The Abdus Salam
International Centre
(CTP) for Theoretical Physics

HLS optimization and
integration
Advanced Workshop on FPGA-based Systems-

On-Chip for Scientific Instrumentation and
Reconfigurable Computing

Trieste, 26 November-7 December 2018

HLS optimization

Contents
L0 o =Y o3)V =L 3
Create HLS Project....... s rrmssss s e s s s s s s s s s s nmm s s 3
PrOJECE FlES. ...t 3
Create the PrOJECL...... ... e a e 3
Code simulation.........ooieeeee e 6
Synthesize the code and analyze the results.............ccmiiiciiinicciiinnee. 7
(@ TUTC S (o] OSSO 8
The analysis perspective.......cccccciiiiimiciinir e 8
QUESTIONS. ...ttt e e e et e e e et e e e e e b e e e e e e e naa e e e e aaareaeeeeanareeeeaannnnnnnnnees 10
Optimizing the Code...... e 10
The PIPELINE dir€ClIVe. ..o 1"
(@ TUTC (o] TSP PSPPI 12
Appropriate data types. ... 13
QUESTIONS. ... et e aa—anenanannana 13
Final Verification.........ooueeeee 13
(007 7T 0 7= T3 | Ve 11 4T TR 14
Vivado project integration............ccceeiiiiiimmmsiiri s 16
Sofware Application.......... e e 18

SMR 3249 2

HLS optimization

Objectives

After the completion of the lab, you will be able to:
* build a hardware core from a C high-level description
* optimize the C code adding directives in your design
* specify the type of interface for the inputs/outputs of the core
* export the the core to be used in a Vivado project

* Write a simple application using the driver generated after the synthesis

Create HLS project

Project Files

The code for the new core is composed of the five following files:
e matrix_mult.h/.c: The naive matrix multiplication algorithm.

* matrix_mult_test.c: Test bench for the matrix multiplication

Create the project
The first steps will be the creation of the Vivado_HLS project and setting up of the
source and test-bench files, the clock cycle and the board type

1. Launch Vivado HLS and select the Create New Project flow:

1. Select matrixmul as the Project Name.

2. Add matrixmul.cpp as the source file-system, and matrixmul as the
top-level function. Note that the top-level function should be the
function of the source code that is the entry point of the design. In this
case there’s only one function. Click Next.

SMR 3249 3

HLS optimization

New Vivado HLS Project x
Add/Remove Files -
Add/remove C-based source files (design specification)
Top Function: = matrixmul ‘ ‘ Browse... ‘
Design Files
Name CFLAGS ‘ Add Files... ‘
matrixmul.cpp :
‘ New File... ‘
| Edit CFLAGS... \
1 — || \ Remove ‘
" < Back ‘H Next > ‘ } Cancel ’ ‘ Finish

3. Add matrixmul_test.cpp as the test-bench source file and ckick
Next.

New Vivado HLS Project X

Add/Remove Files + =
Add/remove C-based testbench files (design test)
TestBench Files

Name CFLAGS AddFiles..
B matrixmul_test.cpp ———
New File...

' AddFolder...

| Edit CFLAGS... |

‘ Remove

l < Back H Next > H Cancel H Finish ‘

4. In the Solution Configuration page, leave the default values set and
click on the Part’s Selection Browse button (shown in red in the
picture) to select the ZedBoard as the target device.

SMR 3249

HLS optimization

New Vivado HLS Project X

Solution Configuration

Create Vivado HLS solution for selected technology E‘:@)

Solution Name: | solutionl ‘

(Clock
Period: | 10 Uncertainty: ‘

Part Selection

Part: xaZ7al2tcsg325-1q

‘ < Back ‘ Cancel ‘ ‘ Finish ‘

5. Note the 10 value in the clock period box. The default target clock will
be of a 100MHz for the cores synthesized. Leave the value by
default. | can later be changed in the project.

6. Then click on Finish.

7. Once the project generated, you will find on the left side of the
window the project Explorer, that provides a hierarchical view of the
different files contained.

(25 Explorer 52

v [matrixmul
» & Includes
v = Source
» = Test Bench
» ¢= solution1

8. Look for the Source subfolder, and double-click on the matrixmul.cpp
to open its contents in the editor.

SMR 3249 5

HLS optimization

#include "matrixmul.h"

svoid matrixmul(
mat a t a[MAT A ROWS][MAT A COLS],
mat b t b[MAT B ROWS][MAT B COLS],
result t res[MAT A ROWS][MAT B COLS])
{
// Iterate over the rows of the A matrix
Row: for(int i = 0; i < MAT A ROWS; i++) {
// Iterate over the columns of the B matrix
Col: for(int j = ©; j < MAT B COLS; j++) {
// Do the inner product of a row of A and col of B
res[i][j] = 0;
Product: for(int k = ©; k < MAT B ROWS; k++) {
res[i][j] += a[i][k] * b[k][j];
}
}
}
}

You can observe how the product is performed through three nested
loops. The first two iterate over all rows in A and columns in B
respectively, while the third one performs the partial products addition
for the selected cell of the output matrix.

Code simulation

Before proceeding to the synthesis of the design, it is advisable to check that the
C code is correct from the functional point of view. This step in call “C simulation”
in Vivado HLS, but in fact simply consist in the C code compilation of the
matrixmult algorithm plus its test-bench in the host machine, and the execution of
the resulting program.

1. Run Project— C Simulation to for the verification of the project.
This will pop-up a dialog box that you can leave with the default values.

2. As a result of the execution the console window should open, the cross-
compilation should take place, and a message telling that there where no
error should be shown at the end of the process.

SMR 3249 6

HLS optimization

l¢ matrixmul.cpp l _csim.log &

II[NFO: [SIM 2] R R CSIM Start R

2 INFO: [SIM 4] CSIM will launch GCC as the compiler.

3 Compiling ../../../../matrix mult src/matrixmul test.cpp in debug mode
4 Compiling ../../../../matrix mult src/matrixmul.cpp in debug mode
5 Generating csim.exe

6{

7{870,906,942}

8{1086,1131,1176}

9{1302,1356,1410}

10}

11Test passed.

12 INFO: [SIM 1] CSim done with © errors.

13 INFO: [SIM 3] R ER CSIM flnlsh KRR E

14

Synthesize the code and analyze the results

The next step in the design flow is the synthesis of the code into an RTL
description:

1. Perform an initial synthesis run, Solution—Run C Synthesis—Active
solution.

2. Once the process has been correctly completed a report tab will appear
with a summary of the results. You can also have access to the report
from the Explorer.

(25 Explorer &

v 5 matrixmul
» [Includes
~ £ Source
[& matrixmul.cpp
» &= Test Bench
~ = solution1
¥ % constraints
<& directives.tcl
& script.tcl
» (= csim
» = impl
v [=syn
¥ (= report
» (= systemc
» (= verilog
» (= vhdl

3. Observe the results shown in the report. Notice the estimated time and
the latency interval values, as well as the % of usage of resources.

SMR 3249 7

HLS optimization

4. Now click on the Detail—Loop to view the latency estimations for the two
loops in the table shown.

Questions

1. Which is the estimated clock period?
2. Which is the overall latency?

3. Now have a look at the Loop data. Which do you think it is the
relationship between latency, iteration latency and trip count?

4. Which is the total number of FFs and LUTs used?

The analysis perspective

The results shown in the report are just a summary of the performance and
resource usage of the generated RTL solution. You can have access to a deeper
analysis through the Analysis perspective:

1. Switch to the Analysis perspective by selecting Solution—Open
Analysis perspective. Alternatively you can click on the corresponding
button on the right upper part of the window

2. You sould see three parts in the screen. On the left side, at the upper part
you can find the Module Hierarchy tab. Since the multiplier is composed
of a single function, only one is displayed with a brief summary of the
results:

#2) Module Hierarchy . B = O

BRAM DSP FF LUT Latency Interval Pipeline type

|0 matrixmul 01311581251 133 134 lnone |

3. On the lower part you can find the Performace and Resource Profiles.
Expand the hierarchy in the Performace Profile and you’ll discover that
there is an entry per each foor loop with the label name set on the source
code: Row, Col and Product. Look how these are the same results that
you obtained in the Loop detail of the report

£ Performance Profile 23 *»..,_|_' Resource Profile =

Pipelined Latency Iteratic Initiatic Trip count

v e matrixmul - 133 - 134 |-
~ © Row ' no 132 44 - 3
~ e Col o 42 14 -3

® Product no 12 4 - 3

SMR 3249 8

HLS optimization

4. Right-click on the matrixmult text in the Performance Profile tab on the
lower left pane, and select the Performance/Resource view. That should
open a different table graph in the main pane, as the one described in the
next step.

5. On the right part of the screen you can see de detailed scheduling of the
operations and control steps they are assigned to. Click on all + parts in
the hierarchy to get the full vision in the following picture:

Current Module : matrixmul
| Operation\Control Step Cco Gl C2 C3 C4 C5 C6

1 [ERow

2 i (phi_mux)

3 exitcond2 (icmp)

4 i 1(+)

5 tmp_8 (-)

6 | ECol

7 3 (phi_mux)

8 exitcondl (icmp)

9 3_1(+)

10 tmp_3 (+)

11 ElProduct

12 res_load(phi_mux)

13 k (phi_mux)

14 node 40 (write)

15 exitcond(icmp)

16 k_1(+)

17 tmp_s (+)

18 tmp_4(-)

19 tmp_10(+)

20 a_load(read)

21 b_load(read)

22 tmp_5 (*)

23 tmp_6 (+)

6. Notice that there are 7 control step in the control machine, and that the
yellow lines identify those related to every label in the source code. Notice
how the Product requires 4 control steps, which is also the iteration
latency previously identify (see on the left).

7. The operations that you see on the left correspond to the primitives used
for the implementation of the different source code sentences. Note that
in many cases there is no one to one matching since high-level sentences
may imply the use of more than one primitive.

8. You can locate the exact source code sentence each primitive has been
derived from. To do so, select a cell in the table, for example the one at
line 4 and column C1 (i_71 (+)). This seems to be an increment of a
variable. Then right-click—Goto Source. You can see how the
increment is related to the i++ operation in the Row loop, at line 75.

SMR 3249 9

HLS optimization

J |

[Properties {@5 Warnings (@ CSource &

File: /home/fernando/devel/revisar/trieste2/noviembrel8/tmp/matrix_mult_src/matrixmul.cpp

75

76 // Iterate over the columns of the B matrix

77 Col: for(int j = 0; j < MAT B COLS; j++) {

78 // Do the inner product of a row of A and col of B
79 res[i][j] = ©;

80 Product: for(int k = 0; k < MAT B ROWS; k++) {

81 \ res[i]1[j] += a[il[k] * b[k][j];

]2

9. Now click on the Resource tab of the central window to get a table similar

to this:
Resource\Control Ste co c1 c2 | &3 | ca | cs c6
1 [EI/0 Ports
2 b (p0)
3 a(po)
4 res (p0)
5 [EMemory Ports
6 b (p0) read
7 a(p0) read
8 res (p0) write
9 [Expressions
10 i phi fu 79
11 i 1 fu 127
12 tmp_8 fu 149
13 exitcond2 fu 121
14 j_phi_fu_90
15 tmp_9 fu 171
16 j_1_fu 161
17 exitcondl_fu 155
18 k_phi_fu 114
19 res_load phi_ fu 101
20 tmp_10_fu 225
21 k_1_fu 187
22 tmp_s_fu 197
23 tmp_4 fu 219
24 exitcond fu 181
25 tmp_5_fu 235
26 tmp_6 fu 239 |
10. Here you can see the different operations (and therefore the resources
used) at each control step and for every primitive in the code.
Questions

1. At which control step is the exit condition of the row loop evaluated?

2. Having a look at the resource/control step detail, which do you think it is
the bottleneck of this design?

Optimizing the code

SMR 3249 10

HLS optimization

There are a number of techniques that can be applied to optimize the code, both
in resources and performance. In the following steps we’ll make use of two simple
but effective ones.

The PIPELINE directive

Vivado HLS supports the implementation of different solutions for the same
source code, so multiple different optimizations can be tested without overwriting
the previous one.

1. Go back to the Synthesis view using the button in the upper right part of
the window.

2. Select Project -> New Solution and check that the Copy directives and
constraints box is checked to copy the current solution into a new one
(even if we haven’t included any yet). Note how after the creation, the
new solution is highlighted in bold This means that now it is the solution
chosen by default.

3. Open the source code for the matrixmul.cpp file.

4. Look at the right pane of the window, where there are two tabs (Outline
and Directive). Select the Directive one. You should see a list of the
parameters, variables and loops identified in the source code.

o= Outline | 4 Directive =

¥ © matrixmul
® 3

L)
® res

v %' Row
v % Col

%" Product

5. Select the Product label Directive pane, right-click on it and select
Insert Directive...

6. Edit the type of directive to associate to the function in the resulting dialog
box, filling up the following fields, and letting the rest of the values as set
by default:

o Directive: PIPELINE

o Destination: Directive File

7. The directive will be shown below the Product label in the hierarchy. This
will cause the pipelining of the product computation in the next synthesis

SMR 3249 11

HLS optimization

run.

8. At this point, the Directive tab should look like as follows.

8= Qutline | (4 Directive 83

¥ © matrixmul
® 3
®pb

® res
v %' Row
v %' Col

~ %' Product

BB HLS PIPELINE

9. Synthesize the design again

10. Once the synthesis has finished you should see a critical error about the
tool not being able to achieve an initiation interval of 1. You can also see
the effect in the detailed loop view of the report:

= Detail
Instance
= Loop
Latency Initiation Interval
Loop Name min max|teration Latency achieved target Trip Count Pipelined
-Row_Col 90 90 10 - - 9 no
+Product | 7 7 = 2 1 3 yes

The main reason is that as the table shows, it is not possible to start a
new product operation at each clock cycle, but at two (that is the best
solution achieved).

11. To fix the problem go back to the Directives tab, double-click on the HLS
PIPELINE directive and in the resulting window select 2 for the fileld //, in
the Options part. This will tell the tool that the pipeline will start a new
iteration every two clock cycles.

12. Synthesize the design again, and check that the problem has been fixed.

13. When the synthesis is completed, select Project > Compare Reports...,
and in the resulting dialog box select Solution1 and Solution2 from the
Available Reports, and click on the Add>> button.

Questions

SMR 3249 12

HLS optimization

14. Which have been the improvements in the second solution with respect to
the first one?

15. What happened to the loops shown in the details view of the solution 2
synthesis report?

16. Open the Analysis view for Solution 2. What are the main differences in
the detail scheduling with respect to the previous version?

Appropriate data types

One of the problems with the use of standard data types is that they may imply
the use of more bits than those strictly necessary. We'll assume that the values in
our source matrices are 8-bits wide. In that case we don’t need full int types, but
just 8 bit unsigned ones. This done through the use of a special include library:
ap_int.h. In the following step we’ll modify the source code accordingly.

1. Create a Project—New Solution, making a copy of the constraints and
directives from Solution 2.

2. Go back to the matrixmul.cop code window, and locate the #include
<matrixmul.h> line. Put the cursor over any part of the matrixmul text
and hit F3. This should open the header file.

3. Now replace the 3 definition types for mat_a_t, mat_b_t and mat_result_t
to ap_uint<8>, ap_uint<8> and ap_uint<16> respectively.

typedef ap uint<8> mat a t;
typedef ap uint<8> mat b t;
typedef ap uint<16> result t;

4. Perform a new synthesis.

o

Compare the results of the last two solutions.

Questions

1. Which is the main difference between this and the previous solution?

2. How many cycles are required for the computation of each product? And
which is the initiation interval?

Final Verification

Once the design has been completed, you could perform one final verification
after the synthesis process, where the resulting RTL code is simulated against the
original test bench. The output result is expected to be exactly the same to the C
version:

1. Select Solution > Run C/RTL Cosimulation

SMR 3249 13

HLS optimization

2. In the resulting dialog box make sure that VHDL is selected and the rest
of the values left by default. Then click OK.

3. The C/RTL Co-simulation will run, generating and compiling several files,
and then simulating the design. In the console window you can see the
progress and also a message that the test is passed.

4. Once the simulation has finished, a report tab will open and show the
results.

Core packaging

Once the design is ready and has already been tested, there are a few steps still
required to generate an IP core suitable to be inserted in our Vivado design. The
first issue to be considered is the desired interface. We'll analyze the default one
that has been generated and modify it to turn the core into an AXI_Lite core. Next
we’'ll export the design, so it can then be used in a block design.

1. Open the last synthesis report and look at the Summary by the end of the
report. There you will see the signal interface generated from the C
description. You will identify four parts in it:

1. a set of signals with the ap_ prefixes. This interface does not
correspond to any input or output parameter in the matrixmul function,
but is automatically generated to control the execution of the core.
The start signal, for example, implies the initiation of the computation,
while he done is set to high when the whole computation has finished.

2. three more sets with prefixes a, b, and res, respectively. Since their
data types are vectors, they have been mapped by default to block
memories, so you can identify the address, chip select and data
signals in each case.

SMR 3249 14

HLS optimization

et LA LLLU L

RTLPorts Dir Bits Protocol Source Object CType

ap_clk in 1 ap_ctrl_hs matrixmulreturnvalue
ap_rst in 1 ap_ctrl_hs matrixmulreturnvalue
ap_start in 1 ap_ctrl_hs matrixmulreturnvalue
ap_done out 1 ap_ctrl_hs matrixmulreturnvalue
ap_idle out 1 ap_ctrl_hs matrixmulreturnvalue
ap_ready out 1 ap_ctrl_hs matrixmulreturnvalue
a_V_addressO out 4ap_memory a_V array
a_V_ce0 out lap_memory a_V array
a_V_q0 in 8ap_memory a_V array
b_V_addressO out 4ap_memory b_V array
b_V_ce0 out lap_memory b_V array
b_V_q0 in 8ap_memory b_V array
res_V_addressO out 4ap_memory res_V array
res_V_ce0 out lap_memory res_V array
res_V_we0 out lap_memory res_V array
res_V_dO out 16ap_memory res_V array
res_V_q0 in 16ap_memory res_V array

2. We want to be able to both control the core and move data around to/from
the PS using an AXI_Lite interface, so the default interface is not the
appropriate one. Luckily the interface can easily be changed by just
setting a few more directives.

3. Open the matrixmul.cpp source code window, and select the Directives
tab on the right pane.

4. Double-click over the a interface. In the resulting dialog fill up the
following fields, letting the rest of the values as set by default:

1. Directive: INTERFACE

2. Destination: Directive File
3. Mode: s_axilite

4. Bundle: myBus

This will select an AXI_Lite interface for parameter a. The bundle will later
be used to map all parameters to the same AXI bus, instead of having
separated buses for each one.

5. Repeat the procedure for parameters b and res.

6. And finally do exactly the same with the top level function matrixmul.
While this is not a parameter, the effect of the directive will be that the
control signals of the core (start, done, idle, ...) will also be mapped to the
same AXI_Lite bus. Thus all I/0O and control will only be using one bus.

SMR 3249 15

HLS optimization

8= Outline [D! Directive & €«

¥ @ matrixmul
% HLS INTERFACE s_axilite port=return bundle=myBus
® 3
% HLS INTERFACE s_axilite port=a bundle=myBus
®b
% HLS INTERFACE s_axilite port=b bundle=myBus
® res
% HLS INTERFACE s_axilite port=res bundle=myBus
v %' Row
v % Col
~ % Product
% HLS PIPELINE I1=2

7. Resynthesize the design and check that the new set of signals
correspond to the AXI_Lite bus.

Interface

= Summary

: RTL Ports Dir Bits Protocol Source Object CType
s_axi_myBus_AWVALID | in 1 S_axi myBus array
s_axi_myBus_AWREADY out 1 s_axi myBus array
s_axi_myBus_AWADDR | in 7 s_axi myBus array
s_axi_myBus_WVALID | in 1 S_axi myBus array|
s_axi_myBus_WREADY jout 1 S_axi myBus array
s_axi_myBus_WDATA | in 32 s_axi myBus array
s_axi_myBus_WSTRB in 4 s_axi myBus array
s_axi_myBus_ARVALID | in 1 S_axi myBus array
s_axi_myBus_ARREADY out 1 S_axi myBus array
s_axi_myBus_ARADDR | in 7 s_axi myBus array
s_axi_myBus_RVALID out 1 S_axi myBus array
s_axi_myBus_RREADY | in 1 s_axi myBus array
s_axi_myBus_RDATA out 32 S_axi myBus array
s_axi_myBus_RRESP out 2 S_axi myBus array
s_axi_myBus_BVALID out 1 S_axi myBus array
s_axi_myBus_BREADY | in 1 S_axi myBus array
s_axi_myBus_BRESP out 2 S_axi myBus array
ap_clk in lap_ctrl_hs matrixmulreturnvalue
ap_rst_n in lap_ctrl_hs matrixmulreturnvalue
interrupt out lap_ctrl_hs matrixmulreturnvalue

8. Now the final step will be the generation of the IP core. To do so click on
Solution—Export RTL. You can leave the default configuration in the
resulting pop-up dialog and simply select OK.

9. After the generation a new folder impl will appear in the project hierarchy.

SMR 3249 16

HLS optimization

Inside it the ip subfolder will contain all the information regarding the core.
This is the route to be used later in the Vivado tool to add the new created
core into the Vivado IP cores catalog.

10. Note how the ip subfolder contains another subfolder called drivers.
Inside an appropriate driver for the core has been generated. This driver
is customized to the exact parameters, data types and bus protocols
finally chosen.

~ ¢z solution3
¥ & constraints
4 directives.tcl
U script.tcl
v &= impl
v =ip
= autoimpl.log
auxiliary.xml
component.xml
matrixmul_info.xml
[pack.sh
& run_ippack.tcl
=l vivado.jou
=l vivado.log
B xilinx_com_hls_matrixmul_1_0.zip

-

constraints
& bd
» = doc
v (= drivers
(= example
» = hdl
(= misc
(= subcore

-

v

> (= xqui

Vivado project integration

Once the IP has been generated, we will create a simple Vivado project where the
core will be inserted. This core will be connected to the PS through an AXI_Lite
interface. Later the project will be exported to the SDK and a simple application
that writes data and retrieves the result will also be written.

1. Launch Vivado, and create a new empty project for the Zedboard
2. Create a new block design

3. Click on Tools->Settings in the main menu and in the dialog that will pop
expand the IP category and click on the Repository option.

SMR 3249 17

HLS optimization

Settings x
Q- .
IP > Repository
Project Settings i Add directories to the list of repositories. You may then add
G | additional IP to a selected repository. If an IP is disabled then a '
enera tool-tip will alert you to the reason.
Simulation L.
Elaboration
Synthesis IP Repositories
Implementation +
Bitstream
v P
REROEGT) No content
Packager
Tool Settings
Project - Refresh All
LI
®

4. Click on the + icon to add the path to a new repository. This path should
be the location of the impl/ip folder of the Vivado HLS project of the
maltmul. The relative path for this lab should be the following one:

<matmul project>/solution3/impl/ip

5. A confirmation message should show that 1 IP core has been detected
and added to the project. Click OK to exit the message and OK again to
close the settings.

6. Back in the Diagram editor, add the following two cores using the + icon :
1. ZYNQY Processing System
2. Matrixmul

7. Now run the two assistants available in the top of the panel:

1. The Block Automation assistant will configure the PS part and
generate the external connections for the DDR and Fixed I/O

2. The Connection Automation will connect the Matrixmul core to the AXI
bus of the PS.

rst_ps7_0_100M
ps7_0_axi_periph
slowest_sync_clk mb_reset =
ext_reset in bus_struct_reset[0:0] m
aux_reset_in peripheral_reset[0:0] = ACLK matrixmul_0
mb_debug_sys_rst i ARESETN
dem_locked peripheral S00_ACLK
SO0 ARESETN gy
Processor System Reset MOO_ACLK
MOO_ARESETN
Matrixmul (Pre-Production)
processing_system7_0 AXI Interconnect
DOR +|| {D DDR
FIXED_IO + || {D FIXED_IO
USBIND_O +||
M_AXI_GPO - |} et

M_AXI_GPO_ACLK ZYNO‘ TTCO_WAVEO_OUT =
TTCO_WAVEL OUT =
TTCO_WAVE2_OUT =

FCLK CLKO =—1

FCLK RESETON p—I

ZYNQ?7 Processing System

8. Save the design and run Tools—Validate Design to check that
everything in the block design is correct.

SMR 3249 18

HLS optimization

9. Now switch to the Sources tab in the Block Design pane, right-click over
the design block file (design_1.bd) by default, and select Create HDL
Wrapper ...

10. Then click on the Generate Bitstream commnand on the Flow Navigator
pane and wait for the completion of the process.

11. Once finished Run File—Export—Export Hardware and check the
Include bitstream box.

12. Now that the hardware part has been generated select File—Launch
SDK to build the minimal software to test the system.

Sofware Application

1. The first operation that the SDK will perform after the opening will be the
generation of the hardware platform initialization files. Once the process
has completed create the hello world application on a standalone
configuration: File—New—Application Project ...

2. Compile and Run the project, and look for the hello world message to test
that the platform is working correctly.

3. If everything was correct, the next step should be the modification of the
program to perform the matrix multiplication computation on the PL, which
can easily be done with the driver generated by Vivado HLS.

4. The driver should be located in the BSP , in the following path:
<bsp name>/ps7_cortexa9_0/libsrc/matrixmul_vil_0/src

» (= gpiops_v3_3

v (= src
» [xmatrixmul_g.c
[5] xmatrixmul_hw.h
[¢) xmatrixmul_linux.c

»
»
» [g xmatrixmul_sinit.c
» [¢ xmatrixmul.c

»

[n xmatrixmul.h
| Makefile

5. Now open the helloworld.c source file in the application src folder.

6. Add the driver include at the top of the file:
#include “xmatrixmul.h”

7. After the includes, and before the main function we’ll add some

SMR 3249 19

HLS optimization

declarations with the test values for a and b vectors, and for the result.
Remember that a an b values are 8 bits wide, while for the result we’ll
need double number of bits, therefore a short int, instead a char:

char a[9] = {11, 12, 13, 14, 15, 16, 17, 18 ,19};
char b[9] = {21, 22, 23, 24, 25, 26, 27, 28, 29};
short int res[9];

8. Now locate the “hello world” message, after the initialization of the

platform. Here we will append the following code for the configuration of
the matrixmul peripheral.

XMatrixmul pmatrix;
XMatrixmul_Config *pmatrix_config;

pmatrix_config=XMatrixmul_ LookupConfig (XPAR_XMATRIXMUL_O_DEVICE_
ID);

XMatrixmul_CfgInitialize (&pmatrix, pmatrix_configqg);
9. The next step will be passing the input values to the core:

XMatrixmul_ Write_a_V_Bytes (&pmatrix, 0, a, 9);

XMatrixmul_Write_b_V_Bytes (&pmatrix, 0, b, 9);

10. Then we need to tell the core to perform the computation, and we should
wait until it has been completed:

XMatrixmul_Start (&pmatrix);
while (!XMatrixmul_TIsDone (&pmatrix));
11. Finally, we just need to retrieve the result and print it. Note how for the
retrieval we request 18 bytes, that we upload to the res vector, that has
been casted as a “char *”. This is because the short ints are stored one

after another, as two consecutive bytes. Later, in the printing we use the
res result as a short int type.

XMatrixmul_Read_res_V_Bytes (&pmatrix, 0, (char*)res, 18);
for (int i = 0; 1 < 9; i++)
xil_printf ("$d\r\n", res[il]);

12. Compile and run the code, and you should get the same result that we
tested during the C simulation of the test-bench in Vivado HLS.

SMR 3249 20

	Objectives
	Create HLS project
	Project Files
	Create the project

	Code simulation
	Synthesize the code and analyze the results
	Questions

	The analysis perspective
	Questions

	Optimizing the code
	The PIPELINE directive
	Questions
	Appropriate data types
	Questions

	Final Verification
	Core packaging
	Vivado project integration
	Sofware Application

