approach, based on a superloop:
- forever loop that sequences the set of tasks
- Polled or interrupt-based I/O

int main () A
- Typical in standalone implementations init_system();
- Pros: While (1) {
» Simple ggﬁﬁ;;
 No OS overhead : do_c () ;
- Cons // You’l never get here

 Difficult to scale (low number of tasks)
 Difficult to balance time and tasks priorities
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Motivation

e BasedonaO.S.

- Multi-threaded: multiple threads spawn to carry out multiple tasks
concurrently

- Each task has different priority and timing requirements
- The operating system provides some hardware abstraction layer
- Extra services, such as a filesystem, network stack, ...

- Pros:
 More modular architecture
e Tasks can be pre-empted. Avoid priority inversion

- Cons:
* More complex and extra overhead
* Higher memory requirements
« Thread execution is difficult to test
* Deterministic??
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FreeRTOS

* Born in 2003 and initially conceived for microcontrollers
- Really light
- Really simple: the core of the O.S. are just 3 C files

- Minimal processing overhead
 FreeRTOS IRQ dispatch 10 cycles aprox.
 Embedde Linux IRQ dispatch = 100 cycles aprox.
« Ported to a large number of architectures

e Currently is Amazon the company that stewards the development of
the O.S.

e Open Source MIT license

* More information at www.FreeRTOS.org
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FreeRTOS

e An ecosystem of products:
- Amazon FreeRTOS for loT devices
- Network communication stack
- Command Line Interface
- SSL and TLS security
- FAT file system

Introduction to FreeRTOS Smr3249 - ICTP (Nov. & Dic. 2018)



FreeRTOS & Zynag

* FreeRTOS completely integrated in Xilinx
Software Development Flow

e Provided as a BSP:

- Extension of the standalone BSP
« All low level drivers can be directly used

- Includes the O.S. runtime

- Optional extensions: | A sl
* Filesystem
* Network

lwlP

Third-Party IP
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FreeRTOS
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FreeRTOS Design Flow

Vivado Architectural design
Y
Platform export
Y
SDK Platform generation

v

FreeRTOS BSP generation

v

FreeRTOS application

This information will be used for the gen-
eration of the appropriate drivers for the
peripherals

It includes the standalone drivers plus the
extra libraries selected

Based on the FreeRTOS API plus the
peripheral drivers
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FreeRTOS Configuration

e Through a header file: FreeRTOSConfig.h

#detine configUSE PREEPTION 1 «— —— Tasks can be interrupted by others
#define configUSE MUTEXES 1 with higher priority

#define INCLUDE xSemaphoreGetMutexHolder 1
#define configUSE RECURSIVE MUTEXES 1 . o . .

- This will include a timer service task
#define configUSE COUNTING SEMAPHORES 1

#define configUSE TIMERS 1 a

#define configUSE IDLE HOOK 0 Hooks are used to trigger the execution
- of functions upon the happening of cer-
#define configUSE TICK HOOK © tain events

#define configUSE DAEMON TASK STARTUP HOOK ©
#define configUSE TICKLESS IDLE ©

#define configTASK RETURN ADDRESS  NULL : : : o
#define INCLUDE vTaskPrioritySet Slor;edf/unc’lnodnaéltfy Car][hbe Optlor}a,[ll!]y n
#define INCLUDE uxTaskPriorityGet - udediexciuded from ne core ot the
#define INCLUDE vTaskDelete O.S.

#define INCLUDE vTaskCleanUpResources
#define INCLUDE vTaskSuspend

#define INCLUDE vTaskDelayUntil
#define INCLUDE vTaskDelay

#define INCLUDE eTaskGetState

#define INCLUDE xTimerPendFunctionCall
#define INCLUDE pcTaskGetTaskName
#define configMAX API CALL INTERRUPT PRIORITY (18)

i i i i i i i i
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FreeRTOS Configuration

e The Xilinx way to handle configuration is through the mss file in the
FreeRTOS BSP generated in the SDK

Board Support Package Settings x

18

Board Support Package Settings

Control various settings of your Board Support Package.

¥ Qverview
- Configuration for OS: freertos10_xilinx
~ drivers Name Value Default Type Description
ps/_cortexa9_0 SYSINTC_SPEC '
SYSTMR_DEV *
SYSTMR_SPEC true
stdin ps/_uart_1 none peripheral stdin peripheral
stdout ps/_uart_1 none peripheral stdout peripheral
» enable_stm_event_trace ! false false boolean Enable event tracing through System Trace M
hook_functions Include or exclude application defined hook (c
use_daemon_task_sta; false false boolean Settrue for kernel to call vApplicationDaemol
use_idle_hook false false boolean Setto true for the kernel to call vApplicationlc
use_malloc_failed_hoc¢ true true boolean Only usedif a FreeRTOS memory manager (h
use_tick_hook false false boolean Setto true for the kernel to call vApplicationT
» kernel_behavior true boolean Parameters relating to the kernel behavior
¥ kernel_features true boolean Include or exclude kernel features
b software_timers true true boolean Options relating to the software timers functi
b tick_setup true true boolean Configuration for enabling tick tirmer

@

Cancel oK
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FreeRTOS task model

Every thread of execution is a task

Suspended

vTaskSuspend()
called

vTaskSuspend()
called

Tasks are never called from the program

Tasks are executed by the FreeRTOS
scheduler depending on their priorities
and as a response to events

vTaskResume()
called

Only one task active at the same time muprsy |
Tasks never return \-/ . o
Independent contexts
£ 38 2 3§
vControlTask
vKeyHandlerTask — —_— — _
Idle Task e — T
(U0 © B4 6 Tme 6 17 1819
L
ﬁ = Key Press Event ﬁ = Timer Event
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FreeRTOS tasks

e Tasks are modelled after normal C functions

static vold prvTxTask( void *pvParameters )

- void return
- void pointer for arguments. Can be later casted to the right type

e Since not called, they must be registered (created) into the scheduler
- The IDLE task is created automatically (special case)

e Can also be destroyed at run-time

e Some related functions:
- xtaskCreate()
- xtaskDelete()
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FreeRTOS Tasks

 In order to create a Task:
BaseType_t xTaskCreate (TaskFunction_t pxTaskCode,

const char * const pcName,
const configSTACK_DEPTH_TYPE usStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
TaskHandle_t * const pxCreatedTask

- pxTaskCode: pointer to the function that really implements the task

- pcName: name assigned, mainly used for debug purposes

- usStackDepth: refers to the local memory assigned to the task
« The configMINIMAL_STACK _SIZE parameter set in the FreeRTOSConfig.h configuration file

- pvParameters: since no parameters are sent to the task
- uxPriority: priority assigned to the task.

« This constant is defined as the minimum possible priority xTaskCreate( prvTxTask,
« The lowest the number, the lowest the priority ( const char = ) "Tx",
- pxCreatedTask: task handler ;EEEQHINIH&L—ST’%K—SHE’
« Previously declared as: tskIDLE PRIORITY,
static TaskHandle t xTxTask; &xTxTask );

Task creation example
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FreeRTOS Task Communication

e Two mechanisms:

- Global variables which can be read from all tasks

- Queues as the main mechanism for inter-task communication
* Queues:

- Asynchronous model of communication based on a FIFO

- Data can written to both the head and tail of the queue

- Of arbitrary size and depth, but defined at compile time

- Items are passed by value — not zero copy

- Access can be blocking or non-blocking
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FreeRTOS queues

Queue creation:
xQueueHandle xQueueCreate (unsigned portBASE_TYPE uxQueuelength,
unsigned portBASE_TYPE uxItemSize)

Queue data insertion at the back of the queue:
pPortBASE_TYPE xQueueSend (xQueueHandle xQueue,
const void * pvItemToQueue,
portTickType xTicksToWait)
- If xTicksToWaitis 0 it will return immediately if full otherwise it will wait

Data insertion at the front of the queue:
POrtBASE_TYPE xQueueSend (xQueueHandle xQueue,
const void * pvItemToQueue,

portTickType xTicksToWait)

Data extraction:
- pPortBASE_TYPE xQueueReceive (xQueueHandle xQueue,
- void * pvBuffer,

- portTickType xTicksToWait)
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FreeRTOS synchronization

e Queues can also be used as a synchronization primitive

e But FreeRTOS includes some other types:

- Binary semaphores
 Also used for mutual exclusion
« Typically used in Interrupt Service Routines (ISR)

- Counting semaphores
- Mutexes

Introduction to FreeRTOS Smr3249 - ICTP (Nov. & Dic. 2018)



	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

