
HLS optimization and
integration

Advanced Workshop on FPGA-based Systems-
On-Chip for Scientific Instrumentation and

Reconfigurable Computing

Trieste, 26st November-7 December 2018

Fernando Rincón
Fernando.rincon@uclm.es

HLS optimization

Contents

Objectives...3

Create HLS project...3

Project Files...3

Create the project..3

Code simulation...6

Synthesize the code and analyze the results..7

Questions...8

The analysis perspective...8

Questions...10

Optimizing the code...10

The PIPELINE directive...11

Questions...12

Appropriate data types...13

Questions...13

Final Verification..13

Core packaging..14

Vivado project integration...16

Sofware Application...18

SMR 3249 2

HLS optimization

Objectives

After the completion of the lab, you will be able to:

• build a hardware core from a C high-level description

• optimize the C code adding directives in your design

• specify the type of interface for the inputs/outputs of the core

• export the the core to be used in a Vivado project

• Write a simple application using the driver generated after the synthesis

Create HLS project

Project Files

The code for the new core is composed of the five following files:

• matrix_mult.h/.c: The naive matrix multiplication algorithm.

• matrix_mult_test.c: Test bench for the matrix multiplication

Create the project

The first steps will be the creation of the Vivado_HLS project and setting up of the

source and test-bench files, the clock cycle and the board type

1. Launch Vivado HLS and select the Create New Project flow:

1. Select matrixmul as the Project Name.

2. Add matrixmul.cpp as the source file-system, and matrixmul as the

top-level function. Note that the top-level function should be the

function of the source code that is the entry point of the design. In this

case there’s only one function. Click Next.

SMR 3249 3

HLS optimization

3. Add matrixmul_test.cpp as the test-bench source file and ckick

Next.

4. In the Solution Configuration page, leave the default values set and

click on the Part’s Selection Browse button (shown in red in the

picture) to select the ZedBoard as the target device.

SMR 3249 4

HLS optimization

5. Note the 10 value in the clock period box. The default target clock will

be of a 100MHz for the cores synthesized. Leave the value by

default. I can later be changed in the project.

6. Then click on Finish.

7. Once the project generated, you will find on the left side of the

window the project Explorer, that provides a hierarchical view of the

different files contained.

8. Look for the Source subfolder, and double-click on the matrixmul.cpp

to open its contents in the editor.

SMR 3249 5

HLS optimization

You can observe how the product is performed through three nested

loops. The first two iterate over all rows in A and columns in B

respectively, while the third one performs the partial products addition

for the selected cell of the output matrix.

Code simulation

Before proceeding to the synthesis of the design, it is advisable to check that the

C code is correct from the functional point of view. This step in call “C simulation”

in Vivado HLS, but in fact simply consist in the C code compilation of the

matrixmult algorithm plus its test-bench in the host machine, and the execution of

the resulting program.

1. Run Project→ C Simulation to for the verification of the project.

This will pop-up a dialog box that you can leave with the default values.

2. As a result of the execution the console window should open, the cross-

compilation should take place, and a message telling that there where no

error should be shown at the end of the process.

SMR 3249 6

HLS optimization

Synthesize the code and analyze the results

The next step in the design flow is the synthesis of the code into an RTL

description:

1. Perform an initial synthesis run, Solution→Run C Synthesis→Active

solution.

2. Once the process has been correctly completed a report tab will appear

with a summary of the results. You can also have access to the report

from the Explorer.

3. Observe the results shown in the report. Notice the estimated time and

the latency interval values, as well as the % of usage of resources.

SMR 3249 7

HLS optimization

4. Now click on the Detail→Loop to view the latency estimations for the two

loops in the table shown.

Questions

1. Which is the estimated clock period?

2. Which is the overall latency?

3. Now have a look at the Loop data. Which do you think it is the

relationship between latency, iteration latency and trip count?

4. Which is the total number of FFs and LUTs used?

The analysis perspective

The results shown in the report are just a summary of the performance and

resource usage of the generated RTL solution. You can have access to a deeper

analysis through the Analysis perspective:

1. Switch to the Analysis perspective by selecting Solution→Open

Analysis perspective. Alternatively you can click on the corresponding

button on the right upper part of the window

2. You sould see three parts in the screen. On the left side, at the upper part

you can find the Module Hierarchy tab. Since the multiplier is composed

of a single function, only one is displayed with a brief summary of the

results:

3. On the lower part you can find the Performace and Resource Profiles.

Expand the hierarchy in the Performace Profile and you’ll discover that

there is an entry per each foor loop with the label name set on the source

code: Row, Col and Product. Look how these are the same results that

you obtained in the Loop detail of the report

SMR 3249 8

HLS optimization

4. Right-click on the matrixmult text in the Performance Profile tab on the

lower left pane, and select the Performance/Resource view. That should

open a different table graph in the main pane, as the one described in the

next step.

5. On the right part of the screen you can see de detailed scheduling of the

operations and control steps they are assigned to. Click on all + parts in

the hierarchy to get the full vision in the following picture:

6. Notice that there are 7 control step in the control machine, and that the

yellow lines identify those related to every label in the source code. Notice

how the Product requires 4 control steps, which is also the iteration

latency previously identify (see on the left).

7. The operations that you see on the left correspond to the primitives used

for the implementation of the different source code sentences. Note that

in many cases there is no one to one matching since high-level sentences

may imply the use of more than one primitive.

8. You can locate the exact source code sentence each primitive has been

derived from. To do so, select a cell in the table, for example the one at

line 4 and column C1 (i_1 (+)). This seems to be an increment of a

variable. Then right-click→Goto Source. You can see how the

increment is related to the i++ operation in the Row loop, at line 75.

SMR 3249 9

HLS optimization

9. Now click on the Resource tab of the central window to get a table similar

to this:

10. Here you can see the different operations (and therefore the resources

used) at each control step and for every primitive in the code.

Questions

1. At which control step is the exit condition of the row loop evaluated?

2. Having a look at the resource/control step detail, which do you think it is

the bottleneck of this design?

Optimizing the code

SMR 3249 10

HLS optimization

There are a number of techniques that can be applied to optimize the code, both

in resources and performance. In the following steps we’ll make use of two simple

but effective ones.

The PIPELINE directive

Vivado HLS supports the implementation of different solutions for the same

source code, so multiple different optimizations can be tested without overwriting

the previous one.

1. Go back to the Synthesis view using the button in the upper right part of

the window.

2. Select Project -> New Solution and check that the Copy directives and

constraints box is checked to copy the current solution into a new one

(even if we haven’t included any yet). Note how after the creation, the

new solution is highlighted in bold This means that now it is the solution

chosen by default.

3. Open the source code for the matrixmul.cpp file.

4. Look at the right pane of the window, where there are two tabs (Outline

and Directive). Select the Directive one. You should see a list of the

parameters, variables and loops identified in the source code.

5. Select the Product label Directive pane, right-click on it and select

Insert Directive…

6. Edit the type of directive to associate to the function in the resulting dialog

box, filling up the following fields, and letting the rest of the values as set

by default:

◦ Directive: PIPELINE

◦ Destination: Directive File

7. The directive will be shown below the Product label in the hierarchy. This

will cause the pipelining of the product computation in the next synthesis

SMR 3249 11

HLS optimization

run.

8. At this point, the Directive tab should look like as follows.

9. Synthesize the design again

10. Once the synthesis has finished you should see a critical error about the

tool not being able to achieve an initiation interval of 1. You can also see

the effect in the detailed loop view of the report:

The main reason is that as the table shows, it is not possible to start a

new product operation at each clock cycle, but at two (that is the best

solution achieved).

11. To fix the problem go back to the Directives tab, double-click on the HLS

PIPELINE directive and in the resulting window select 2 for the fileld II, in

the Options part. This will tell the tool that the pipeline will start a new

iteration every two clock cycles.

12. Synthesize the design again, and check that the problem has been fixed.

13. When the synthesis is completed, select Project > Compare Reports…,

and in the resulting dialog box select Solution1 and Solution2 from the

Available Reports, and click on the Add>> button.

Questions

SMR 3249 12

HLS optimization

14. Which have been the improvements in the second solution with respect to

the first one?

15. What happened to the loops shown in the details view of the solution 2

synthesis report?

16. Open the Analysis view for Solution 2. What are the main differences in

the detail scheduling with respect to the previous version?

Appropriate data types

One of the problems with the use of standard data types is that they may imply

the use of more bits than those strictly necessary. We’ll assume that the values in

our source matrices are 8-bits wide. In that case we don’t need full int types, but

just 8 bit unsigned ones. This done through the use of a special include library:

ap_int.h. In the following step we’ll modify the source code accordingly.

1. Create a Project→New Solution, making a copy of the constraints and

directives from Solution 2.

2. Go back to the matrixmul.cpp code window, and locate the #include

<matrixmul.h> line. Put the cursor over any part of the matrixmul text

and hit F3. This should open the header file.

3. Now replace the 3 definition types for mat_a_t, mat_b_t and mat_result_t

to ap_uint<8>, ap_uint<8> and ap_uint<16> respectively.

4. Perform a new synthesis.

5. Compare the results of the last two solutions.

Questions

1. Which is the main difference between this and the previous solution?

2. How many cycles are required for the computation of each product? And

which is the initiation interval?

Final Verification

Once the design has been completed, you could perform one final verification

after the synthesis process, where the resulting RTL code is simulated against the

original test bench. The output result is expected to be exactly the same to the C

version:

1. Select Solution > Run C/RTL Cosimulation

SMR 3249 13

HLS optimization

2. In the resulting dialog box make sure that VHDL is selected and the rest

of the values left by default. Then click OK.

3. The C/RTL Co-simulation will run, generating and compiling several files,

and then simulating the design. In the console window you can see the

progress and also a message that the test is passed.

4. Once the simulation has finished, a report tab will open and show the

results.

Core packaging

Once the design is ready and has already been tested, there are a few steps still

required to generate an IP core suitable to be inserted in our Vivado design. The

first issue to be considered is the desired interface. We’ll analyze the default one

that has been generated and modify it to turn the core into an AXI_Lite core. Next

we’ll export the design, so it can then be used in a block design.

1. Open the last synthesis report and look at the Summary by the end of the

report. There you will see the signal interface generated from the C

description. You will identify four parts in it:

1. a set of signals with the ap_ prefixes. This interface does not

correspond to any input or output parameter in the matrixmul function,

but is automatically generated to control the execution of the core.

The start signal, for example, implies the initiation of the computation,

while he done is set to high when the whole computation has finished.

2. three more sets with prefixes a, b, and res, respectively. Since their

data types are vectors, they have been mapped by default to block

memories, so you can identify the address, chip select and data

signals in each case.

SMR 3249 14

HLS optimization

2. We want to be able to both control the core and move data around to/from

the PS using an AXI_Lite interface, so the default interface is not the

appropriate one. Luckily the interface can easily be changed by just

setting a few more directives.

3. Open the matrixmul.cpp source code window, and select the Directives

tab on the right pane.

4. Double-click over the a interface. In the resulting dialog fill up the

following fields, letting the rest of the values as set by default:

1. Directive: INTERFACE

2. Destination: Directive File

3. Mode: s_axilite

4. Bundle: myBus

This will select an AXI_Lite interface for parameter a. The bundle will later

be used to map all parameters to the same AXI bus, instead of having

separated buses for each one.

5. Repeat the procedure for parameters b and res.

6. And finally do exactly the same with the top level function matrixmul.

While this is not a parameter, the effect of the directive will be that the

control signals of the core (start, done, idle, …) will also be mapped to the

same AXI_Lite bus. Thus all I/O and control will only be using one bus.

SMR 3249 15

HLS optimization

7. Resynthesize the design and check that the new set of signals

correspond to the AXI_Lite bus.

8. Now the final step will be the generation of the IP core. To do so click on

Solution→Export RTL. You can leave the default configuration in the

resulting pop-up dialog and simply select OK.

9. After the generation a new folder impl will appear in the project hierarchy.

SMR 3249 16

HLS optimization

Inside it the ip subfolder will contain all the information regarding the core.

This is the route to be used later in the Vivado tool to add the new created

core into the Vivado IP cores catalog.

10. Note how the ip subfolder contains another subfolder called drivers.

Inside an appropriate driver for the core has been generated. This driver

is customized to the exact parameters, data types and bus protocols

finally chosen.

Vivado project integration

Once the IP has been generated, we will create a simple Vivado project where the

core will be inserted. This core will be connected to the PS through an AXI_Lite

interface. Later the project will be exported to the SDK and a simple application

that writes data and retrieves the result will also be written.

1. Launch Vivado, and create a new empty project for the Zedboard

2. Create a new block design

3. Click on Tools->Settings in the main menu and in the dialog that will pop

expand the IP category and click on the Repository option.

SMR 3249 17

HLS optimization

4. Click on the + icon to add the path to a new repository. This path should

be the location of the impl/ip folder of the Vivado HLS project of the

maltmul. The relative path for this lab should be the following one:

<matmul project>/solution3/impl/ip

5. A confirmation message should show that 1 IP core has been detected

and added to the project. Click OK to exit the message and OK again to

close the settings.

6. Back in the Diagram editor, add the following two cores using the + icon :

1. ZYNQ7 Processing System

2. Matrixmul

7. Now run the two assistants available in the top of the panel:

1. The Block Automation assistant will configure the PS part and

generate the external connections for the DDR and Fixed I/O

2. The Connection Automation will connect the Matrixmul core to the AXI

bus of the PS.

8. Save the design and run Tools→Validate Design to check that

everything in the block design is correct.

SMR 3249 18

HLS optimization

9. Now switch to the Sources tab in the Block Design pane, right-click over

the design block file (design_1.bd) by default, and select Create HDL

Wrapper ...

10. Then click on the Generate Bitstream commnand on the Flow Navigator

pane and wait for the completion of the process.

11. Once finished Run File→Export→Export Hardware and check the

Include bitstream box.

12. Now that the hardware part has been generated select File→Launch

SDK to build the minimal software to test the system.

Sofware Application

1. The first operation that the SDK will perform after the opening will be the

generation of the hardware platform initialization files. Once the process

has completed create the hello world application on a standalone

configuration: File→New→Application Project ...

2. Compile and Run the project, and look for the hello world message to test

that the platform is working correctly.

3. If everything was correct, the next step should be the modification of the

program to perform the matrix multiplication computation on the PL, which

can easily be done with the driver generated by Vivado HLS.

4. The driver should be located in the BSP , in the following path:

<bsp name>/ps7_cortexa9_0/libsrc/matrixmul_v1_0/src

5. Now open the helloworld.c source file in the application src folder.

6. Add the driver include at the top of the file:

#include “xmatrixmul.h”

7. After the includes, and before the main function we’ll add some

SMR 3249 19

HLS optimization

declarations with the test values for a and b vectors, and for the result.

Remember that a an b values are 8 bits wide, while for the result we’ll

need double number of bits, therefore a short int, instead a char:

char a[9] = {11, 12, 13, 14, 15, 16, 17, 18 ,19};

char b[9] = {21, 22, 23, 24, 25, 26, 27, 28, 29};

short int res[9];

8. Now locate the “hello world” message, after the initialization of the

platform. Here we will append the following code for the configuration of

the matrixmul peripheral.

 XMatrixmul pmatrix;

 XMatrixmul_Config *pmatrix_config;

pmatrix_config=XMatrixmul_LookupConfig(XPAR_XMATRIXMUL_0_DEVICE_
ID);

XMatrixmul_CfgInitialize(&pmatrix, pmatrix_config);

9. The next step will be passing the input values to the core:

XMatrixmul_Write_a_V_Bytes(&pmatrix, 0, a, 9);

XMatrixmul_Write_b_V_Bytes(&pmatrix, 0, b, 9);

10. Then we need to tell the core to perform the computation, and we should

wait until it has been completed:

XMatrixmul_Start(&pmatrix);

while (!XMatrixmul_IsDone(&pmatrix));

11. Finally, we just need to retrieve the result and print it. Note how for the

retrieval we request 18 bytes, that we upload to the res vector, that has

been casted as a “char *”. This is because the short ints are stored one

after another, as two consecutive bytes. Later, in the printing we use the

res result as a short int type.

XMatrixmul_Read_res_V_Bytes(&pmatrix, 0, (char*)res, 18);

for (int i = 0; i < 9; i++)

 xil_printf("%d\r\n", res[i]);

12. Compile and run the code, and you should get the same result that we

tested during the C simulation of the test-bench in Vivado HLS.

SMR 3249 20

	Objectives
	Create HLS project
	Project Files
	Create the project

	Code simulation
	Synthesize the code and analyze the results
	Questions

	The analysis perspective
	Questions

	Optimizing the code
	The PIPELINE directive
	Questions
	Appropriate data types
	Questions

	Final Verification
	Core packaging
	Vivado project integration
	Sofware Application

