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Motivation

● Two main alternatives for firmware development for microcontrollers
– Baremetal
– Based on a O.S.

● The baremetal approach, based on a superloop:
– forever loop that sequences the set of tasks
– Polled or interrupt-based I/O
– Typical in standalone implementations
– Pros:

● Simple
● No OS overhead

– Cons
● Difficult to scale (low number of tasks)
● Difficult to balance time and tasks priorities

int main() {
    init_system();
    …
    While(1) {
        do_a();
        do_b();
        do_c();
    }
    // You’l never get here
}
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Motivation

● Based on a O.S.
– Multi-threaded: multiple threads spawn to carry out multiple tasks 

concurrently
– Each task has different priority and timing requirements
– The operating system provides some hardware abstraction layer
– Extra services, such as a filesystem, network stack, ...
– Pros:

● More modular architecture
● Tasks can be pre-empted. Avoid priority inversion

– Cons:
● More complex and extra overhead 
● Higher memory requirements
● Thread execution is difficult to test
● Deterministic??
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FreeRTOS

● Born in 2003 and initially conceived for microcontrollers
– Really light
– Really simple: the core of the O.S. are just 3 C files
– Minimal processing overhead

● FreeRTOS IRQ dispatch 10 cycles aprox.
● Embedde Linux IRQ dispatch = 100 cycles aprox.
● Ported to a large number of architectures

● Currently is Amazon the company that stewards the development of 
the O.S.

● Open Source MIT license
● More information at www.FreeRTOS.org
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FreeRTOS

● An ecosystem of products:
– Amazon FreeRTOS for IoT devices
– Network communication stack
– Command Line Interface
– SSL and TLS security
– FAT file system
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FreeRTOS & Zynq

● FreeRTOS completely integrated in Xilinx 
Software Development Flow

● Provided as a BSP:
– Extension of the standalone BSP

● All low level drivers can be directly used
– Includes the O.S. runtime
– Optional extensions:

● Filesystem
● Network
● ... 
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FreeRTOS Design Flow

Architectural design

Platform export

Platform generation

FreeRTOS BSP generation

FreeRTOS application

Vivado

SDK

This information will be used for the gen-
eration of the appropriate drivers for the 
peripherals

It includes the standalone drivers plus the 
extra libraries selected

Based on the FreeRTOS API plus the 
peripheral drivers
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FreeRTOS Configuration

● Through a header file: FreeRTOSConfig.h
Tasks can be interrupted by others 
with higher priority

This will include a timer service task

Hooks are used to trigger the execution 
of functions upon the happening of cer-
tain events

Some functionality can be optionally in-
cluded/excluded from the core of the
O.S.
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FreeRTOS Configuration

● The Xilinx way to handle configuration is through the mss file in the 
FreeRTOS BSP generated in the SDK
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FreeRTOS task model

● Every thread of execution is a task
● Tasks are never called from the program
● Tasks are executed by the FreeRTOS 

scheduler depending on their priorities 
and as a response to events

● Only one task active at the same time
● Tasks never return
● Independent contexts
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FreeRTOS tasks

● Tasks are modelled after normal C functions

– void return
– void pointer for arguments. Can be later casted to the right type

● Since not called, they must be registered (created) into the scheduler
– The IDLE task is created automatically (special case)

● Can also be destroyed at run-time
● Some related functions:

– xtaskCreate()
– xtaskDelete()
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FreeRTOS Tasks
● In order to create a Task:

BaseType_t xTaskCreate(TaskFunction_t pxTaskCode,

     const char * const pcName,

     const configSTACK_DEPTH_TYPE usStackDepth,

     void * const pvParameters,

     UBaseType_t uxPriority,

     TaskHandle_t * const pxCreatedTask 

– pxTaskCode: pointer to the function that really implements the task
– pcName: name assigned, mainly used for debug purposes
– usStackDepth: refers to the local memory assigned to the task

● The configMINIMAL_STACK_SIZE parameter set in the FreeRTOSConfig.h configuration file
– pvParameters: since no parameters are sent to the task
– uxPriority: priority assigned to the task. 

● This constant is defined as the minimum possible priority
● The lowest the number, the lowest the priority

– pxCreatedTask: task handler
● Previously declared as: 

Task creation example
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FreeRTOS Task Communication

● Two mechanisms:
– Global variables which can be read from all tasks
– Queues as the main mechanism for inter-task communication

● Queues:
– Asynchronous model of communication based on a FIFO
– Data can written to both the head and tail of the queue
– Of arbitrary size and depth, but defined at compile time
– Items are passed by value → not zero copy
– Access can be blocking or non-blocking
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FreeRTOS queues

● Queue creation:
xQueueHandle xQueueCreate (unsigned portBASE_TYPE uxQueueLength,

                           unsigned portBASE_TYPE uxItemSize) 

● Queue data insertion at the back of the queue:
portBASE_TYPE xQueueSend (xQueueHandle xQueue, 

                          const void * pvItemToQueue, 

                          portTickType xTicksToWait)

– If xTicksToWait is 0 it will return immediately if full otherwise it will wait 
● Data insertion at the front of the queue:

portBASE_TYPE xQueueSend (xQueueHandle xQueue, 

                          const void * pvItemToQueue,

                          portTickType xTicksToWait) 

● Data extraction:
– portBASE_TYPE xQueueReceive (xQueueHandle xQueue, 

–                              void * pvBuffer,

–                              portTickType xTicksToWait) 
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FreeRTOS synchronization

● Queues can also be used as a synchronization primitive
● But FreeRTOS includes some other types:

– Binary semaphores
● Also used for mutual exclusion
● Typically used in Interrupt Service Routines (ISR)

– Counting semaphores
– Mutexes
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