
Floating-Point Math and Accuracy

Latin American Introductory School on Parallel Programming
and Parallel Architecture for High-Performance Computing

Dr. Richard Berger

High-Performance Computing Group
College of Science and Technology

Temple University
Philadelphia, USA

richard.berger@temple.edu

mailto:richard.berger@temple.edu

Outline

Introduction
Errors in Scientific Computing
Importance of Floating-Point Math

Representing number in a computer
Recap: Integer numbers
Floating-point numbers

Properties of floating-point numbers

Strategies to avoid problems

Computer Lab

Outline

Introduction
Errors in Scientific Computing
Importance of Floating-Point Math

Representing number in a computer
Recap: Integer numbers
Floating-point numbers

Properties of floating-point numbers

Strategies to avoid problems

Computer Lab

Errors in Scientific Computing

Before a computation

I modeling errors due to neglecting properties or making assumptions

I data errors, due to imperfect empirical data

I results from previous computations from other (error-prone) numerical methods
can introduce errors

I programming errors, sloppy programming and invalid data conversions

I compilation errors, buggy compiler, too aggressive optimizations

During a computation

I approximating a continuous solution with a discrete solution introduces a
discretization error

I computers only offer a finite precision to represent real numbers. Any computation
using these approximate numbers leads to truncation and rounding errors.

Example: Earth’s surface area

Computing Earth’s surface using

A = 4πr2

introduces the following errors:

I Modelling Error: Earth is not a perfect
sphere

I Empirical Data: Earth’s radius is an
empirical number

I Truncation: the value of π is truncated

I Rounding: all resulting numbers are
rounded due to floating-point arithmetic

Importance of Floating-Point Math

I Understanding floating-point math and its limitations is essential for many HPC
applications in physics, chemistry, applied math or engineering.

I real numbers have unlimited accuracy

I floating-point numbers in a computer are an approximation with a limited precision
I using them is always a trade-off between speed and accuracy
I not knowing about floating-point effects can have devastating results. . .

The Patriot Missile Failure

I February 25, 1991 in Dharan, Saudi
Arabia (Gulf War)

I American Patriot Missile battery failure
led to 28 deaths, which is ultimately
attributable to poor handling of
rounding errors of floating-point
numbers.

I System’s time since boot was calculated
by multipling an internal clock with 1/10
to get the number of seconds

I After over 100 hours of operation, the
accumulated error had become large
enough that an incoming SCUD missle
could travel more than half a kilometer
without being treated as threat.

The Explosion of the Adriane 5

I 4 June 1996, maiden flight of the Ariane 5 launcher

I 40 seconds after launch, at an altitude of about 3700m, the
launcher veered off its flight path, broke up and exploded.

I An error in the software occured due to a data conversion of a
64-bit floating point to a 16-bit signed integer value. The value
of the floating-point was larger than what could be represented
in a 16-bit signed integer.

I After a decade of development costing $7 billion, the destroyed
rocket and its cargo were valued at $500 million

I Video: https://www.youtube.com/watch?v=gp_D8r-2hwk

https://www.youtube.com/watch?v=gp_D8r-2hwk

Outline

Introduction
Errors in Scientific Computing
Importance of Floating-Point Math

Representing number in a computer
Recap: Integer numbers
Floating-point numbers

Properties of floating-point numbers

Strategies to avoid problems

Computer Lab

Fundamental Data Types

Processors have two different modes of doing calculations:

I integer arithmetic

I floating-point arithmetic

The operands of these calculations have to be stored in binary form. Because of this there
are two groups of fundamental data types for numbers in a computer:

I integer data types

I floating-point data types

Recap: storing information in binary

with 1 bit, you can store 2 values

0, 1

Recap: storing information in binary

with 1 bit, you can store 2 values

0, 1

with 2 bit, you can store 4 values

00, 01, 10, 11

Recap: storing information in binary

with 1 bit, you can store 2 values

0, 1

with 2 bit, you can store 4 values

00, 01, 10, 11

with 3 bit, you can store 8 values

000, 001, 010, 011, 100, 101, 110, 111

Recap: storing information in binary

with 1 bit, you can store 2 values

0, 1

with 2 bit, you can store 4 values

00, 01, 10, 11

with 3 bit, you can store 8 values

000, 001, 010, 011, 100, 101, 110, 111

with 4 bit, you can store 16 values

0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111,
1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111

Storing information in binary

number of values represented by b bits = 2b

I 1 byte is 8 bits⇒ 28 = 256

I 2 bytes are 16 bits⇒ 216 = 65,536

I 4 bytes are 32 bits⇒ 232 = 4,294,967,296

I 8 bytes are 64 bits⇒ 264 = 18,446,744,073,709,551,616

Integer Data Types in C/C++1

char 8 bit (1 byte)
short int 16 bit (2 byte)
int 32 bit (4 bytes)
long int 64 bit (8 bytes)

I short int can be abbreviated as short

I long int can be abbreviated as long

I integers are by default signed, and can be made unsigned

1sizes only valid on Linux x86_64

char

01010100
7 0(bit index)

value (7 bits)sign

unsigned char

01010100
7 0(bit index)

value (8 bits)

int

01010100000000000000000000000000
31 30 0(bit index)

value (31 bits)sign

unsigned int

01010100000000000000000000000000
31 0(bit index)

value (32 bits)

Integer Types - Value Ranges

unsigned integer (with b bits)

[
0,2b−1

]
signed integer (with b bits, which means 1 sign bit and b−1 value bits)

[
−2b−1,2b−1−1

]

Integer Types - Value Ranges

char [−128,127]
short [−32768,32767]
int [−2147483648,2147483647]
long [−9223372036854775808,9223372036854775807]

signed char [−128,127]
signed short [−32768,32767]
signed int [−2147483648,2147483647]
signed long [−9223372036854775808,9223372036854775807]

unsigned char [0,255]
unsigned short [0,65535]
unsigned int [0,4294967295]
unsigned long [0,18446744073709551615]

Scientific Notation

I Floating-point representation is similar to the concept of scientific notation

I Numbers in scientific notation are scaled by a power of 10, so that it lies with a range
between 1 and 10.

123456789 = 1.23456789 ·108

or more generally:

s ·10e

where s is the significand (or sometimes called mantissa), and e is the exponent.

Floating-point numbers

s ·2e

I a floating-point number consists of the following parts:
I a signed significand (sometimes also called mantissa) in base 2 of fixed length, which

determines its precision
I a signed integer exponent of fixed length which modifies its magnitude

I the value of a floating-point number is its significand multiplied by its base raised to the
power of the exponent

Floating-point numbers

Example:

4210 = 1010102 = 1.010102 ·25

Floating-point formats

I in general, the radix point is assumed to be somewhere within the significand

I the name floating-point originates from the fact that the value is equivalent to shifting
the radix point from its implied position by a number of places equal to the value of the
exponent

I the amount of binary digits used for the significand and the exponent are defined by
their binary format.

I over the years many different formats have been used, however, since the 1990s the
most commonly used representations are the ones defined in the IEEE 754 Standard.
The current version of this standard is IEEE 754-2008.

IEEE 754 Floating-point numbers

±1.f ·2±e

The IEEE 754-1985 standard defines the following floating-point basic formats:

Single precision (binary32): 8-bit exponent, 23-bit fraction, 24-bit precision

Double precision (binary64) 11-bit exponent, 52-bit fraction, 53-bit precision

I Each format consists of a sign bit, exponent and fraction part
I one additional bit of precision in the significand is gained through normalization.

Numbers are normalized to be in the form 1.f , where f is the fractional portion of the
singificand. Because of this, the leading 1 must not be stored.

I the exponent has an offset and is also used to encode special numbers like ±0, ±∞ or
NaN (not a number).

IEEE 754 Floating-point numbers

I exponents are stored with an offset

I single-precision: estored = e+127

I double-precision: estored = e+1023

Name Value Sign (Stored) Exponent Significand
positive zero +0 0 0 0
negative zero -0 1 0 0
positive subnormals +0.f 0 0 non-zero
negative subnormals -0.f 1 0 non-zero
positive normals +1.f 0 1 . . .emax −1 non-zero
negative normals -1.f 1 1 . . .emax −1 non-zero
positive infinity +∞ 0 emax 0
negative infinity −∞ 1 emax 0
not a number NaN any emax non-zero

float (binary32)

00000000000000000000010001111100
31 30 2323 0(bit index)

exponent (8 bits) fraction (23 bits)sign

double (binary64)

63 51 0(bit index)

exponent fraction (52 bits)sign

What the IEEE 754 Standard defines

I Arithmetic operations (add, subtract, multiply, divide, square root, fused multiply-add,
remainder)

I Conversions between formats

I Encodings of special values

I This ensures portability of compute kernels

Floating-Point Types

float 32 bit (4 bytes) single precision ≈ 7 decimal digits
double 64 bit (8 bytes) double precision ≈ 15 decimal digits

I float numbers are between 10−38 to 1038

I double numbers are between 10−308 to 10308

Outline

Introduction
Errors in Scientific Computing
Importance of Floating-Point Math

Representing number in a computer
Recap: Integer numbers
Floating-point numbers

Properties of floating-point numbers

Strategies to avoid problems

Computer Lab

How many floating-point number are between 0 and 1?

float

I 8 bits exponents

I 0 is represented with exponent -127

I 126 negative exponents, each has 223 unique numbers

I 1,056,964,608

I +1 for one

I +1 for zero

I 1,056,964,610
I total available numbers in 32bit: 232 = 4,294,967,296

Floating-Point Numbers between 0.0 and 1.0

25%

75%

About 25% of all numbers in a FP number are between 0.0 and 1.0

Floating-Point Numbers between -1.0 and 1.0

50%50%

That also means, about 50% of all numbers in a FP number are between -1.0 and 1.0

Density of Floating-Point numbers

I since the same number of bits is used for the fraction part of a FP number, the
exponent determines the representable number density

I e.g. in a single-precision floating-point number there are 8,388,606 numbers between
1.0 and 2.0, but only 16,382 between 1023.0 and 1024.0

I ⇒ accuracy depends on the magnitude
I ⇒ all numbers beyond a threshold are even

I single-precision: all numbers beyond 224 are even
I double-precision: all numbers beyond 253 are even

Unit of Last Position (ulp)
The spacing between two neighboring floating-point numbers. i.e. the value the least
significant digit of the significand represents if it is 1.

Example: exp(100)

exp(100) = 2.6881171418161356 ·1043

Example: exp(100)

exp(100) = 2.6881171418161356 ·1043

number if we take this literally
26,881,171,418,161,356,000,000,000,000,000,000,000,000,000

actual value stored
26,881,171,418,161,356,094,253,400,435,962,903,554,686,976

correct value
26,881,171,418,161,354,484,126,255,515,800,135,873,611,118

Example: exp(100)

exp(100) = 2.6881171418161356 ·1043

number if we take this literally
26,881,171,418,161,356,000,000,000,000,000,000,000,000,000

actual value stored
26,881,171,418,161,356,094,253,400,435,962,903,554,686,976

correct value
26,881,171,418,161,354,484,126,255,515,800,135,873,611,118

Example: exp(100)

exp(100) = 2.6881171418161356 ·1043

number if we take this literally
26,881,171,418,161,356,000,000,000,000,000,000,000,000,000

actual value stored
26,881,171,418,161,356,094,253,400,435,962,903,554,686,976

correct value
26,881,171,418,161,354,484,126,255,515,800,135,873,611,118

Example: exp(100) - What happened?

We want to store x = e100

x=26,881,171,418,161,354,484,126,255,515,800,135,873,611,118

However, the closest (double-precision) floating-point numbers are:
a=26,881,171,418,161,351,142,493,243,294,441,803,958,190,080
b=26,881,171,418,161,356,094,253,400,435,962,903,554,686,976

x

a b

ulp

I x was rounded to the closest floating-point number, which is b

I this rounding introduces a relative error |e| ≤ 1
2 ulps

How bad could it be?

I 1.6x the diameter of our galaxy
measured in micrometers

I the error is so high because in
this range of floats 1 ulp is
292 ≈ 4.95 ·1027

Milky Way Galaxy (�≈ 100,000 light years)

Rounding

I Floating-point math can result in not representable numbers

I In this case the floating-point unit has to perform rounding, which follows the rules
specified in IEEE 754

I in order to perform these rounding decisions, FPUs internally work by using a few bit
more precision

I the resulting relative error |e| should be ≤ 1
2 ulps

float f = 1.0f/3.0f;

double d = 1.0/100.0;

Warning:

I Be aware that while your code might compile, the numbers you write in your source
code might not be representable!

float great_scientific_constant = 33554433.0f;

int main() {
printf("The value is %f!", great_scientific_constant);
// this will output "The value is 33554432.0!"
return 0;

}

Floating-Point Arithmetic

I FP math is commutative, but not associative!

(x + y)+ z 6= x +(y + z)

Example

d = 1.0 + (1.5e38 + (-1.5e38));
printf("%f", d); // prints 1.0

d = (1.0 + 1.5e38) + (-1.5e38);
printf("%f", d); // prints 0.0

Addition

a+b = sa ·2ea× sb ·2eb

= (sa ·2ea−eb + sb) ·2eb ea ≤ eb

I determine which operand has smaller exponent

I shift operand with smallest exponent until it matches the other exponent

I perform addition

I normalize number

I round and truncate

Notes on FP Subtraction

I Subtraction of two floating-point numbers of the same sign and similar magnitude
(same exponent) will always be representable

I leading bits in fraction cancel

I ⇒ results have less ’valid’ digits

I ⇒ (potential) loss of information

I catastrophic cancellation happens when operands are subject to rounding errors.
subtraction may only leave parts of a FP number which are contaminated with
previous errors.

I ⇒ Careful when using result in multiplication, since result is tainted by low accuracy

Multiplication

a×b = sa ·2ea× sb ·2eb

= (sa× sb) ·2(ea+eb)

I after significands are multiplied, the result has to be normalized

I in general, the resulting number will have more bits than can be stored

I the resulting number is truncated and rounded to the closest representable value

Comparison

I since floating-point results are usually inexact, comparing for equality is dangerous
I E.g., don’t use FP as loop index

I Exact comparison only really works if you know your results are bitwise identical. E.g.
to avoid division by zero

I it’s better to compare against expected error

Listing 1: Program to determine machine epsilon

float x = 1.0f;

while((1.0f + x) != 1.0f) {
x = 0.5 * x;

}

Compiler Optimizations

I compilers will try to change your code to improve performance

I however, some of these transformations can affect floating-point math

I they could rearrange instructions, which changes the order of how numbers are
computed (not commutative)

I be careful with -ffast-math and -funsafe-math-optimizations, as they
may violate IEEE specs

I e.g., disabling subnormals

Floating-Point Exceptions

Exceptions

I invalid (0/0)

I division by zero

I underflow

I overflow

I inexact (most operations)

I can be detected at runtime

I by enabling FP exception traps, they can help you to intentionally crash your program
in order to determine the source of a FP problem

Outline

Introduction
Errors in Scientific Computing
Importance of Floating-Point Math

Representing number in a computer
Recap: Integer numbers
Floating-point numbers

Properties of floating-point numbers

Strategies to avoid problems

Computer Lab

Summation

I Avoid summing numbers of different magnitudes

I Contributions of numbers too small for a given magnitude are discarded due to
truncation

Strategies

I sort numbers first and sum in ascending order

I sum in blocks (pairs) and then sum the sums

I Kahan summation, which uses a compensation variable to carry over errors

I Use (scaled) integers, if number range allows it

I Use higher precision numbers for sum (float→ double, double→ long double or
binary128)

Note
summing numbers in parallel may give different results depending on parallelization

Data Conversions: integer→ floating-point

Table: Exact conversion from integer to floating-point (x86_64) without truncation

float (24bit significant) double (53bit) binary128 (113bit)
char OK OK OK
short OK OK OK

int
[
−(224),224

]
OK OK

long
[
−(224),224

] [
−(253),253

]
OK

unsigned char OK OK OK
unsigned short OK OK OK

unsigned int
[
0,224

]
OK OK

unsigned long
[
0,224

] [
0,253

]
OK

WARNING
These value ranges can be different on computer architectures other than x86_64!

Data Conversions: floating-point→ integer

Table: Valid conversion ranges from floating-point to integer (x86_64) without under/overflow

float (24bit significant) double (53bit) binary128 (113bit)
char [−27,27−1] [−27,27−1] [−27,27−1]
short [−215,215−1] [−215,215−1] [−215,215−1]

int
[
−(231),231−1

] [
−(231),231−1

] [
−(231),231−1

]
long

[
−(263),263−1

] [
−(263),263−1

] [
−(263),263−1

]
char [0,28−1] [0,28−1] [0,28−1]
short [0,216−1] [0,216−1] [−216,215−1]

int
[
0,232−1

] [
0,232−1

] [
−(231),231−1

]
long

[
0,264−1

] [
0,264−1

] [
−(263),263−1

]
WARNING
These value ranges can be different on computer architectures other than x86_64!

Use library functions over own implementations

They are usually much better tested than your own code and have taken great care of
special numerical cases. Look at newer language standards for better compliance with
IEEE 754-2008 (e.g., C++11).

log1pf(x), log1p(x), log1pl(x)
A single-, double- and extended-precision variant of log(1+x), which computes this
function in a way which remains accurate even if x goes towards 0.

expm1(x)
Compute e raised to the power of x minus 1.0. This function is more accurate than exp(x) -
1.0 when x is close to zero.

Use higher precision numbers when accuracy matters

single-precision
If you are comfortable with single precision most of the time, use double-precision for critical
functions and scale the final result back to single-precision.

double-precision
For double-precision you can take advantage of the 80-bit extended floating-point format
(long double). If that isn’t enough, you can go up to 128bit floats which are still
supported by hardware.

If that all fails
Use a higher-precision format such as the ones provided by MPFR.

Extended Precision, float128
x86 extended precision format (80bit): 15-bit exponent, 63-bit fraction, 64-bit precision
quadruple precision (binary128) 15-bit exponent, 112-bit fraction, 113-bit precision

long double (x86 extended precision format)

79 63 0(bit index)

exponent fraction (63 bits)sign
integer part

float128

127 111 0(bit index)

exponent fraction (112 bits)sign

MPFR Library

I C-library for multiple-precision floating-point computations with correct rounding

I contains tuned and tested implementations of many mathematical functions and has
well-defined semantics

I enables arbitrary precision with similar semantics as IEEE 754

I controllable accurary, at the expense of speed

Use special purpose formats

I Applications for financial and tax purposes need to emulate decimal rounding exactly.
The IEEE 754-2008 standard also defines floating-point data types decimal32,
decimal64, decimal128 which exhibit this behaviour. There is experimental
support for these in C++11.

I some research fields, such as machine learning, do not need a high degree of
precision and only need values in the range of 0-1. For these applications
half-precision (binary16) numbers, defined in IEEE 754-2008, have become popular.
They are especially well supported on GPUs. However, extra care has to be taken to
ensure the available range is good enough.

Outline

Introduction
Errors in Scientific Computing
Importance of Floating-Point Math

Representing number in a computer
Recap: Integer numbers
Floating-point numbers

Properties of floating-point numbers

Strategies to avoid problems

Computer Lab

Computer Lab Instructions

1. Connect to ABACUS

ssh USERNAME@s0.edomex.cinvestav.mx

2. Copy floating_point.tar.gz and extract in your home directory

cp /lustre/scratch/user5/examples/floating_point.tar.gz $HOME
tar xvzf floating_point.tar.gz

3. Work through examples. Each of them showcases some of the properties we
discussed. Follow the instruction in the README and source code.

	Introduction
	Errors in Scientific Computing
	Importance of Floating-Point Math

	Representing number in a computer
	Recap: Integer numbers
	Floating-point numbers

	Properties of floating-point numbers
	Strategies to avoid problems
	Computer Lab

