
Compiling,	Linking		
&	Mixed	Languages	

Ivan	Giro9o	–	igiro9o@ictp.it	
Informa(on	&		Communica(on	Technology	Sec(on	(ICTS)	

Interna(onal	Centre	for	Theore(cal	Physics	(ICTP)			



Script	Language	Benefits	
•  Portability	

–  Script	code	does	not	need	to	be	recompiled	
–  PlaAorm	abstrac(on	is	part	of	script	library	

•  Flexibility	
–  Script	code	can	be	adapted	much	easier	
–  Data	model	makes	combining	mul(ple	extensions	easy	

•  Convenience	
–  Script	languages	have	powerful	and	convenient	facili(es	for	pre-	
and	post-processing	of	data	

–  Only	(me	cri(cal	parts	in	compiled	language	

Ivan	GiroKo	-	igiroKo@ictp.it									
Abacus	Cinvestav,	13	Feb	2018	 Compiling,	Linking		&	Mixed	Languages	 2	



From	Scrip(ng	to	Compiled	Codes	
•  maximum	control	of	the	low-level	implementa(on	
•  high-performance		
–  compiler	are	wriKen	to	deliver	best	op(miza(on	by	having	
full/relevant	knowledge	of	the	back-end	architecture	

•  the	O.S.	loads	the	binary	into	memory	and	starts	the	
execu(on	(no	other	support	would	be	required)	

•  direct	interface	to	most	of	scien(fic	code	available	

Ivan	GiroKo	-	igiroKo@ictp.it									
Abacus	Cinvestav,	13	Feb	2018	 Compiling,	Linking		&	Mixed	Languages	 3	



The	Compiler	
•  Crea(ng	an	executable	includes	mul(ple	steps	
•  The	“compiler”	(gcc)	is	a	wrapper	for	several	
commands	that	are	executed	in	succession	

•  The	“compiler	flags”	similarly	fall	into	categories	
and	are	handed	down	to	the	respec(ve	tools	

•  The	“wrapper”	selects	the	compiler	language	
from	source	file	name,	but	links	“its”	run(me	

•  We	will	look	into	a	C	example	first,	since	this	is	
the	language	the	OS	is	(mostly)	wriKen	in	

Ivan	GiroKo	-	igiroKo@ictp.it									
Abacus	Cinvestav,	13	Feb	2018	 Compiling,	Linking		&	Mixed	Languages	 4	



The	Compiling	Phases	

Ivan	GiroKo	-	igiroKo@ictp.it									
Abacus	Cinvestav,	13	Feb	2018	 Compiling,	Linking		&	Mixed	Languages	 5	

#include <stdio.h> 
int main(int argc, char **argv) 
{ 

 printf(“hello world\n”); 
 return 0; 

} 

Compila(on	Command	examples		



Pre-Processing	
•  Pre-processing	is	mandatory	in	C	(and	C++)	
•  Pre-processing	will	handle	'#'	direc(ves	
–  File	inclusion	with	support	for	nested	inclusion	
–  Condi(onal	compila(on	and	Macro	expansion	

•  In	this	case:	/usr/include/stdio.h	
–  and	all	files	are	included	by	it	-	are	inserted	and	the	
contained	macros	expanded	

•  Use	-E	flag	to	stop	aeer	pre-processing:	
–  gcc	-E	-o	hello.pp.c	hello.c	
–  cpp	main.c	main.i	(same)	

Ivan	GiroKo	-	igiroKo@ictp.it									
Abacus	Cinvestav,	13	Feb	2018	 Compiling,	Linking		&	Mixed	Languages	 6	



Compiling	
•  Compiler	converts	a	high-level	language	into	the	specific	instruc(on	

set	of	the	target	CPU	
•  Individual	steps:	

–  Parse	text	(lexical	+	syntac(cal	analysis)	
–  Do	language	specific	transforma(ons	
–  Translate	to	internal	representa(on	units	(IRs)	
–  Op(miza(on	(reorder,	merge,	eliminate)	
–  Replace	IRs	with	pieces	of	assembler	language	

•  Using	-S	the	compila(on	stops	aeer	the	stage	of	compila(on	(does	
not	assemble).		The	output	is	in	the	form	of	an	assembler	code	file	
for	each	non-assembler	input	file	specified.	
–  gcc	-S	hello.c	(produces	hello.s)	

Ivan	GiroKo	-	igiroKo@ictp.it									
Abacus	Cinvestav,	13	Feb	2018	 Compiling,	Linking		&	Mixed	Languages	 7	



Assembling	
•  Assembler	(as)	translates	assembly	to	binary	
–  from	there,	Linux	tools	are	needed	for	accessing	the	
content		

•  Creates	so-called	object	files	(in	ELF	format)	
–  gcc	-c	hello.c	
–  nm	hello.o	

•  Be	careful	at	built-in	func(ons		
–  -fno-buil(n	can	be	used	to	work-around	the	problem	

Ivan	GiroKo	-	igiroKo@ictp.it									
Abacus	Cinvestav,	13	Feb	2018	 Compiling,	Linking		&	Mixed	Languages	 8	



Linking	
•  Linker	(ld)	puts	binary	together	with	startup	code	
and	required	libraries	

•  Final	step,	result	is	executable	
–  gcc	-o	hello	hello.o	

•  The	linker	then	“builds”	the	executable	by	matching	
undefined	references	with	available	entries	in	the	
symbol	tables	of	the	objects/libraries	

Ivan	GiroKo	-	igiroKo@ictp.it									
Abacus	Cinvestav,	13	Feb	2018	 Compiling,	Linking		&	Mixed	Languages	 9	



Why	is	a	linker	interes(ng	to	us?!	
•  Understanding	linkers	will	help	you	to	build	large	
programs	

•  Understanding	linkers	will	help	you	to	avoid	dangerous	
programming	errors		

•  Understanding	linkers	will	help	you	how	language	
scoping	rules	are	implemented	

•  Understanding	linkers	will	help	you	understand	how	
things	works	

•  Understanding	linkers	will	enable	you	to	exploit	shared	
libraries	

Ivan	GiroKo	-	igiroKo@ictp.it									
Abacus	Cinvestav,	13	Feb	2018	 Compiling,	Linking		&	Mixed	Languages	 10	



Object	Files	
•  Object	Files	are	divided	in	three	categories:	

–  Rolocatable	Object	Files	(*.o)	
–  Executable	Object	File	
–  Shared	Object	Files		

•  Compiled	object	files	have	mul(ple	sec(ons	and	a	symbol	table	
describing	their	entries:	
–  “Text”:	this	is	executable	code	
–  “Data”:	pre-allocated	variables	storage	
–  “Constants”:	read-only	data	
–  “Undefined”:	symbols	that	are	used	but	not	defined	
–  “Debug”:	debugger	informa(on	(e.g.	line	numbers)	

•  Sec(ons	can	be	inspected	with	the	“readelf”	command	

Ivan	GiroKo	-	igiroKo@ictp.it									
Abacus	Cinvestav,	13	Feb	2018	 Compiling,	Linking		&	Mixed	Languages	 11	



Ivan	GiroKo	-	igiroKo@ictp.it									
Abacus	Cinvestav,	13	Feb	2018	 Compiling,	Linking		&	Mixed	Languages	 12	

Symbols	in	Object	Files	
ig@hp83-inf-21> nm visibility.o  
0000000000000000 t add_abs 
000000000000002a T main 
                 U printf 
0000000000000000 r val1 
0000000000000004 R val2 
0000000000000000 d val3 
0000000000000004 D val4 
 



Sta(c	Libraries	
•  Sta(c	libraries	built	with	the	“ar”	command	are	
collec(ons	of	objects	with	a	global	symbol	table	

•  When	linking	to	a	sta(c	library,	object	code	is	copied	
into	the	resul(ng	executable	and	all	direct	addresses	
recomputed	(e.g.	for	“jumps”)	

•  Symbols	are	resolved	“from	lee	to	right”,	so	circular	
dependencies	require	to	list	libraries	mul(ple	(mes	or	
use	a	special	linker	flag	

•  When	linking	only	the	name	of	the	symbol	is	checked,	
not	whether	its	argument	list	matches	

Ivan	GiroKo	-	igiroKo@ictp.it									
Abacus	Cinvestav,	13	Feb	2018	 Compiling,	Linking		&	Mixed	Languages	 13	



Ivan	GiroKo	-	igiroKo@ictp.it									
Abacus	Cinvestav,	13	Feb	2018	 Compiling,	Linking		&	Mixed	Languages	 14	

#building static the library  
ig@hp83-inf-21 > ar -rcs libmy.a myfile*.o 
 
 
#brute force linking 
ig@hp83-inf-21 > gcc main.c ./libmy.a 
 
 
#Using -L (tells the compiler where look for libraries) 
ig@hp83-inf-21 > gcc main.c -L./ -lmy 
 
 
#Same above using gcc notation 
igi@hp83-inf-21 > gcc main.c \ 
> -Wl,--library-path=/scratch/igirotto/linking -Wl,-lmy  



Shared	Libraries	
•  Shared	libraries	are	more	like	executables	that	are	
missing	the	main()	func(on	

•  When	linking	to	a	shared	library,	a	marker	is	added	to	
load	the	library	by	its	“generic”	name	(soname)	and	
the	list	of	undefined	symbols	

•  When	resolving	a	symbol	(func(on)	from	shared	library	
all	addresses	have	to	be	recomputed	(relocated)	on	
the	fly.	

•  The	shared	linker	program	is	executed	first	and	then	
loads	the	executable	and	its	dependencies	

Ivan	GiroKo	-	igiroKo@ictp.it									
Abacus	Cinvestav,	13	Feb	2018	 Compiling,	Linking		&	Mixed	Languages	 15	



Ivan	GiroKo	-	igiroKo@ictp.it									
Abacus	Cinvestav,	13	Feb	2018	 Compiling,	Linking		&	Mixed	Languages	 16	

#building shared library  
ig@hp83-inf-21 > gcc -shared -o mylib.so swap.o 

#brute force linking 
ig@hp83-inf-21 > gcc main.c ./libmy.so 

#Using -L (tells the compiler where look for libraries) 
ig@hp83-inf-21 > gcc main.c -L./ -lmy 
ig@hp83-inf-21 > ldd a.out  
 linux-vdso.so.1 =>  (0x00007fffdbb6b000) 
 libmy.so => not found 
 /lib64/ld-linux-x86-64.so.2 (0x00007fa003cd1000) 

#Add a directory to the runtime library search 
pathigi@hp83-inf-21 > gcc main.c \ 
> -Wl,--rpath=/scratch/igirotto/linking -Wl,-lmy  



Using	LD_PRELOAD	
•  Using	the	LD_PRELOAD	environment	variable,	symbols	
from	a	shared	object	can	be	preloaded	into	the	global	
object	table	and	will	override	those	in	later	resolved	
shared	libraries	
–  replace	specific	func(ons	in	a	shared	library	

•  Example:	override	log()	with	a	faster	version:	

Ivan	GiroKo	-	igiroKo@ictp.it									
Abacus	Cinvestav,	13	Feb	2018	 Compiling,	Linking		&	Mixed	Languages	 17	

double log(double x) {  
 return my_log(x);  

} 

$gcc	-shared	-o	fasterlog.so	faster.c	-lmy_log	
$LD_PRELOAD=./fasterlog.so	./myprog-with	



Mixed	Linking	
•  Fully	sta(c	linking	is	a	bad	idea	with	GNU	libc;	it	
requires	matching	shared	objects	for	NSS	

•  Dynamic	linkage	of	add-on	libraries	requires	a	
compa(ble	version	to	be	installed	(e.g.	MKL)	

•  Sta(c	linkage	of	individual	libs	via	linker	flags	-Wl,-
Bsta(c,-lrw3,-Bdynamic	

•  can	be	combined	with	grouping,	example:		
–  gcc	[...]	-Wl,--start-group,-Bsta(c	-lmkl_gf_lp64	\	
-lmkl_sequen(al	-lmkl_core	-Wl,--end-group,-Bdynamic	

Ivan	GiroKo	-	igiroKo@ictp.it									
Abacus	Cinvestav,	13	Feb	2018	 Compiling,	Linking		&	Mixed	Languages	 18	



From	C	to	FORTRAN	
•  Basic	compila(on	principles	are	the	same	

–  preprocess,	compile,	assemble,	link	
•  In	Fortran,	symbols	are	case	insensi(ve	

–  most	compilers	translate	them	to	lower	case	
•  In	Fortran	symbol	names	may	be	modified	to	make	them	

different	from	C	symbols		(e.g.	append	one	or	more	
underscores)	

•  Fortran	entry	point	is	not	“main”	(no	arguments)	
PROGRAM	=>	MAIN__	(in	gfortran)	

•  C-like	main()	provided	as	startup	(to	store	args)	

Ivan	GiroKo	-	igiroKo@ictp.it									
Abacus	Cinvestav,	13	Feb	2018	 Compiling,	Linking		&	Mixed	Languages	 19	



Pre-Processing	in	FORTAN	
•  Pre-processing	is	mandatory	in	C/C++	
•  Pre-processing	is	op(onal	in	Fortran	
•  Fortran	pre-processing	enabled	implicitly	via	file	name:	
name.F,	name.F90,	name.FOR	

•  Legacy	Fortran	packages	oeen	use	/lib/cpp:	
–  /lib/cpp	-C	-P	-tradi(onal	-o	name.f	name.F	

•  -C	:	keep	comments	(may	be	legal	Fortran	code)	
•  -P	:	no	'#line'	markers	(not	legal	Fortran	syntax)	
•  -tradi(onal	:	don't	collapse	whitespace	(incompa(ble	with	fixed	
format	sources)	

Ivan	GiroKo	-	igiroKo@ictp.it									
Abacus	Cinvestav,	13	Feb	2018	 Compiling,	Linking		&	Mixed	Languages	 20	



Ivan	GiroKo	-	igiroKo@ictp.it									
Abacus	Cinvestav,	13	Feb	2018	 Compiling,	Linking		&	Mixed	Languages	 21	

Symbols	in	Object	Files	(FORTRAN	COMPILED)	
ig@hp83-inf-21> nm test.o  
000000000000006d t MAIN__ 
                 U 
_gfortran_set_args 
                 U 
_gfortran_set_options 
                 U 
_gfortran_st_write 
                 U 
_gfortran_st_write_done 
                 U 
_gfortran_transfer_character_write 
0000000000000000 T greet_ 
0000000000000078 T main 
0000000000000020 r options.1.1883 


