(@ Infernational Centre Advanced Wor kShOp on FPGA-
for Theoretical Physics based SyStemS'On'Chip fOI’

Scientific Instrumentation and
Reconfigurable Computing

- Y
Introduction to FreeRTOS
- 4

Fernando Rincdn

Smr3249 - ICTP (Nov. & Dic. 2018

Contents

e Motivation for using FreeRTOS
e Some facts about FreeRTOS
* FreeRTOS in the Zyng

* FreeRTOS programming abstractions
- Tasks
- Queues
— Other synchronization primitives

Introduction to FreeRTOS Smr3249 - ICTP (Nov. & Dic. 2018)

Motivation

e Two main alternatives for firmware development for microcontrollers
- Baremetal

- BasedonaO.S.

* The baremetal approach, based on a superloop:
- forever loop that sequences the set of tasks
- Polled or interrupt-based I/O

int main () A
- Typical in standalone implementations init_system();
- Pros: While (1) {
» Simple ggﬁﬁ;;
 No OS overhead : do_c () ;
- Cons // You’l never get here

 Difficult to scale (low number of tasks)
 Difficult to balance time and tasks priorities

Introduction to FreeRTOS Smr3249 - ICTP (Nov. & Dic. 2018)

Motivation

e BasedonaO.S.

- Multi-threaded: multiple threads spawn to carry out multiple tasks
concurrently

- Each task has different priority and timing requirements
- The operating system provides some hardware abstraction layer
- Extra services, such as a filesystem, network stack, ...

- Pros:
 More modular architecture
e Tasks can be pre-empted. Avoid priority inversion

- Cons:
* More complex and extra overhead
* Higher memory requirements
« Thread execution is difficult to test
* Deterministic??

Introduction to FreeRTOS Smr3249 - ICTP (Nov. & Dic. 2018)

FreeRTOS

* Born in 2003 and initially conceived for microcontrollers
- Really light
- Really simple: the core of the O.S. are just 3 C files

- Minimal processing overhead
 FreeRTOS IRQ dispatch 10 cycles aprox.
 Embedde Linux IRQ dispatch = 100 cycles aprox.
« Ported to a large number of architectures

e Currently is Amazon the company that stewards the development of
the O.S.

e Open Source MIT license

* More information at www.FreeRTOS.org

Introduction to FreeRTOS Smr3249 - ICTP (Nov. & Dic. 2018)

FreeRTOS

e An ecosystem of products:
- Amazon FreeRTOS for loT devices
- Network communication stack
- Command Line Interface
- SSL and TLS security
- FAT file system

Introduction to FreeRTOS Smr3249 - ICTP (Nov. & Dic. 2018)

FreeRTOS & Zynag

* FreeRTOS completely integrated in Xilinx
Software Development Flow

e Provided as a BSP:

- Extension of the standalone BSP
« All low level drivers can be directly used

- Includes the O.S. runtime

- Optional extensions: | A sl
* Filesystem
* Network

lwlP

Third-Party IP

= o
= c
3
=
]

FreeRTOS

Introduction to FreeRTOS Smr3249 - ICTP (Nov. & Dic. 2018)

FreeRTOS Design Flow

Vivado Architectural design
Y
Platform export
Y
SDK Platform generation

v

FreeRTOS BSP generation

v

FreeRTOS application

This information will be used for the gen-
eration of the appropriate drivers for the
peripherals

It includes the standalone drivers plus the
extra libraries selected

Based on the FreeRTOS API plus the
peripheral drivers

Introduction to FreeRTOS Smr3249 - ICTP (Nov. & Dic. 2018)

FreeRTOS Configuration

e Through a header file: FreeRTOSConfig.h

#detine configUSE PREEPTION 1 «— —— Tasks can be interrupted by others
#define configUSE MUTEXES 1 with higher priority

#define INCLUDE xSemaphoreGetMutexHolder 1
#define configUSE RECURSIVE MUTEXES 1 . o . .

- This will include a timer service task
#define configUSE COUNTING SEMAPHORES 1

#define configUSE TIMERS 1 a

#define configUSE IDLE HOOK 0 Hooks are used to trigger the execution
- of functions upon the happening of cer-
#define configUSE TICK HOOK © tain events

#define configUSE DAEMON TASK STARTUP HOOK ©
#define configUSE TICKLESS IDLE ©

#define configTASK RETURN ADDRESS NULL : : : o
#define INCLUDE vTaskPrioritySet Slor;edf/unc’lnodnaéltfy Car][hbe Optlor}a,[ll!]y n
#define INCLUDE uxTaskPriorityGet - udediexciuded from ne core ot the
#define INCLUDE vTaskDelete O.S.

#define INCLUDE vTaskCleanUpResources
#define INCLUDE vTaskSuspend

#define INCLUDE vTaskDelayUntil
#define INCLUDE vTaskDelay

#define INCLUDE eTaskGetState

#define INCLUDE xTimerPendFunctionCall
#define INCLUDE pcTaskGetTaskName
#define configMAX API CALL INTERRUPT PRIORITY (18)

i i i i i i i i

Introduction to FreeRTOS Smr3249 - ICTP (Nov. & Dic. 2018)

FreeRTOS Configuration

e The Xilinx way to handle configuration is through the mss file in the
FreeRTOS BSP generated in the SDK

Board Support Package Settings x

18

Board Support Package Settings

Control various settings of your Board Support Package.

¥ Qverview
- Configuration for OS: freertos10_xilinx
~ drivers Name Value Default Type Description
ps/_cortexa9_0 SYSINTC_SPEC '
SYSTMR_DEV *
SYSTMR_SPEC true
stdin ps/_uart_1 none peripheral stdin peripheral
stdout ps/_uart_1 none peripheral stdout peripheral
» enable_stm_event_trace ! false false boolean Enable event tracing through System Trace M
hook_functions Include or exclude application defined hook (c
use_daemon_task_sta; false false boolean Settrue for kernel to call vApplicationDaemol
use_idle_hook false false boolean Setto true for the kernel to call vApplicationlc
use_malloc_failed_hoc¢ true true boolean Only usedif a FreeRTOS memory manager (h
use_tick_hook false false boolean Setto true for the kernel to call vApplicationT
» kernel_behavior true boolean Parameters relating to the kernel behavior
¥ kernel_features true boolean Include or exclude kernel features
b software_timers true true boolean Options relating to the software timers functi
b tick_setup true true boolean Configuration for enabling tick tirmer

@

Cancel oK

Introduction to FreeRTOS

Smr3249 - ICTP (Nov

. & Dic. 201

FreeRTOS task model

Every thread of execution is a task

Suspended

vTaskSuspend()
called

vTaskSuspend()
called

Tasks are never called from the program

Tasks are executed by the FreeRTOS
scheduler depending on their priorities
and as a response to events

vTaskResume()
called

Only one task active at the same time muprsy |
Tasks never return \-/ . o
Independent contexts
£ 38 2 3§
vControlTask
vKeyHandlerTask — —_— — _
Idle Task e — T
(U0 © B4 6 Tme 6 17 1819
L
ﬁ = Key Press Event ﬁ = Timer Event

Introduction to FreeRTOS Smr3249 - ICTP (Nov. & Dic. 2018)

FreeRTOS tasks

e Tasks are modelled after normal C functions

static vold prvTxTask(void *pvParameters)

- void return
- void pointer for arguments. Can be later casted to the right type

e Since not called, they must be registered (created) into the scheduler
- The IDLE task is created automatically (special case)

e Can also be destroyed at run-time

e Some related functions:
- xtaskCreate()
- xtaskDelete()

Introduction to FreeRTOS Smr3249 - ICTP (Nov. & Dic. 2018)

FreeRTOS Tasks

 In order to create a Task:
BaseType_t xTaskCreate (TaskFunction_t pxTaskCode,

const char * const pcName,
const configSTACK_DEPTH_TYPE usStackDepth,
void * const pvParameters,
UBaseType_t uxPriority,
TaskHandle_t * const pxCreatedTask

- pxTaskCode: pointer to the function that really implements the task

- pcName: name assigned, mainly used for debug purposes

- usStackDepth: refers to the local memory assigned to the task
« The configMINIMAL_STACK _SIZE parameter set in the FreeRTOSConfig.h configuration file

- pvParameters: since no parameters are sent to the task
- uxPriority: priority assigned to the task.

« This constant is defined as the minimum possible priority xTaskCreate(prvTxTask,
« The lowest the number, the lowest the priority (const char =) "Tx",
- pxCreatedTask: task handler ;EEEQHINIH&L—ST’%K—SHE’
« Previously declared as: tskIDLE PRIORITY,
static TaskHandle t xTxTask; &xTxTask);

Task creation example

Introduction to FreeRTOS Smr3249 - ICTP (Nov. & Dic. 2018)

FreeRTOS Task Communication

e Two mechanisms:

- Global variables which can be read from all tasks

- Queues as the main mechanism for inter-task communication
* Queues:

- Asynchronous model of communication based on a FIFO

- Data can written to both the head and tail of the queue

- Of arbitrary size and depth, but defined at compile time

- Items are passed by value — not zero copy

- Access can be blocking or non-blocking

Introduction to FreeRTOS Smr3249 - ICTP (Nov. & Dic. 2018)

FreeRTOS queues

Queue creation:
xQueueHandle xQueueCreate (unsigned portBASE_TYPE uxQueuelength,
unsigned portBASE_TYPE uxItemSize)

Queue data insertion at the back of the queue:
pPortBASE_TYPE xQueueSend (xQueueHandle xQueue,
const void * pvItemToQueue,
portTickType xTicksToWait)
- If xTicksToWaitis 0 it will return immediately if full otherwise it will wait

Data insertion at the front of the queue:
POrtBASE_TYPE xQueueSend (xQueueHandle xQueue,
const void * pvItemToQueue,

portTickType xTicksToWait)

Data extraction:
- pPortBASE_TYPE xQueueReceive (xQueueHandle xQueue,
- void * pvBuffer,

- portTickType xTicksToWait)

Introduction to FreeRTOS Smr3249 - ICTP (Nov. & Dic. 2018)

FreeRTOS synchronization

e Queues can also be used as a synchronization primitive

e But FreeRTOS includes some other types:

- Binary semaphores
 Also used for mutual exclusion
« Typically used in Interrupt Service Routines (ISR)

- Counting semaphores
- Mutexes

Introduction to FreeRTOS Smr3249 - ICTP (Nov. & Dic. 2018)

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

