
First Steps with FreeRTOS
Advanced Workshop on FPGA-based Systems-On-Chip for

Scientific Instrumentation and Reconfigurable Computing

Trieste, 26st November-7 December 2018

Fernando Rincón
Fernando.rincon@uclm.es

First Steps with FreeRTOS

Contents

Objectives...3

Building the system hardware..3

Questions... 5

FreeRTOS BSP generation..6

FreeRTOS Application...8

Questions... 8
FreeRTOS Application – part 2..9

SMR 3249 2

First Steps with FreeRTOS

Objectives
After the completion of the lab, you will be able to:

• Generate and configure a FreeRTOS BSP

• Write a simple FreeRTOS application that interacts with the buttons and
leds in the board.

Building the system hardware
Before proceeding to the development of the FreeRTOS application, a previous
step should be the definition of the hardware architecture of the system.

To illustrate the interaction between the operating system and the reconfigurable
hardware in the PL, the architecture of the system will be the following one:

• In the PS side, the first ARM core will provide the execution environment
for the operating system and the simple application to be developed in
this lab.

• In the PL side an AXI_GPIO core will be used for the monitoring and
control of the buttons and leds available in the Zedboard. This core will
be connected to the PS side through one of the GP AXI buses.

The following steps describe the procedure for the creation of the hardware
platform described in the Vivado environment.

1. Run the Vivado tool and create an empty new project targeted to the
Zedboard.

2. Once the project has been created, choose Create Block Design from
the IP INTEGRATOR menu, in the left side of the tool.

3. Once in the Diagram window click on the “+” icon to add an IP to the
empty schematic, and choose the ZYNQ7 Processing System, to
include the block that corresponds to the PS part of the architecture1.

4. Repeat the operation (add IP) but this time insert an AXI GPIO core.

5. Double-click on the AXI GPIO block to open the configuration window for
the IP and instead of custom board interfaces for the two available GPIOs
in the core:

1. Select btns 5bits and leds 8bits for GPIO0 and GPIO2 respectively.

2. Check in the IP Configuration tab that the sizes in bits of the GPIO
buses have changed to 5 and 8, with is the number of buttonsand

1 Remember that the ARMs in the PS part are not reconfigurable cores, but already built-in as hard-cores.
The purpose of the block included in the schematic is just to generate the appropriate configuration code for
the final configuration selected of peripheral and buses. That code is automatically included in the BSP
generated by the SDK.

SMR 3249 3

First Steps with FreeRTOS

leds available in the Zedboard.

3. Finally click on OK to finish the configuration process.

6. After the insertion of the cores, a notification message should have
appeared near the top of the diagram window, signaling the availability of
the assistant for the automatic setup of the connections and configuration
of the PS block

7. Click on the Run Block Automation first, and simply select OK with the
defaults provided in the emerging window. This will autoconfigure the PS,
and will connect the memory and fixed IO ports.

8. Now click on the Run Connection Automation message. And select the
All Automation option in the left, which should automatically check the
rest of the boxex in the hierarchy. Click then on OK which will produce the
following effect:

1. Generate an AXI bus arbiter,and connect both the PS and GPIO IPs
to the arbiter

2. Create two external ports for the btns_5bits and led_8bits signals,
and connect them to the corresponding GPIO ports

9. The final architecture should be similar to the one depicted in the
following figure:

SMR 3249 4

First Steps with FreeRTOS

10. Remember now to Save and then run Tools→Validate Design to check
that everything is in place.

11. Click on the Sources tab of the Block Design, select the just captured
design (generally design_1.bd), and right-click on it. Then Select Create
HDL Wrapper to build the top level file of the project. You should see a
design hierarchy such as the one following:

12. Now that the design is complete, run PROGRAM DEBUG→ Generate
Bitstream to complete the back-end flow.

13. Once finished we just need to Export→Export Hardware (also selecting
include bitstream) to generate the necessary files for the software
development part of the project using the SDK

Questions
1. Which are the channels of the GPIO where both the leds and buttons

have been connected?

SMR 3249 5

First Steps with FreeRTOS

FreeRTOS BSP generation
Once the hardware platform has been generated, the rest of the development will
continue in the SDK environment. You can launch SDK directly from the Vivado
tool by executing File→Launch SDK. You will then be requested to select the
exported location and workspace, which should be local to the project by default.
Just click on OK, and the SDK will be launched.

During the first execution of the SDK, the exported hardware configuration will be
detected, which will result in the generation of the platform configuration code.
This code will later be regenerated if the original architecture is modified in
Vivado.

Once the platform specification is available, it is the time to generate the
FreeRTOS Board Support Package, upon which the FreeRTOS applications will
later be developed. The BSP will provide the FreeRTOS run-time, as well as the
Application Programming Interface (API) that the applications require to make of
the services and resources provided by the Operating System:

1. Click on File→New→Board Support Package and select
freertos10_xilinx in the Board Support Package OS entry in the bottom
left side of the resulting window. The 10 in the name refers to the
FreeRTOS version, and may vary depending on the Vivado Tools version
installed. Finally, click on Finish to generate the BSP.

2. Once the generation has been completed, a new window will pop-up

SMR 3249 6

First Steps with FreeRTOS

showing the Board Support Package Settings. There are a number of
issues that can be configured at this point:

1. In the Overview section you can find a number of Supported Libraries
that can be added to the basic FreeRTOS kernel, such as a TCP/IP
networking stack, a FAT filesystem, etc.

2. in the freertos10_xilinx section it is possible to tune the operation of
the FreeRTOS itself. Most of these parameters will translate into the
C code in file FreeRTOS_Config.h. Note how there is a category
called hook_functions where it is possible to enable the activation or
certain function calls every time an event takes place during the
execution of the software. For example, if enabled, the use_tick_hook
function will be called every time the OS timer generates a tick.

SMR 3249 7

First Steps with FreeRTOS

3. Leave the configuration by default and click on Ok to finish. You can
later modify the settings or regenerate the code by selecting the
system.mss file included in the BSP

FreeRTOS Application
After the generation of the BSP, we are ready to build the application program.
The easiest procedure is to first generate the typical hello_world application and
then customize it for the new purpose, which in this case it will be reading the
state of the buttons and reflect their status using the leds in the board:

1. File→New→Application Project.

1. Project Name: led_buttons

2. OS platform: freertos10_xilinx

3. board support package: use existing freertos10_xilinx_bsp_0. The
one that we just generated in the previous step.

4. Now click on Next to select the type of initial project to generate from
a list of Templates. Here choose the FreeRTOS Hello World
application.

5. By clicking on Finish the application will be generated.

2. Run the project to check that the hello world application is working
properly. This step does not require the configuration of the PL part, since
it will just make use of the UART communication in the PS to show some
text:

1. Configure the SDK Terminal (find the tab in the lower part of the
SDK), clicking on the “+” icon and choosing the right port and baud
rate (115200 by default). This is necessary since the standard input
and output of the project are mapped to the PS UART, and therefore
we would need a serial terminal in the PC to have access to them.

2. Select the application project (led_buttons) on the left side of the SDK
(Project Explorer).

3. Run→Run, and in the pop-up window select Launch on Hardware.
After a few seconds you should see on the SDK Terminal ??

Questions
Proceed to the source code file of the application (freertos_hello_world), which
you will find under the led_buttons→src hierarchy. Double-click on the file to open
the contents. Have a look at the structure and then answer the following
questions:

SMR 3249 8

First Steps with FreeRTOS

1. How many tasks are being created? What is the purpose of each task?

2. What is the queue used for?

3. Do both tasks have the same priority?

4. Which is the purpose of the timer? How many messages will be produced
from the Tx to the Rx task during the execution of the application?

5. How does the application finish message transmission? Is it by canceling
the timer?

FreeRTOS Application – part 2
Taking the generated code as the starting point, we’ll proceed to the modification
to reflect the following behavior:

• Every time the Tx task is enabled, it will read the status of the 5 buttons in
the board. The resulting value will be send to the queue used for task
communication.

• Every time the Rx task is enabled, it will pop a new value from the queue
and display it though the activation of the appropriate leds. Since there
are only 5 buttons available in the board, only 5 leds will be really used for
the display.

• This behavior should be keep indefinitely.

These are the list of modifications required in order to reflect the above behavior:

1. Include the reference to the GPIO driver library at the top of the file:

#include "xgpio.h"

2. Locate the programmatic IDs for both the GPIO. This information in
included in the xparameters.h file that was generated from the hardware
platform configuration in Vivado, therefore, it reflects the actual structure
of the hardware. To do so:

1. navigate to the top of the file and locate the #include
“xparameter.h” code line.

2. Place the cursor above any part of the xparamters text, and hit F3.
This will open the file in a different tab.

3. Look for the /* Definitions for driver GPIO */ section.

4. Once there you should find a definitions similar to
XPAR_AXI_GPIO_0_DEVICE_ID. Check it really matches that name.
Otherwise take note of the real ones since it will be required in the
next step.

5. Back in the freertos_hello_world file, declare the variable gpio of type
XGpio. This variable will held the reference to the GPIO driver. We

SMR 3249 9

First Steps with FreeRTOS

Note that the
gpio variable is
always passed

by reference (&).

Notice how
value is again
passed by

reference.

need the declaration to be a global one, so insert the following text
just before the main function:

XGpio gpio;

6. Get into the main function and insert the following code to configure
the GPIO peripheral:

XGpio_Initialize(&gpio, XPAR_AXI_GPIO_0_DEVICE_ID);

XGpio_SetDataDirection(&gpio, 1, 0xff);

XGpio_SetDataDirection(&gpio, 2, 0x00);

The Initialize function stores the reference to the peripheral in the
gpio variable

The SetDataDirection configures the gpio peripheral in channel 1
(GPIO 0 in the Vivado core) as an input channel (0xFF sets a 1 for
every direction bit, which implies being an input).

The SetDataDirection for channel 2 (GPIO2 in the Vivado core) is 0
since all leds are outputs.

7. The next step, also in the main fuction, will be modification of the
queue to be created. In the hello world example, the queue was used
to pass strings from the Tx to the Rx task. Now we only need to copy
an integer. Therefore, look for the call to xQueueCreate, and replace
it with:

xQueue = xQueueCreate(1, sizeof(unsigned int));

Here the depth of the queue can be kept to 1, since each data
produced is immediately consumed by the Rx task.

8. Let’s switch to the prvTxTask function. Here, instead of a fixed string,
we’ll send the value obtained from reading the current status of the
buttons. To do so:

1. include the following declaration before the for clause:

unsigned int value;

2. read the status of the buttons (inside the for clause):

value = XGpio_DiscreteRead(&gpio, 1);

3. and replace the xQueueSend call with this one:

xQueueSend(xQueue, &value, 0UL);

9. In the prvRxTask we should do the complimentary changes:

1. include again the declaration of value:

unsigned int value;

2. replace the xQueueReceive call with this one:

SMR 3249 10

First Steps with FreeRTOS

xQueueReceive(xQueue, &value, portMAX_DELAY);

3. and finally write the value into the leds:
xQueueReceive(xQueue, &value, portMAX_DELAY);

10. The last modification will consist in removing the limitation of just 10
iterations of the producer/consumer tasks. Since this is performed
through a callback fired by a timer created in the main function, the
solution will consist in:
1. The removal of the xTimerCreate function call in the main function,

as well as the assert and xTimerStart function that immediately
follow.

2. The complete removal of the vTimerCallBack function at the end of
the source code file.

11. One final step would be the removal of some unnecessary code that
remains after the changes and removals, such as the declaration of the
HwString or the RxTaskCntr. The warning icons on the source code
editor will give you a clue on this.

Questions
1. You should observe that the response from the board is not immediate,

but there is some delay from the button has been pressed until the value
is reflected on the leds. Even the leds are not immediately turn off after
releasing the button. Why do you thing this is happening?

2. How can you fix such high latency between the pressing and the display?

Optional
Write a new task that should also consume the same data from the queue than
the RxTask. This third task should print the value to the serial console (xil_printf).

Take into account that only one of the consumer tasks can really remove the
value from the queue, otherwise the second consumer won’t have access to it,
since it would have disappeared. This can easily be done using the xQueuePeek
function which is equivalent to the xQueueReceive, but just keeps a copy of the
value without really removing it.

An additional issue that you should consider is that the task doing the peek should
have higher priority than the one receiving, otherwise data can be consumed
before than expected.

SMR 3249 11

First Steps with FreeRTOS

SMR 3249 12

	Objectives
	Building the system hardware
	Questions

	FreeRTOS BSP generation
	FreeRTOS Application
	Questions
	FreeRTOS Application – part 2
	Questions

	Optional

