The Contribution of Biomonitoring in the Assessment of Exposure and Biological Effects

IEHIA OF AIR POLLUTION AND CLIMATE CHANGE IN MEDITERRANEAN AREAS

Cyprus International Institute for Environmental and Public Health

Konstantinos C. Makris

www.cut.ac.cy/waterandhealth

LECTURE SYNOPSIS

- Definitions and utility of human biomonitoring (HBM)
- HBM in the context of current and future environmental and occupational health research
- HBM and the exposome concept including untargeted –omics platforms
- HBM exposure limits
- Biomarker types for use in HBM and selection criteria
- HBM data interpretation and health effects
- HBM and occupational exposures including emergency response
- Examples-cases of HBM

The measurement of concentrations of chemicals or their metabolites in human biological media such as blood, urine or breast milk

including chemical and biological parameters that allow inferences about the pollutants' biological effects and endogenous processes

Why biomonitoring?

- 1. Assess the magnitude and variability of chemical and non-chemical exposures of the general population by measuring biospecimen concentrations for a representative population sample. This way can establish reference values for each chemical in each country.
- 2. obtain information about proportion and characteristics of population groups at risk as well as insight in exposure pathways and the influence of lifestyle and sociodemography via questionnaire use.
- 3. HBM can be used to determine early effects of harmful substances (biomarkers of effect).

Schulz C, Wilhelm M, Heudorf U, Kolossa-Gehring M. Reprint of "Update of the reference and HBM values derived by the German Human Biomonitoring Commission." International Journal of Hygiene and Environmental Health. 2012 Feb;215(2):150–8.

What is human biomonitoring (HBM) and its main objectives

HUMAN BIOMONITORING AND DATA ANALYSIS IN ENVIRONMENTAL HEALTH SCIENCES

Data management

Data handling and statistical analysis

Interpretation and reporting

Data management (i)

Is there an easy way?

1 location - 1 questionnaire - 1 interviewer - 1 dataset

						-	-				-			
female	age	educ	inc_q	q1a	account	q2	q3a	q3b	q4		q5	(\sim	
female	85	completed	second 20%	yes	yes	1 personal	n	o no	21-2	times	2 1 - 2 tim	es	5	
female	55	secondary	second 20%	yes	yes	1 personal	n	o no		5 (dk)	21-2tim	es	2 de la companya de l	
female	26	completed	middle 20%	yes	yes	1 personal	ye	s yes	33-5	times	4 6 times o)	Ŭ	
female	65	completed	richest 20%	(ref)	no		n	o no						
male	27	completed	middle 20%	yes	yes	1 personal	n	o yes	21-2	times	4 6 times o)		
female	33	secondary	second 20%	no	no		n	o no)					
female	42	secondary	second 20%	no	yes		ye	s yes	;	10	1	0		
female	17	(rf)	richest 20%	no	no		n	o no						
female	60	secondary	poorest 20%	yes	yes	1 personal	n	o no	21-2	times	21-2tim	es		
male	34	secondary	fourth 20%	yes	yes	1 personal	ye	s yes	21-2	times	4 6 times o)		
female	16	secondary	middle 20%	no	no		n	o no)					
female	76	completed	middle 20%	yes	yes	1 personal	ye	s yes	21-2	times	3 3 - 5 tim	es		
male	41	secondary	poorest 20%	no	yes		ye	s yes	21-2	times	3 3 - 5 tim	es		
female	75	secondary	poorest 20%	yes	yes	1 personal		58			1	10	5	F
female	35	completed	fourth 20%	yes	yes	1 personal		58,1 1 57			1	90	5	╞
female	34	secondary	second 20%	no	no		<mark>4 1</mark> :	57,1	1					t
								57,2	1					
								57,3 1 52	4			90	5	╞
								52,1 1	1			30	5	┢
								50 1				60	5	+
								46	1					+
1 1	S 8 1/2	1 dela	1 1 23		111-2-1111		11 14	46,1	1					T
21	1151		1. 1.	FR	1. 100	97		46,2	1					
-1-	1.1	1 1	1-1	1-1-1-1				46,3	1					
1-11	11-11	1911	3/1	15/1/1	and the	1 11 4		46,4 1				90	5	
+++///	113/ 115		1		and the second second	1 1 1 -	. <mark>15 1</mark> 4	46,5	1					

- Multiple study settings different types of data
 - Questionnaires in different languages
 - Socio-economic and lifestyle factors
 - Questions about specific behaviors/ routines
 - Laboratory analyses toxicological data, biomarkers
- Multiple datasets
 - Harmonization
 - Collaboration
 - Flexibility

Data management (ii)

• Biomarker media

- Hair
- Urine
- Blood

Check biomarker data

- Conform with definitions, units, measurements (example: values <LOQ → ½ LOQ, adjust to creatinine for urinary markers, etc.)
 - Log-transformation
 - Manage missing values
 - Calculate new variables (recode, combine etc)

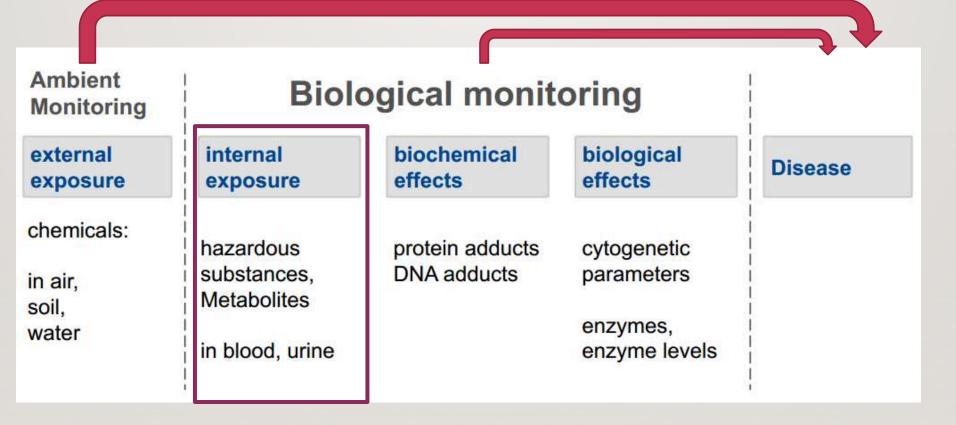
Data handling

Table 1. Select characteristics of study participants.

#

90th

60^b


Max.

60^b

3.9

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								[lal	poratory	Technolo	gy a	nd Publi
Image: Secondary Enumale Image: Secondary Enumale Male 120 61 Area" High risk 167 51 100 10	Characteristic	Quartiles	0	verall								
Gender Female 200 61 Area* High risk 126 39 Area* High risk 159 49 Age (y) -36 79 24 36-63 167 51 BMI (Kg m²) -25 137 42 25-30 134 41 -30 25 137 BMI (Kg m²) -25 137 42 25:30 134 41 Marial satus Single 44 14 Marid 253 78 Divorcee 7 2 6 Widower 19 6 100 Education Primary 103 32 Smoking status Current smoker Neef (ug L²)# Medium Tribalomethane Vever smoker 19 6 11 11 17 22 25 30 Smoking status Current smoker Neer smoker 14 100 16 1		(or Categories)				Statieti	cal	lar	hah	/eie	<i>(</i> i)	
Male 126 39 Araa" High risk 167 51 Low risk 159 49 Age (y) -36 79 24 36-63 167 51 >80 25 BMI (Kg m²) -25 137 42 >30 54 17 25-30 134 41 >30 54 17 Marial stans Single 44 14 Married 253 78 Divorce 7 2 Bornoking status Current smoker Never smoker 103 32 Scondary Percentile Inversity Smoking status Current smoker Ex-smoker Image: Divorce on the secondary of tHM concentration classes in tap water (n = 193) and participants" urine samples (n = 326). Iniversity Image: Divorce on the secondary of the secondary of tHM concentration classes in tap water (n = 193) and participants" urine samples (n = 326). Smoking status Current smoker Ex-smoker Image: Divorce on the secondary of the sec						Statisti	Ju		iaij	515	(')	
Area" High risk Low risk 167 51 Age (9) <36	Gender		20	00 61								
Icow risk 159 49 Age (y) 36-63 19 24 36-63 167 51 36-63 19 24 36-63 80 25 137 42 25-30 134 41 25-30 134 41 36-63 19 54 17 Marital status Single 44 14 14 14 14 Marital status Single 44 14 19 6 19 6 19 10 1			12	26 39								
$\begin{tabular}{ c c c c c c } \hline Age (y) & -36 & 79 & 24 \\ & 167 & 51 & \\ & 563 & 80 & 25 & \\ \hline BM1 (Kg m^7) & -25 & 137 & 42 & \\ & 25.30 & 134 & 41 & \\ & 30 & 54 & 17 & \\ \hline Marial status & Single & 44 & 14 & \\ & Mariod & 253 & 78 & \\ \hline Divorcee & 7 & 2 & \\ \hline University & & & & & & \\ \hline Education & Primary & & & & & & \\ \hline Smoking status & Current smoker & \\ \hline Rver smoker & \\ \hline Ex-smoker & & & & & \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$	Area ^a	-	10	57 51								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Low risk	1:	59 49								
>63 80 25 BMI (Kg m ⁻³) <25	Age (y)	<36	- 79	24								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		36-63	10	57 51								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		>63	80) 25								
-30 54 17 Marital status Single 44 14 Marital status Maried 253 78 Divorcee 7 2 Widower 19 6 Education Primary 103 32 Smoking status Current smoker Never smoker Primary 103 32 Smoking status Current smoker Never smoker Primary 160 Primary 160 1 8 12 16 21 25 Smoking status Current smoker Never smoker Primary 16(7) 1 8 12 16 21 25 Jobornochloromethane 21 (8) 1 11 17 22 25 30 Dibromochloromethane 22 (9) 1 8 18 24 27 31 Bromoform 7(3) 2 5 7 9 11 Bromoform 7(3) 2 2 5 </td <td>BMI (Kg m⁻²)</td> <td><25</td> <td>13</td> <td>37 42</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	BMI (Kg m ⁻²)	<25	13	37 42								
Marital status Single 44 14 Marital status Marited 253 78 Divorcee 19 6 Education Primary Secondary University 103 32 Smoking status Current smoker Never smoker Table 2. Distribution of THM concentration classes in tap water (n = 193) and participants' urine samples (n = 326). University Medium Trihalomethane Mean (Deviation)* Percentile Ex-smoker Medium Tihalomethane 16 (7) 1 8 12 16 21 25 I Water (µg L ⁺)µ Chloroform 16 (7) 1 8 12 16 21 25 3 9 11 I Water (µg L ⁺)µ Chloroform 16 (7) 1 8 18 24 27 31 Bromodichloromethane 21 (8) 1 11 17 22 25 30 Qibromochloromethane 7 (3) 1 2 5 7 9 11 Bromodichloromethane 7 (3) 1 2 5 69 80 95 <td></td> <td>25-30</td> <td>13</td> <td>34 41</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		25-30	13	34 41								
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		>30	54	4 17								
Divorcee Widower 7 2 19 0 32 Education Primary Secondary University Table 2. Distribution of THM concentration classes in tap water (n = 193) and participants' urine samples (n = 326). Smoking status Current smoker Never smoker Medium Trihalomethane Mean (Deviation)* Percentile Image: Never smoker Never smoker Never (ug L ⁻¹)# Chloroform 16 (7) 1 8 12 16 21 25 30 Image: Never smoker Image: Never smoker Never (ug L ⁻¹)# Chloroform 16 (7) 1 8 12 16 21 25 30 Image: Never smoker Image: Never smoker Never (ug L ⁻¹)# Chloroform 16 (7) 1 8 12 16 21 25 30 Image: Never smoker Image: Never smoker Image: Never smoker Image: Never smoker 16 (7) 1 8 12 16 21 25 30 Image: Never smoker Image: Never smoker Image: Never smoker 22 (9) 1 8 12 <	Marital status	Single	44	4 14								
Widower 19 6 Education Primary Secondary University Table 2. Distribution of THM concentration classes in tap water (n = 193) and participants' urine samples (n = 326). Smoking status Current smoker Never smoker Ex-smoker Medium Trihalomethane (Deviation)* Mean (Deviation)* Percentile 1 Water (µg L ⁻¹)# Chloroform Bromodichloromethane 16 (7) 1 8 12 16 21 25 2 Creatinine-unadjuster (µg L ⁻¹)# Chloroform Bromodichloromethane 21 (8) 1 11 17 22 25 30 2 Creatinine-unadjuster (µg L ⁻¹)# Chloroform 7 (3) 1 2 5 7 9 11 Bromoforn 7 (3) 1 2 5 7 9 11 Bromoform 73 (2) 23 23 68* 68* 68* 68* 68* 68* 68* 68* 68* 68* 68* 68* 68* 68* 68* 68* 68* 68* 68* 6		Married	2	53 78								
Education Primary Secondary University 103 32 Smoking status Current smoker Never smoker Table 2. Distribution of THM concentration classes in tap water (n = 193) and participants' urine samples (n = 326). Medium Trihalomethane Mean (Deviation)* Percentile Image: Secondary University Image: Secondary University Median 75 th 90 Image: Secondary University Image: Secondary Unitersity Image: Secondary University		Divorcee	7	2								
Table 2. Distribution of THM concentration classes in tap water (n = 193) and participants' urine samples (n = 326). Smoking status Current smoker Never smoker Medium Trihalomethane Mean (Deviation)* Percentile V V Image: Smoking status Current smoker Never smoker Image: Smoking status Medium Trihalomethane Mean (Deviation)* Percentile V		Widower	19	9 6								
University Medium Trihalomethane Mean (Deviation)* Percentile Second control Smoking status Current smoker Never smoker Ex-smoker Image: Never smoker Image: Never smoker Never smoker Never smoker Image: Never smoker Never s	Education	Primary	10	32 32								
Smoking status Current smoker Never smoker Ex-smoker Medium Trihalomethane Mean (Deviation)* Percentile I Wedi (µg L ⁻¹)# Chloroform 16 (7) 1 8 12 16 21 25 I Water (µg L ⁻¹)# Chloroform 16 (7) 1 8 12 16 21 25 I Water (µg L ⁻¹)# Chloroform 16 (7) 1 8 12 16 21 25 Bromodichloromethane 21 (8) 1 11 17 22 25 30 Dibromochloromethane 22 (9) 1 8 18 24 27 31 Bromoform 7 (3) 1 2 5 7 9 11 Bromoform 50 (19) 2 21 42 53 60 71 Total THM 50 (19) 2 31 456 610 783 Bromodichloromethane 73 (2) 23* 23* 68* <td< td=""><td></td><td>Secondary</td><td></td><td>Table 2. Distri</td><td>bution of THM concentration c</td><td>lasses in tap water (r</td><td>n = 193)</td><td>and part</td><td>ticipants'</td><td>urine sampl</td><td>es ($n = 3$</td><td>26).</td></td<>		Secondary		Table 2. Distri	bution of THM concentration c	lasses in tap water (r	n = 193)	and part	ticipants'	urine sampl	es ($n = 3$	26).
Interneg minder Never smoker Image minder (Deviation)* Ex-smoker Image minder Image minder Image minder Min. 10 th 25 th Median 75 th 90 Image minder Image minder Image minder Image minder Image minder 10 th 25 th Median 75 th 90 Image minder Image minder Image minder Image minder Image minder 10 th 1 1 17 22 25 30 Image minder Image minder Image minder Image minder Image minder 10 th 1 1 17 22 25 30 Dibromochloromethane 22 (9) Image minder 1 1 2 5 7 9 11 Bromoform 7 (3) Image minder 2 1 42 53 60 71 Image minder Image minder 50 (19) 2 21 42 53 60 71 Image minder <td></td> <td>University</td> <td>_</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		University	_	_								
Ex-smoker Main 10 th 25 th Median 75 th 90 1 Water (µg L ⁻¹)# Chloroform 16 (7) 1 8 12 16 21 25 Bromodichloromethane 21 (8) 1 11 17 22 25 30 Dibromochloromethane 22 (9) 1 8 18 24 27 31 Bromoform 7 (3) 1 2 5 7 9 11 Bromoform 7 (3) 1 2 5 69 80 95 2 Creatinine-unadjusted urinary concentration (ng L ⁻¹)## 67 (25) 3 29 55 69 80 95 2 Creatinine-unadjusted urinary concentration (ng L ⁻¹)## 7 21 47 ^a 47 ^a 311 456 601 783 Bromodichloromethane 73 (2) 23 ^a 23 ^a 68 ^b <t< td=""><td>Smoking status</td><td>Current smoker</td><td>_</td><td>Medium</td><td>Trihalomethane</td><td></td><td>Perce</td><td>entile</td><td></td><td></td><td></td><td></td></t<>	Smoking status	Current smoker	_	Medium	Trihalomethane		Perce	entile				
Image: Chi and the construction of the constructing and the construction of the construction of the con		Never smoker				(Deviation)*						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Ex-smoker										
Bromodichloromethane 21 (8) 1 11 17 22 25 30 Dibromochloromethane 22 (9) 1 8 18 24 27 31 Bromoform 7 (3) 1 2 5 7 9 11 Brominated THM 50 (19) 2 21 42 53 60 71 Total THM 67 (25) 3 29 55 69 80 95 2 Creatinine-unadjusted urinary concentration (ng L ⁻¹)## 50 10 47 ^a 311 456 601 783 Bromodichloromethane 73 (2) 23 ^a 23 ^a 68 ^b 68 ^b 168 ^b 168 ^b Dibromochloromethane 54 (1) 47 ^b 47 ^b 47 ^b 47 ^b 17 ^b 117 Bromoform 23 (1) 20 ^a 60 ^b Bromoform 23 (1) 20 ^a 20 ^a </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Min.</td> <td>10^{th}</td> <td>25th</td> <td>Median</td> <td>75th</td> <td>90^t</td>							Min.	10^{th}	25 th	Median	75 th	90 ^t
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1	Water (µg L ⁻¹)#	Chloroform	16 (7)	1	8	12	16	21	25
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					Bromodichloromethane	21 (8)	1	11	17	22	25	30
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$												
Brominated THM 50 (19) 2 21 42 53 60 71 Total THM 67 (25) 3 29 55 69 80 95 2 Creatinine-unadjusted urinary concentration (ng L ⁻¹)## 50 (19) 2 21 42 53 60 71 2 Creatinine-unadjusted urinary concentration (ng L ⁻¹)## 50 (19) 32 (3) 47 ^a 47 ^a 311 456 601 783 Bromodichloromethane 73 (2) 23 ^a 23 ^a 68 ^b 68 ^b 165 Dibromochloromethane 54 (1) 47 ^b 47 ^b 47 ^b 47 ^b 17 Brominated THM 161 (2) 90 90 135 135 188 283 Total THM 560 (2) 137 182 480 625 797 100												
Total THM 67 (25) 3 29 55 69 80 95 2 Creatinine-unadjusted urinary concentration (ng L ⁻¹)##					Bromoform	7 (3)	1	2	5	7	9	11
2 Creatinine-unadjusted urinary concentration (ng L ⁻¹)## Chloroform 332 (3) 47 ^a 47 ^a 311 456 601 783 Bromodichloromethane 73 (2) 23 ^a 23 ^a 68 ^b 68 ^b 68 ^b 165 Dibromochloromethane 54 (1) 47 ^b 47 ^b 47 ^b 47 ^b 117 Bromoform 23 (1) 20 ^a 60 ^b Brominated THM 161 (2) 90 90 135 135 188 283 Total THM 560 (2) 137 182 480 625 797 100					Brominated THM	50 (19)	2	21	42	53	60	71
2 Creatinine-unadjusted urinary concentration (ng L ⁻¹)## 2 Creatinine-unadjusted urinary concentration (ng L ⁻¹)## 332 (3) 47 ^a 47 ^a 311 456 601 783 Bromodichloromethane 73 (2) 23 ^a 23 ^a 68 ^b 68 ^b 68 ^b 165 Dibromochloromethane 54 (1) 47 ^b 47 ^b 47 ^b 47 ^b 117 Bromoform 23 (1) 20 ^a 60 ^b Brominated THM 161 (2) 90 90 135 135 188 283 Total THM 560 (2) 137 182 480 625 797 100					Total THM	67 (25)	3	29	55	69	80	95
Chloroform 332 (3) 47 ^a 47 ^a 311 456 601 783 Bromodichloromethane 73 (2) 23 ^a 23 ^a 68 ^b 68 ^b 68 ^b 165 Dibromochloromethane 54 (1) 47 ^b 47 ^b 47 ^b 47 ^b 117 Bromoform 23 (1) 20 ^a 20 ^a 20 ^a 20 ^a 20 ^a 20 ^a 60 ^b Brominated THM 161 (2) 90 90 135 135 188 283 Total THM 560 (2) 137 182 480 625 797 100			2	Creatinine-unadjus	ted urinary concentration (ng L							
Dibromochloromethane 54 (1) 47 b 47 b 47 b 47 b 47 b 117 Bromoform 23 (1) 20 a 20 a 20 a 20 a 20 a 20 a 60 b Brominated THM 161 (2) 90 90 135 135 188 283 Total THM 560 (2) 137 182 480 625 797 100					Chloroform	332 (3)	47 ^a	47 ^a	311	456	601	783
Dibromochloromethane 54 (1) 47 b 47 b 47 b 47 b 117 Bromoform 23 (1) 20 a 60 b Brominated THM 161 (2) 90 90 135 135 188 283 Total THM 560 (2) 137 182 480 625 797 100					Bromodichloromethane	73 (2)	23 ^a	23 ^a	68 ^b	68 ^b	68 ^b	165
Bromoform 23 (1) 20 a 20 a 20 a 20 a 20 a 20 a 60 b Brominated THM 161 (2) 90 90 135 135 188 283 Total THM 560 (2) 137 182 480 625 797 100					Dibromochloromethane			47 ^b	47 ^b	47 ^b	47 ^b	117
Brominated THM 161 (2) 90 90 135 135 188 283 Total THM 560 (2) 137 182 480 625 797 100	panel land	a for the part of the										60 ^b
Total THM 560 (2) 137 182 480 625 797 100	1 1821.	1. 1. 1. F. F.	24		Brominated THM		90	90	135	135	188	283
3 Urinary Creatinine (g L ⁻¹) 1.2 (0.8) 0.1 0.3 0.6 1.1 1.8 2.3	9/13/1	1 1 2 1 1			Total THM		137	182	480	625	797	100
	1/10/14		3	Urinary Creatinine	(g L ⁻¹)	1.2 (0.8)	0.1	0.3	0.6	1.1	1.8	2.3

Human Biomonitoring Conference - <u>German approach for setting human biomonitoring (HBM) values and reference values</u> - Holger Koch - German HBM Commission, Germany

http://www.lne.be/en/environment-and-health/human-biomonitoring-conference/conference-day-1-27th-of-october

Interpretation and reporting – The big picture

EXPOSOME

- Definition by Miller and Jones (Emory Univ.) :
- The cumulative measure of environmental influences and associated biological responses throughout the lifespan including exposures from the environment, diet, behavior, and endogenous processes.
- Coupling external with internal exposures a key concept within Exposome to improve characterizing exposures implicated with disease process

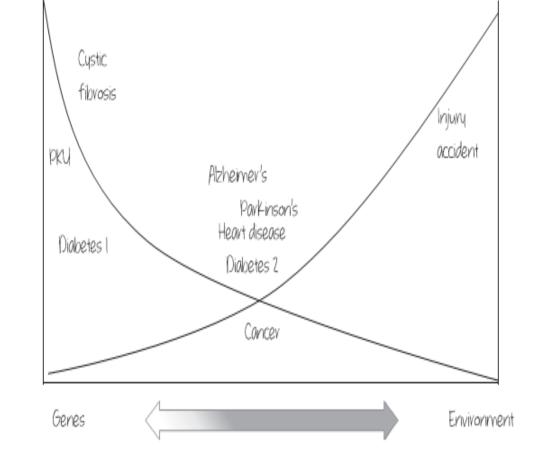


Figure 2.1 The gene-environmental continuum. There are numerous diseases that result exclusively from genetic abnormalities. These are depicted on the left side of the graph. There are also outcomes that result exclusively from external or environmental sources, shown on the right side of the graph. The vast majority of disease though resides at the interface. They may be 80% genetic and 20% environmental or vice versa. The past few decades have generated superb data on the genetic causation of disease. In order to address the majority of diseases at the interface we must have more comprehensive environmental data (i.e., exposome).

Miller, G. (2014). Exposome: a primer.

water... health

Cyprus International
Institute for Environmenta
and Public Health

Exposure assessment - Experimental studies						
Exposome approach • Multi-omics • Personal monitoring Interventions • Randomized randomized		and non-	 Panel studies Time series 			
	Population/observational studies Surveillance (disease-mapping, spatial epidemiology)					
 Cohorts Case-control studies Cross-sectional studies 		 Prospective and Continuous m 	nd retrospective onitoring			

	Urban environment studies	
Infrastructure	Physical environment	City planning

STUDY TYPES FOR THE EXPOSOME

Example: Trihalomethanes exposure assessment (outcome: small for gestational age)

Estimation from monitoring only	Estimation from monitoring levels and questionnaire	Tap water analysis at participant's residence and estimation of exposure	Estimation based on routinely collected data + questionnaire and biomonitoring
5/9	1/5	1/1	0/1
Kramer et al 1992 (N) Bove et al 1995 (Y) Dodds et al 1999 (Y) Wright et al 2003, 2004 (Y) Hinckley et al 2005 (Y) Porter et al 2005 (N) Yang et al 2007 (N) Horton et al 2011 (N)	Infante-Rivard 2004 (Y) Hoffman et al 2008 (N) Villanueva et al 2011 (N) Grazuleviciene et al 2011 (N) Danileviciute et al 2012 (N)	Levallois et al 2012 (Y)	Costet et al, 2012 (N)

How common is the HBM use in population health studies?

water and health [laboratory] Cyprus University of Technology

Cyprus International Institute for Environmenta and Public Health

Main data processing Integration of external and internal metrics with participant characteristics

External exposures

- Demographics
- Anthropometrics
- Questionnaire data

Internal exposures

- Targeted exposure measurements
- Untargeted metabolomics data (identification of differentially expressed metabolites)

Exploratory analysis Summary statistics

Group comparisons Regression analysis Modelling

Associations between the differentially expressed metabolites and exposures or health endpoints Database search Literature Pathway analysis Validation

TARGETED BIOMONITORING AND UNTARGETED METABOLOMICS PLATFORMS

BIOMONITORING-BASED EXPOSURE LIMITS

• Helping national authorities in decision making using HBM surveys

Human Biomonitoring Values (HBM values)

<u>HBM value definition \rightarrow most reliable using epidemiological data; also possible using toxicokinetic extrapolation in the absence of human data</u>

What if there are no human studies available? \Rightarrow <u>Biomonitoring equivalents</u> (BEs) or, Health-Based guidance values based on WHO guidance values

The concentration of a substance or its metabolites corresponding to tolerable intake dose - acceptable daily intake (ADI) or tolerable daily intake (TDI) - derived by recognized experts or authoritative organizations (WHO, EFSA)

Schulz C, Wilhelm M, Heudorf U, Kolossa-Gehring M. Reprint of "Update of the reference and HBM values derived by the German Human Biomonitoring Commission." International Journal of Hygiene and Environmental Health. 2012 Feb;215(2):150–8.

Interpretation and reporting

Damage to health	Recommendation	Risk increase for adverse health
Possible	Care by experts	effects
	Immediate action	Negligible health risk assumed, if the concentration of a
HBM II ("ac	tion" value)	substance in urine or blood is < HBM I level. A health risk
	Identification of specific sources of exposure	cannot be excluded if the concentration of a substance in urine or blood is between HBM
	Reduction on exposure	I and HBM II. An increased risk for adverse health effects is
HBM I ("co	ntrol" value)	presented if biomarker concentration > HBM II (<u>Schulz et al., 2011</u>).
No risk (current knowledge)	No actions recommended	

http://www.umweltbundesamt.de/en/reference-hbm-values

C. Schulz, et al., Update of the reference and HBM values derived by the German Human Biomonitoring Commission, Int J. Hyg. Environ. Health, 215 (2011), pp. 26-35

Exposure Limit Estimates and Interpretation

Table 13

Human biomonitoring (HBM) values for cadmium, mercury, pentachlorophenol, thallium and DEHP in urine or blood.

2 μg/l 4 μg/l
4 μg/l
Suspended
25 µg/l
20 µg/g creatinine
15 µg/l
70 µg/l
40 μg/l
30 µg/g creatinine
1
1
1

Interpretation and reporting (examples of HBM values)

Reference values (RV₉₅): the 95th population percentile of the concentration level of the respective parameter in the matrix obtained from the reference population

- rounding off the 95th population percentile within the 95% CI
- statistically defined reference value describes exposure or body burden in the general population at a given time, has NO whatsoever relevance to human health

If RV₉₅> HBM I -- no immediate action needed, BUT indication of high levels of exposure.

• "In such a situation, the persons or population groups affected should be informed as soon as possible yet without creating undue concern."

Table 3

Reference values (RV₉₅) for metabolites of organophosphorus insecticides (DMP, DMTP, DMDTP, DEP, DETP) in urine (Heudorf et al., 2006; Schulz et al., 2009).

Parameter	Population group (age range)	Study period	RV ₉₅ ^a
DMP	Children (3-14 years)	2003-2006	75 μg/l
	General population (not a strictly representative sample)	1998	135 µg/l
DMTP	Children (3-14 years)	2003-2006	100 μ.g/l
	General population (not a strictly representative sample)	1998	160 µg/l
DMDTP	Children (3-14 years)	2003-2006	10 µ.g/l
DEP	Children (3–14 years)	2003-2006	30 µ.g/l
	General population (not a strictly representative sample)	1998	16 µg/l
DETP	Children (3-14 years)	2003-2006	10 µ.g/l

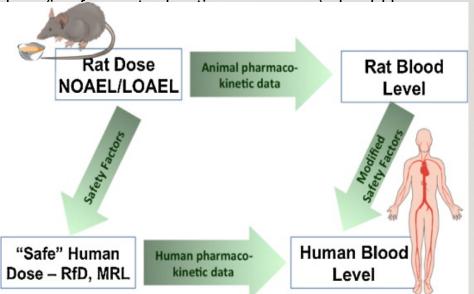
^a Uncertainty of analysis must be taken into account; DMP: dimethylphosphate; DMTP: dimethylthiophosphate; DMDTP: dimethyldithiophosphate; DEP: diethylphosphate; DEP: diethylphosphate; DEP: diethylphosphate.

Schulz C, Wilhelm M, Heudorf U, Kolossa-Gehring M. Reprint of "Update of the reference and HBM values derived by the German Human Biomonitoring Commission." International Journal of Hygiene and Environmental Health. 2012 Feb;215(2):150–8.

Reference values

Comparison with other large national BM surveys					
Biomarker Reference value (μ g/g creatinine)					
UK (this study)	US NHANES (Year)	Germany (GerES)	Other		
0.9 N=435	1.05 (2007/08) N = 1857	0.7 (1998) N = 4728			
2.8 N=435	2.56 (2007/08) N = 1861	2.0 (1998) N = 4730			
4.3 N=405	3.2 (01/02) N = 1128		~2 German HBM		
isCl2CA 0.7 0.9 (01/02) N=405 N = 1128 -1 (1998) Ge		~I (1998) German HBM			
1.8 N=405	2.6 (01/02) N = 1123		~2 (1998) German HBM		
	Reference value (μ UK (this study) 0.9 N=435 2.8 N=435 4.3 N=405 0.7 N=405 1.8	Colspan="2">Colspan="2" Reference value (μ g/g creatinine) US NHANES (Year) 0.9 1.05 (2007/08) N = 1857 2.8 2.56 (2007/08) N = 1861 2.8 2.56 (2007/08) N = 1861 4.3 3.2 (01/02) N = 1128 4.3 3.2 (01/02) N = 1128 0.7 0.9 (01/02) N = 1128 1.8 2.6	UK (this study)US NHANES (Year)Germany (GerES)0.91.05 (2007/08) N=435 $0.7 (1998)$ N=47282.82.56 (2007/08) N=1861 $2.0 (1998)$ N=4730N=4350.72.0 (1998) N=47301114.33.2 (01/02) N=11280.70.9 (01/02) N=11281.82.6		

Bevan R, Jones K, Cocker J, Assem FL, Levy LS. Reference ranges for key biomarkers of chemical exposure within the UK population. International Journal of Hygiene and Environmental Health. 2013 Mar;216(2):170–4.



Biomonitoring Equivalents (BEs)

- the concentration or range of concentrations of a chemical or its metabolites in a biological medium (blood, urine, or other medium) that is consistent with an existing health-based exposure guidance value such as a Reference Dose (RfD) or Tolerable or Acceptable Daily Intake (TDI or ADI).
- Utility: screening tool to put biomonitoring data into a health risk context

Selection of exposure guidance values

- RfDs (reference doses), RfCs (reference concentrations), MRLs (minimal risk levels), TDIs (tolerable daily intake)
- preference to values with more recent toxicological evaluations and values applicable to country, population etc
- BE values derived from specific guidance values only in comparable situations

Hays SM, Aylward LL. Interpreting human biomonitoring data in a public health risk context using Biomonitoring Equivalents. International Journal of Hygiene and Environmental Health. 2012 Feb;215(2):145–8.

Biomonitoring Equivalents (BEs) -- unified model

Starting points for BE derivation (ii)

- Pharmacokinetic data requirements
 - fully developed PBPK models are desirable but not necessary
 - animal data can be used to form an internal dose-based derivation of a BE that is consistent with the exposure guidance value
 - Uncertainty factors (UFs)
 - Data informing the use of animal and human data in the derivation of a BE: data on active compound (parent or metabolite), model of action, critical dose metric

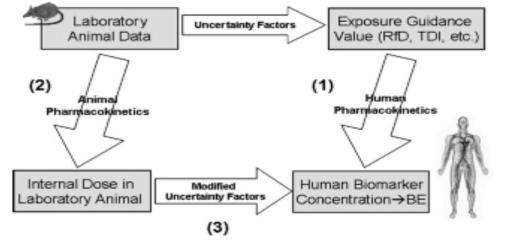


Fig. 1. Schematic diagram showing parallelogram concept for calculating BEs and possible routes for deriving a BE.

Table 2

Example summary table for presentation of BE values

Underlying exposure guidance value	Analyte	Biological matrix	Human equivalent BE _{POD}	Target BE	Confidence
USEPA RfD	Parent	Blood	120 ng/mL	40 ng/mL	High ^a
	Metabolite	Urine	30–60 μg/g creatinine	3–6 μg/g creatinine	Medium ^a

The underlying exposure guidance values, and the methods used to estimate the BE values, would be described in more detail in accompanying text and table(s).

^a A summary of the considerations leading to the confidence rating can be presented here.

(i) The identification of the point of departure (POD) used for deriving the external exposure reference value (e.g., TDI or RfD).

(ii) uncertainty factors that account for interspecies extrapolation (animal to human) and, if needed, the lowest observed adverse effect level (LOAEL) to no observed adverse effect level (NOAEL) extrapolation, are used to calculate the human-equivalent POD.

(iii) Using pharmacokinetic modelling, we estimate the expected concentration at the matrix of interest, assuming an intake equal to the human-equivalent POD. For rapidly metabolized compounds, when a urinary metabolite is identified, the daily urinary excretion of the compound normalized by average urine volume and average creatinine excretion at the daily exposure rate equal to the human-equivalent POD has to be estimated. For this we have to make an assumption on the percentage of intake that is eliminated via the urinary tract. In both cases, the result of the toxicokinetic calculation helps us to derive the biological matrix-related BE (POD).

(iv) Uncertainty factors related to intraspecies differences have to be applied on the BE (POD). When a detailed toxicokinetic model is available, intraspecies variability can be directly incorporated in the relevant anthropometric (i.e. bodyweight, body mass index) and biochemical (e.g. metabolic rates based on the genetic polymorphisms of the cytochrome P450 [CYP] isozymes) parameters.

Derivation steps of a BE

Table 1

Chemicals for which BEs have been derived.

Completed and published

2,4-D	n-Nonane
Cyfluthrin	1,1,1-Trichloroethane
Cadmium	1,1,2-Trichloroethane
Inorganic arsenic	n-Decane
Hexachlorobenzene	1,2,3-Trichloropropane
Bisphenol A	1,1,1,2-Tetrachloroethane
Triclosan	1,1,2,2-Tetrachloroethane
Diethyl phthalate	1,2-Dibromoethane
Dibutyl phthalate	Hexachloroethane
Benzyl butyl phthalate	1,1-Dichloroethene
Di-2(ethylhexyl) phthalate	cis-1,2-Dichloroethene
Dioxin TEQ	trans-1,2-Dichloroethene
Acrylamide	Trichloroethene
Chloroform	Tetrachloroethene
Bromoform	Benzene
Dibromochloromethane	Toluene
Bromodichloromethane	Styrene
Methylene chloride	Ethylbenzene
Carbon tetrachloride	Xylenes, mixed
Dibromomethane	Acrylonitrile
n-Hexane	Furan
1,1-Dichloroethane	Tetrahydrofuran
1,2-Dichloroethane	1,4-Dioxane
n-Heptane	Methyl-tert-Butyl Ether (MTBE)
n-Octane	Methyl isobutyl ketone
Hexabromocyclododecane	PBDE 99
Di-isononylphthalate	Deltamethrin
DDT/DDE/DDD	

Cyprus International Institute for Environmental and Public Health

Hays SM, Aylward LL. Interpreting human biomonitoring data in a public health risk context using Biomonitoring Equivalents. International Journal of Hygiene and Environmental Health. 2012 Feb;215(2):145–8.

<u>BEs</u>

- could be calculated with a variety of approaches and datasets
- could be targeted to a number of biological matrices and analyses

*carry uncertainties *may change

Use of population representative biomonitoring data to prioritize amongst chemicals by assessing the relative levels of detected biomarker concentrations in comparison to the chemical specific BE values

Hazard quotient (HQ) = [biomarker]/BE

HQ<1 \rightarrow exposure below the guidance value

Fig. 2. BE communication model. The model is intended to convey several messages, particularly that BE values are not bright lines between safe and unsafe exposure levels and that the interpretation should be made in terms of relative priority for risk assessment follow-up.

Use of Biomonitoring Equivalents in prioritizing health risk management

Urinary excretion rate (UER) of an analyte is calculated by multiplying the measured biomarker concentration in urine by the volume of the bladder void and divided by the duration of time that the void was accumulating in the bladder (collection time – time of last urination) (Rigas et al., 2001,Toxicological Sciences, 61:374-381).

Despite its attractiveness, assessing exposure using only biomarkers also presents difficulties. A metabolite measured in urine must, for example, be specific to the parent toxic agent of interest. Further, the relationship between metabolite concentrations in urine and particular exposure events is often unclear.

UER calculation using external dose estimates – example of CHLORPYRIFOS

The assumptions for the exposure estimates imply steady-state chronic exposure. Average absorption rate must be equal to the average elimination rate, accounting for mass differences between TCPy and chlorpyrifos. We used the assumption that 70% of an oral dose is absorbed (Nolan et al., 1984) and 3% of a dermal dose is absorbed (U.S. EPA, 1997b). Then, the average urinary excretion rate (UER) of TCPy in mg/h is related to the exposure assumptions as

UER = 198.5/350.57(0.03Dp + 0.7Rp + 0.70Ip)/24,

the molecular weight of TCPy is 198.5 mg/mmol and the molecular weight of chlorpyrifos is 350.57 mg/mmol. Dp and Ip are the daily dermal and ingestion doses, respectively. The absorption fraction of 0.7 for respiratory exposures from Buck et al. (2001).

Example UER derivation

Data interpretation at group level: comparison with guidelines

Den Hond (2013) - Statistical analysis of human biomonitoring data

Acute Exposure Guideline Levels & Intervention Values for Emergency Response

TABLE 2. Characteristics of AEGLs

CATEGORY	CHARACTERISTICS				
Death or Life-	Death or life-threatening effects				
threatening Effects	immediately or soon after exposure				
AEGL-3(LETHAL)					
Disability	External assistance needed: persons disabled by exposure persons acquire permanent or long-lasting effects				
AEGL	-2(DISABLING)				
Discomfort	Person's condition does not: ➡impair escape ➡produce disablement ➡result in permanent or long- lasting effects				
AEGL-1(NON-DISABLING)					
Detectability	Perceived only by smell, taste, sight, or by sensations. No direct effects of exposure on health				

Rusch GM et al., Process Safety Progress. 2000;19(2):98–102. Scheepers PT et al., J Expos Sci Environ Epidemiol. 2011 May; 21(3):247–61. Health effects and corresponding intervention values for emergency response (IVERs) in the US and The Netherlands

Death				
AEGL-3 Danger-to-life threshold				
Disability (irreversibility/impairment),				
AEGL-2	Public alert threshold			
Discomfort (mild CNS depression, some slight irritation)				
AEGL-1 Public information guidance value				
Detectability (very slight CNS depression, some slight sensory awareness)				

Biomonitoring in emergency response

- Specificity analytes specific markers of exposure to the chemical of interest (i.e. toluene in blood is specific biomarker, urinary markers of toluene - ortho-cresol and hippuric acid are nonspecific)
- Relevance to toxicity analytes most relevant to the toxic endpoint of interest (i.e. toluene in blood is directly relevant to nervous system responses)
- Relevance to exposure
- Stability
- Acceptability the less invasive collection procedure (i.e. hair, urine) is preferable
- Ease of interpretation

Hays SM, Aylward LL, LaKind JS, Bartels MJ, Barton HA, Boogaard PJ, et al. Guidelines for the derivation of Biomonitoring Equivalents: report from the Biomonitoring Equivalents Expert Workshop. Regul Toxicol Pharmacol. 2008 Aug;51(3 Suppl):S4–15.

Target Biomarker/Analyte Selection Characteristics

Biomarker	S-phenyl mercapturic acid (SPMA)	<i>trans,trans-</i> muconic acid (<i>tt</i> MA)	benzene (parent)	
Molecular weight	239.29	142.11	78.11	
Enzymatic metabolism	CYP2E1 and GST	CYP2E1 and GST	-	
Biological material	Urine	Urine	Alveolar air	
Type of sample	Spot urine	Spot urine	End-exhaled breath	
Sampling collection	Collect multiple samples over 1-2 days	Collect multiple samples over 1-2 days	Collect multiple samples over 1-2 days; exposure to 10 ppm was detected until 45 h (Pekari et al. 1992)	
Excretion pattern	Biphasic elimination: 9.0 ± 4 (Boogaard and van Sittert, 1995) and 45 ± 4 h workers in the petrochemical industry (DFG, 2008)	Monophasic elimination: 5.1 ± 2.3 h (workers in the petrochemical industry) (Boogaard and van Sittert, 1995)	Triphasic elimination: 0.9h, 3h and 15 h (Nomiyamia and Nomiyama 1974b) and 55-61 min, 3.2-5.9 h and 14-19.7 h (Pekari et al. 1992)	

Biomonitoring – based biomarker availability and media

Biomarker	S-phenyl mercapturic acid (SPMA)	<i>trans,trans-</i> muconic acid (<i>tt</i> MA)	benzene (parent)		
Materials	250 mL polyethylene container with screw cap	250 mL polyethylene container with screw cap	Bio-VOC, Tenax TA-tubes		
Transportation	At ambient temperature	At ambient temperature	At ambient temperature		
Storage	Stable at 4°C if acidified to pH 2 with 6 M of HCl	Stable at 4°C if acidified to pH 2 with 6 M of HCl	< 2 h transfer to TENAX; preferably sealed in a plastic bag to avoid contact with ambient air		
Stability	> 1 month	> 1 month	> 1 month		
Measurement principle	Gas chromatography mass spectrometry (GC-MS)	HPLC-UV (absorption at 259 nm)	Gas chromatography – flame ionization detector (GC-FID) or GC- MS		
Aliquot for 1 analysis	2 mL	2 mL	100 – 300 mL		
Limit of quantification	1 μg/L (GC-MS)	25 μg/L (HPLC-UV)	0.01 μg/L (GC-MS)		
Recommended adjustments	creatinine	creatinine	n/a		

Benzene - Biological monitoring

Incident	Chemical(s)	Biomarkers	Delay of sample collection (in days after cessation of exposure)	Method of detection	Result
Industrial accident at chemical production plant Seveso, Italy (July 10, 1976)	Dioxin	Dioxin in serum	Several moments until 11 years after the incident	LC-MS	Confirmation of exposure status with distance from source
Workers in coma after exposure to solvent mixture in unvented room	Organic solvents	Toluene in end-exhaled air and in blood	36 – 112 h	GC	Half life for elimination of toluene in blood and alveolar air (~ 20 h)
Fire at storage facility, Schweizerhalle, Switzerland, November 1, 1986	Mercury and others	Mercury in blood, urine and hair	23 and 29	Not specified	No enhanced values observed
Fire at storage facility in St. Bastile Le Grand, Canada (August 23, 1988)	PCBs	PCBs in blood	3	Not specified	Not reported

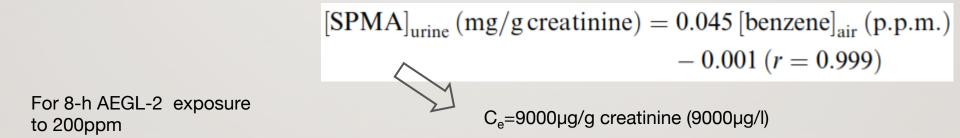
Biological monitoring after chemical incidents

Calculation of the elapsed time between the end of the environmental exposure and the last sample collection

Concentration at the time of sampling collection
$$C_{t_s} \ge LOQ$$

First-order elimination
typical elimination
log-linear decline $C_{t_s} = \frac{C_e}{2^{t_s/t_{1/2}}} \longrightarrow C_e \ge 2^{t_s/t_{1/2}} LOQ$

*LOQ: can be replaced by another criterion i.e. P_{95} - the 95 percentile background of the biomarker level in the general population


the factor by which the concentration at the end of the exposure has decreased as a function of the half-lives between the end of the exposure and the sampling

When exposure ends, how can we assess possible biological effects using HBM?

Benzene - biomarker: SPMA (S-phenyl mercapturic acid)

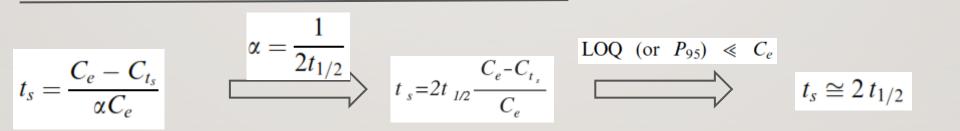
 $t_{1/2}$ =9.0±4.5 h and P₉₅=7.3µg/g (used instead of the LOQ)

For 8-h TWA occupational exposure:

Example--First-order elimination

Loss of adduct per day:

$$C_{t_s} = -\alpha C_e t + C_e$$


 $\alpha \Rightarrow$ slope -- dependent on the lifespan of hemoglobin - equal to the lifespan of erythrocyte (t_{er}=126 days)

$$\alpha = \frac{1}{t_{er}} \approx 0.008$$

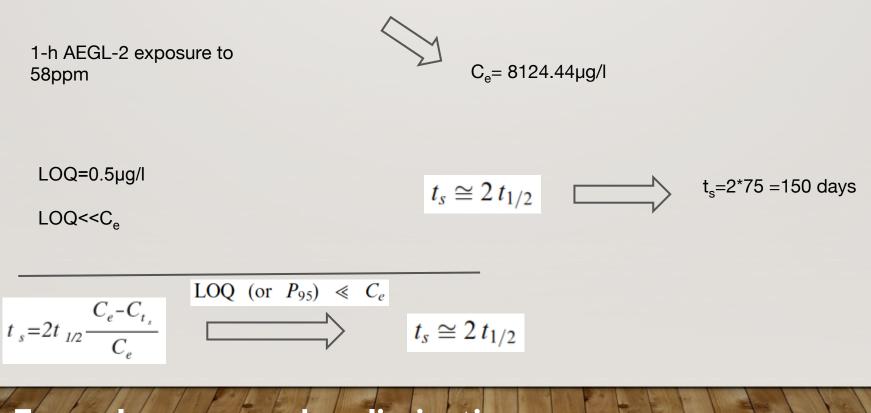
for t=t_s:
$$t_s = \frac{C_e - C_{t_s}}{\alpha C_e}$$

Lifespan of adduct - 2-fold the biomarker half-life

$$\alpha = \frac{1}{2t_{1/2}}$$

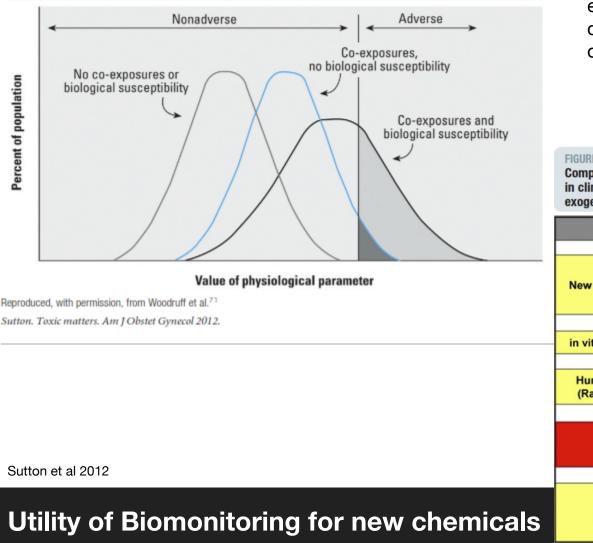
 $^{*}C_{ts}=P_{95}$ (or LOQ) in the critical longest period of sampling (t_s)

Zero-order elimination


Biomarkers captured in blood cells

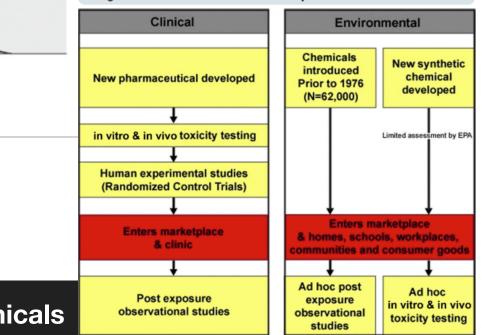
Zero-order elimination <u>Acrylonitrile</u> - biomarker: Cyanothylvaline adduct

t_{1/2}~ 75 days

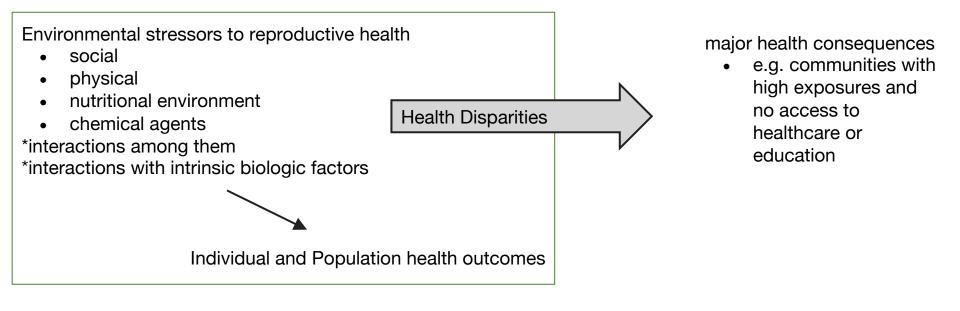

 $\begin{aligned} & [\text{Cyanoethylvaline}]_{\text{blood}}(\mu\text{g}/\text{l}) = 140.1 \ [\text{acrylonitrate}]_{\text{air}} \ (\text{p.p.m.}) \\ & -1.360 \ (r = 0.999) \end{aligned}$

Example -- zero order elimination

FIGURE 1


The effect of biologic susceptibility and coexposure to other chemicals on the relationship between individual chemical exposure and adverse health outcomes

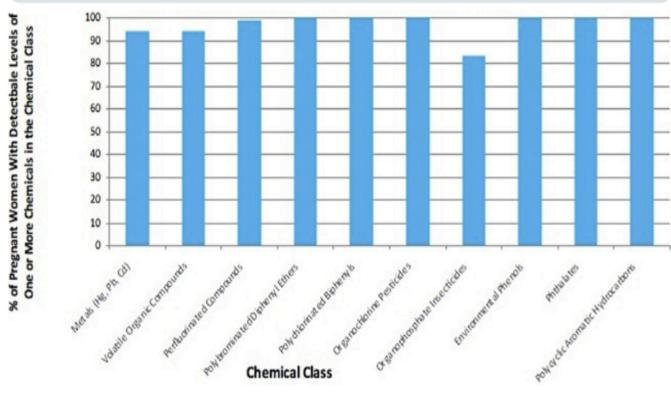
Low-dose exposure to environmental chemical \rightarrow different - population's degree of exposure


FIGURE 3

Comparison of the evidence streams that are needed in clinical and environmental health sciences for an exogenous chemical to enter the marketplace

EPA, Environmental Protection Agency. Adapted, with permission, from Woodruff et al.140 Sutton. Toxic matters. Am J Obstet Gynecol 2012.

Sutton, P., Woodruff, T. J., Perron, J., Stotland, N., Conry, J. A., Miller, M. D., & Giudice, L. C. (2012). Toxic environmental chemicals: the role of reproductive health professionals in preventing harmful exposures. *American Journal of Obstetrics & Gynecology*, *207*(3), 164–173. doi:10.1016/j.ajog.2012.01.034


Developmental vulnerability

_ exposures during sensitive periods (extensive developmental changes) ex.: embryogenesis → adolescence ⇒ central nervous system development; periods of neuronal proliferation, differentiations etc disruptions = permanent damage

_ wide range of adverse health outcomes

_ exposure of pregnant women to endocrine-disrupting chemicals (EDCs) found in food, water, air, house dust, personal care products phthalates, BPA, PBDEs, perchlorate, some pesticides critical to human reproduction (disturbing hormonal regulation)

FIGURE 2 Environmental chemicals in pregnant women in the United States

- Metals (Hg, Pb, Cd)
- Volatile organic compounds
- · Perfluorinated compounds
- Polybrominated Diphenyl Ethers
- Polychlorinated Biphenyls
- Organochlorine Pesticides
- Organophosphate
 Insecticides
 - Environmental Phenols
- Phthalates
- Polycyclic Aromatic Hydrocarbons

Adapted, with permission from Woodruff et al.30

Sutton. Toxic matters. Am J Obstet Gynecol 2012.

Virtually all pregnant women in the US are exposed to potentially harmful chemicals

Sutton et al 2012

Pregnant women: exposure to environmental chemicals and the utility of HBM

Ευχαριστώ !

Details about our Master in Public Health here: www.cut.ac.cy/cii

