
Advanced Workshop on FPGA-
based Systems-On-Chip for

Scientific Instrumentation and
Reconfigurable Computing

Smr3249 – ICTP (Nov. & Dic. 2018)

Introduction to FreeRTOS

Fernando Rincón
fernando.rincon@uclm.es

Introduction to FreeRTOS Smr3249 – ICTP (Nov. & Dic. 2018) 2

Contents

● Motivation for using FreeRTOS
● Some facts about FreeRTOS
● FreeRTOS in the Zynq
● FreeRTOS programming abstractions

– Tasks
– Queues
– Other synchronization primitives

Introduction to FreeRTOS Smr3249 – ICTP (Nov. & Dic. 2018) 3

Motivation

● Two main alternatives for firmware development for microcontrollers
– Baremetal
– Based on a O.S.

● The baremetal approach, based on a superloop:
– forever loop that sequences the set of tasks
– Polled or interrupt-based I/O
– Typical in standalone implementations
– Pros:

● Simple
● No OS overhead

– Cons
● Difficult to scale (low number of tasks)
● Difficult to balance time and tasks priorities

int main() {
 init_system();
 …
 While(1) {
 do_a();
 do_b();
 do_c();
 }
 // You’l never get here
}

Introduction to FreeRTOS Smr3249 – ICTP (Nov. & Dic. 2018) 4

Motivation

● Based on a O.S.
– Multi-threaded: multiple threads spawn to carry out multiple tasks

concurrently
– Each task has different priority and timing requirements
– The operating system provides some hardware abstraction layer
– Extra services, such as a filesystem, network stack, ...
– Pros:

● More modular architecture
● Tasks can be pre-empted. Avoid priority inversion

– Cons:
● More complex and extra overhead
● Higher memory requirements
● Thread execution is difficult to test
● Deterministic??

Introduction to FreeRTOS Smr3249 – ICTP (Nov. & Dic. 2018) 5

FreeRTOS

● Born in 2003 and initially conceived for microcontrollers
– Really light
– Really simple: the core of the O.S. are just 3 C files
– Minimal processing overhead

● FreeRTOS IRQ dispatch 10 cycles aprox.
● Embedde Linux IRQ dispatch = 100 cycles aprox.
● Ported to a large number of architectures

● Currently is Amazon the company that stewards the development of
the O.S.

● Open Source MIT license
● More information at www.FreeRTOS.org

Introduction to FreeRTOS Smr3249 – ICTP (Nov. & Dic. 2018) 6

FreeRTOS

● An ecosystem of products:
– Amazon FreeRTOS for IoT devices
– Network communication stack
– Command Line Interface
– SSL and TLS security
– FAT file system

Introduction to FreeRTOS Smr3249 – ICTP (Nov. & Dic. 2018) 7

FreeRTOS & Zynq

● FreeRTOS completely integrated in Xilinx
Software Development Flow

● Provided as a BSP:
– Extension of the standalone BSP

● All low level drivers can be directly used
– Includes the O.S. runtime
– Optional extensions:

● Filesystem
● Network
● ...

Introduction to FreeRTOS Smr3249 – ICTP (Nov. & Dic. 2018) 8

FreeRTOS Design Flow

Architectural design

Platform export

Platform generation

FreeRTOS BSP generation

FreeRTOS application

Vivado

SDK

This information will be used for the gen-
eration of the appropriate drivers for the
peripherals

It includes the standalone drivers plus the
extra libraries selected

Based on the FreeRTOS API plus the
peripheral drivers

Introduction to FreeRTOS Smr3249 – ICTP (Nov. & Dic. 2018) 9

FreeRTOS Configuration

● Through a header file: FreeRTOSConfig.h
Tasks can be interrupted by others
with higher priority

This will include a timer service task

Hooks are used to trigger the execution
of functions upon the happening of cer-
tain events

Some functionality can be optionally in-
cluded/excluded from the core of the
O.S.

Introduction to FreeRTOS Smr3249 – ICTP (Nov. & Dic. 2018) 10

FreeRTOS Configuration

● The Xilinx way to handle configuration is through the mss file in the
FreeRTOS BSP generated in the SDK

Introduction to FreeRTOS Smr3249 – ICTP (Nov. & Dic. 2018) 11

FreeRTOS task model

● Every thread of execution is a task
● Tasks are never called from the program
● Tasks are executed by the FreeRTOS

scheduler depending on their priorities
and as a response to events

● Only one task active at the same time
● Tasks never return
● Independent contexts

Introduction to FreeRTOS Smr3249 – ICTP (Nov. & Dic. 2018) 12

FreeRTOS tasks

● Tasks are modelled after normal C functions

– void return
– void pointer for arguments. Can be later casted to the right type

● Since not called, they must be registered (created) into the scheduler
– The IDLE task is created automatically (special case)

● Can also be destroyed at run-time
● Some related functions:

– xtaskCreate()
– xtaskDelete()

Introduction to FreeRTOS Smr3249 – ICTP (Nov. & Dic. 2018) 13

FreeRTOS Tasks
● In order to create a Task:

BaseType_t xTaskCreate(TaskFunction_t pxTaskCode,

 const char * const pcName,

 const configSTACK_DEPTH_TYPE usStackDepth,

 void * const pvParameters,

 UBaseType_t uxPriority,

 TaskHandle_t * const pxCreatedTask

– pxTaskCode: pointer to the function that really implements the task
– pcName: name assigned, mainly used for debug purposes
– usStackDepth: refers to the local memory assigned to the task

● The configMINIMAL_STACK_SIZE parameter set in the FreeRTOSConfig.h configuration file
– pvParameters: since no parameters are sent to the task
– uxPriority: priority assigned to the task.

● This constant is defined as the minimum possible priority
● The lowest the number, the lowest the priority

– pxCreatedTask: task handler
● Previously declared as:

Task creation example

Introduction to FreeRTOS Smr3249 – ICTP (Nov. & Dic. 2018) 14

FreeRTOS Task Communication

● Two mechanisms:
– Global variables which can be read from all tasks
– Queues as the main mechanism for inter-task communication

● Queues:
– Asynchronous model of communication based on a FIFO
– Data can written to both the head and tail of the queue
– Of arbitrary size and depth, but defined at compile time
– Items are passed by value → not zero copy
– Access can be blocking or non-blocking

Introduction to FreeRTOS Smr3249 – ICTP (Nov. & Dic. 2018) 15

FreeRTOS queues

● Queue creation:
xQueueHandle xQueueCreate (unsigned portBASE_TYPE uxQueueLength,

 unsigned portBASE_TYPE uxItemSize)

● Queue data insertion at the back of the queue:
portBASE_TYPE xQueueSend (xQueueHandle xQueue,

 const void * pvItemToQueue,

 portTickType xTicksToWait)

– If xTicksToWait is 0 it will return immediately if full otherwise it will wait
● Data insertion at the front of the queue:

portBASE_TYPE xQueueSend (xQueueHandle xQueue,

 const void * pvItemToQueue,

 portTickType xTicksToWait)

● Data extraction:
– portBASE_TYPE xQueueReceive (xQueueHandle xQueue,

– void * pvBuffer,

– portTickType xTicksToWait)

Introduction to FreeRTOS Smr3249 – ICTP (Nov. & Dic. 2018) 16

FreeRTOS synchronization

● Queues can also be used as a synchronization primitive
● But FreeRTOS includes some other types:

– Binary semaphores
● Also used for mutual exclusion
● Typically used in Interrupt Service Routines (ISR)

– Counting semaphores
– Mutexes

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

