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Serial Programming

A problem is broken into a discrete series of
instructions.

Instructions are executed one after another.

Only one instruction may execute at any
moment in time.

instructions
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Concurrency

The first step in developing a parallel algorithm is to decompose the problem into tasks that can
be executed concurrently

problem instructions

~ il | -0
~ il | 1-E=0
-~ | 1-=3
~ il | -0

A problem is broken into discrete parts that can be solved concurrently

* Each part is further broken down to a series of instructions

* |nstructions from each part execute simultaneously on different processors
* An overall control / coordination mechanism is employed
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What is a Parallel Program
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Fundamental Steps of Parallel Design

* |dentify portions of the work that can be performed
concurrently

 Mapping the concurrent pieces of work onto multiple
processes running in parallel

* Distributing the input, output and intermediate data
associated within the program

* Managing accesses to data shared by multiple processors

* Synchronizing the processors at various stages of the
parallel program execution
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Type of Parallelism

* Functional (or task) parallelism:
different people are performing
different task at the same time

* Data Parallelism:
different people are performing the
same task, but on different
equivalent and independent objects
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Process Interactions

* The effective speed-up obtained by the parallelization depend by the
amount of overhead we introduce making the algorithm parallel

* There are mainly two key sources of overhead:
1. Time spent in inter-process interactions (communication)
2. Time some process may spent being idle (synchronization)
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Barrier and Synchronization
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Limitations of Parallel Computing

Fraction of serial code limits parallel speedup

Degree to which tasks/data can be subdivided
is limit to concurrency and parallel execution

. ‘ &
Load imbalance: iﬁ o o
. o
* parallel tasks have a different amount of work f.i' &

* CPUs are partially idle &
* redistributing work helps but has limitations
 communication and synchronization overhead ® @
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Shared Resources

* In parallel programming, developers must manage
exclusive access to shared resources

e Resources are in different forms:

— concurrent read/write (including parallel write) to
shared memory locations

— concurrent read/write (including parallel write) to
shared devices

— a message that must be send and received
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Thread 1 Thread 2
load a load a
Program add a 1 add a 1
store a store a
Private 11 11
data ¥ T
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Parallelism - 101

e there are two main reasons to write a parallel
program:
e access to larger amount of memory (aggregated, going bigger)
* reduce time to solution (going faster)



The Abdus Salam
) International Centre
(CTP for Theoretical Physics

Scalable Programming

|
u_l Memory Dimms ‘
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Granularity

* Granularity is determined by the decomposition level
(number of task) on which we want divide the problem

* The degree to which task/data can be subdivided is limit to
concurrency and parallel execution

* Parallelization has to become “topology aware”

= coarse grain and fine grained parallelization has to be mapped
to the topology to reduce memory and I/O contention

" make your code modularized to enhance different levels of
granularity and consequently to become more “platform
adaptable”
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Static Data Partitioning

The simplest data decomposition schemes for dense matrices are
1-D block distribution schemes.

row-wise distribution column-wise distribution
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Block Array Distribution Schemes

Block distribution schemes can be generalized to higher dimensions as well.

Po| P1| Ps| Ps| Py| Ps| Ps| P

(a) (b)

Degree to which tasks/data can be subdivided is limit to concurrency and parallel execution!!
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1D Distribution of a 3D domain

\

A 4
\

i\

PO

P1

P2

P3




The Abdus Salam
International Centre
(CTP for Theoretical Physics

Distributed Data Vs Replicated Data

* Replicated data distribution is useful if it helps to
reduce the communication among process at the
cost of bounding scalability

* Distributed data is the ideal data distribution but
not always applicable for all data-sets

* Usually complex application are a mix of those
techniques => distribute large data sets; replicate
small data



The Abdus Salam
International Centre
(CTP for Theoretical Physics

Global Vs Local Indexes

* In sequential code you always refer to global indexes

 With distributed data you must handle the distinction
between global and local indexes (and possibly
implementing utilities for transparent conversion)

Local Idx 1/ 2|3 123 123

Global Idx 1/ 2|3 4 5|6 789
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Collaterals to Domain Decomposition /1

1{0[O0{..
0Of1]0¢{...

1 2 3 4 5 6 7 8 1 2

Are all the domain’s dimensions
always multiple of the number
of tasks/processes we are
willing to use? 12
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Again on Domain Decomposition

sub-domain boundaries

ilj+1

'11.‘ ili i+1j
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call MPI BCAST( v )
P, (root) P,
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call evolve( dtfact )
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call MPI_Gather( ..., ..., ...)
P, (root) P, P,
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Replicated data

e Compute domain (and workload) distribution
among processes

* Master-slaves: P, drives all processes

* Large amount of data communication

— at each step P, distribute data to all processes and
collect the contribution of each process

* Problem size scaling limited in memory
capacity
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Collaterals to Domain Decomposition /2

sub-domain boundaries
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The Transport Code - Parallel Version
I:)0 I:>1 IDZ P3

call evolve( dtfact )
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Data exchange among processes
Po/\m P, P;
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proc_up = mod(proc_me + 1, nprocs)
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Sendrecv

The easiest way to send and receive data without warring about deadlocks

Sender side
Fortran: - AL <
CALL MPI_SENDRECV(sndbuf, snd_size, snd_type, dest_id, tag,
rcvbuf, rcv_size, rcv_type, sour_id, tag, comm, status, ierr)
\ . _J
I 48

Receiver side

CALL MPI_SENDRECV
sour_id dest_id

> >
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Distributed Data

e Global and Local Indexes

* Ghost Cells Exchange Between Processes

— Compute Neighbor Processes

* Parallel Output
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At every step all the processes receive a block of columns of the Matrix B

PO

P1

P2

P3
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MPI Allgather

int MPI Allgather (const void *sendbuf, int sendcount, MPI Datatype sendtype,
void *recvbuf, int recvcount, MPI Datatype recvtype, MPI Comm comm)

sendbuf starting address of send buffer (choice)

sendcount number of elements in send buffer (integer)

sendtype data type of send buffer elements (handle)

recvcount number of elements received from any process (integer)
recvtype data type of receive buffer elements (handle)

comm communicator (handle)
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Master/Slave

W1

W2

W3
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Task Farming

 Many independent programs (tasks) running at once
— each task can be serial or parallel
— “independent” means they don’ t communicate directly
— Processes possibly driven by the mpirun framework

[igirotto@Rlocalhost]$ more my shell wrapper.sh
#!/bin/bash

#example for the OpenMPI implementation

./prog.x --input input ${OMPI_ COMM WORLD RANK} .dat

[igirotto@Rlocalhost]$ mpirun -np 400 ./my shell wrapper.sh
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Easy Parallel Computing

* Farming, embarrassingly parallel

— Executing multiple instances on the same program with different
inputs/initial cond.

— Reading large binary files by splitting the workload among processes
— Searching elements on large data-sets

— Other parallel execution of embarrassingly parallel problem (no
communication among tasks)

* Ensemble simulations (weather forecast)
* Parameter space (find the best wing shape)
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Parallel I/0O

|/O Bandwidth
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Parallel I/0O

P

/O Bandwidth

P,

/O Bandwidth
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Parallel I/0O

P P,

MPI 1I/O & Parallel 1/0 Libraries (Hdf5, Netcdf, etc...)

Parallel File System

= a = Ef_L
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Make Use Freely Available Parallel Libraries

e Scalable Parallel Random Number Generators

e Para

* Para
(dea

e Para
e Para

Library (SPRNG)

lel Linear Algebra (ScaLAPACK)

lel Library for Solution of Finite Elements
i)
lel Library for FFT (FFTW)

lel Linear Solver for Sparce Matrices (PETSc)
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Programming Parallel Paradigms

* Are the tools we use to express the parallelism for on
a given architecture (see also SPMD, SIMD, etc...)

* They differ in how programmers can manage and

define key features like:
, <A NVIDIA.
CUDA.

— parallel regions

— concurrency

— process communication
— synchronism
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Fundamental Tools of Parallel Programming
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Phases of an MPI Program

1. Startup
— Parse arguments (mpirun may add some!)
— ldentify parallel environment and rank of process
— Read and distribute all data

2. Execution

— Proceed to subroutine with parallel work (can be same of
different for all parallel tasks)

3. Cleanup

CAUTION: this sequence may be run only once
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program bcast
implicit none
include "mpif.h"

integer :: myrank, ncpus, imesg, ierr
integer, parameter :: comm = MPI_COMM_WORLD

call MPI_INIT(ierr)
call MPI_COMM_RANK(comm, myrank, ierr)
call MPI_COMM _SIZE(comm, ncpus, ierr)

imesg = myrank
print *, "Before Bcast operation I'm ", myrank, &
"and my message content is ", imesg
call MPI_BCAST(imesg, 1, MPI_INTEGER, O, comm, ierr)

print *, "After Bcast operation I'm ", myrank, &
"and my message content is ", imesg

call MPI_FINALIZE(ierr)

end program bcast
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program bcast
implicit none
include "mpif.h"

integer :: myrank, ncpus, imesg, ierr
integer, parameter :: comm = MPI_COMM_WORLD

P,

myrank = ??
ncpus = ?7?
imesg = ??

ierr =77

comm = MPI_C...
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program bcast
PO I:)1

implicit none

include "mpif.h" myrank = ?? myrank = ??
ncpus = ?7? ncpus = ?7?
integer :: myrank, ncpus, imesg, ierr : — 99 : - 99
integer, parameter :: comm = MPI_COMM_WORLD !mesg C !mesg "
ierr = MPI_SUC... ierr = MPI_SUC...
call MPI_INIT(ierr) comm = MPI_C... comm = MPI_C...

P, P

myrank = ?? myrank = ??
ncpus = ?7? ncpus = ??
imesg = ?? imesg = ?7?

ierr = MP1_SUC... ierr = MPI_SUC...
comm = MPI_C... comm = MPI_C...
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program bcast
P, P,

implicit none

include "mpif.h" myrank = ?? myrank = ??
) ncpus =4 ncpus =4
integer :: myrank, ncpus, imesg, ierr : — 99 : Y}
integer, parameter :: comm = MPI_COMM_WORLD !mesg C !mesg -
ierr = MPI_SUC... ierr = MPI_SUC...
call MPI_INIT(ierr) comm = MPI_C... comm = MPI_C...
call MPI_COMM _SIZE(comm, ncpus, ierr)
call MPI_COMM_RANK(comm, myrank, ierr) P P
2 3
myrank = ?? myrank = ??
ncpus =4 ncpus =4
imesg = ?? imesg = ?7?
ierr = MP1_SUC... ierr = MPI_SUC...
comm = MPI_C... comm = MPI_C...
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program bcast
P, P,

implicit none

include "mpif.h" myrank = 0 myrank = 1
) ncpus =4 ncpus =4
integer :: myrank, ncpus, imesg, ierr : — 99 : - 99
integer, parameter :: comm = MPI_COMM_WORLD !mesg C !mesg "
ierr = MPI_SUC... ierr = MPI_SUC...
call MPI_INIT(ierr) comm = MPI_C... comm = MPI_C...
call MPI_COMM _SIZE(comm, ncpus, ierr)
call MPI_COMM_RANK(comm, myrank, ierr) P P
2 3
myrank = 2 myrank = 3
ncpus =4 ncpus =4
imesg = ?? imesg = ?7?
ierr = MP1_SUC... ierr = MPI_SUC...
comm = MPI_C... comm = MPI_C...
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program bcast
implicit none
include "mpif.h"

integer :: myrank, ncpus, imesg, ierr
integer, parameter :: comm = MPI_COMM_WORLD

call MPI_INIT(ierr)
call MPI_COMM_RANK(comm, myrank, ierr)
call MPI_COMM _SIZE(comm, ncpus, ierr)

imesg = myrank
print *, "Before Bcast operation I'm ", myrank, &
"and my message content is ", imesg

P,

myrank =0
ncpus =4

imesg =0

ierr = MP1_SUC...
comm = MPI_C...

P,

myrank = 2
ncpus =4

imesg =2

ierr = MPI_SUC...
comm = MPI_C...

myrank =1
ncpus =4

imesg =1

ierr = MP1_SUC...
comm = MPI_C...

P

myrank = 3
ncpus =4

imesg =3

ierr = MPI_SUC...
comm = MPI_C...
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program bcast
PO I:)1

implicit none

include "mpif.h" myrank =0 myrank =1
) ncpus =4 ncpus =4
integer :: myrank, ncpus, imesg, ierr : _ : —
integer, parameter :: comm = MPI_COMM_WORLD !mesg =0 !mesg =1
ierr = MP1_SUC... ierr = MP1_SUC...
call MPI_INIT(ierr) comm = MPI_C... mm = MPI
call MPI_COMM_RANK(comm, myrank, ierr) - co (G
call MPI_COMM _SIZE(comm, ncpus, ierr)
imesg = myrank P P
print *, "Before Bcast operation I'm ", myrank, & 2 3
"and my message content is ", imesg
. ] myrank = 2 myrank = 3
call MPI_BCAST(imesg, 1, MPI_INTEGER, 0, comm, ierr) ncpus = 4 ncpus = 4
imesg =2 imesg = 3
ierr = MP1_SUC... ierr = MPI_SUC...
comm = MPI_C... comm = MPI_C...



The Abdus Salam

{CTP) International Centre

for Theoretical Physics

call MPl1_BCAST( imesg, 1, MPI_INTEGER, O, comm, ierr)

P, P, P, P,
myrank = 0 myrank =1 myrank = 2 myrank = 3
ncpus =4 ncpus =4 ncpus = 4 ncpus =4

imesg =0 imesg =1 imesg =2 imesg =3

ierr = MPI_SUC... ierr = MPI_SUC... ierr = MPI_SUC... ierr = MPI_SUC...
comm = MPI_C... comm = MPI_C... comm = MPI_C... comm = MPI_C...

st
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call MPl1_BCAST( imesg, 1, MPI_INTEGER, O, comm, ierr)

P, P, P, P,
myrank = 0 myrank =1 myrank = 2 myrank = 3
ncpus =4 ncpus =4 ncpus = 4 ncpus =4

imesg =0 imesg =0 imesg =0 imesg =0

ierr = MPI_SUC... ierr = MPI_SUC... ierr = MPI_SUC... ierr = MPI_SUC...
comm = MPI_C... comm = MPI_C... comm = MPI_C... comm = MPI_C...
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program bcast
PO I:)1

implicit none

include "mpif.h" myrank =0 myrank =1
) ncpus =4 ncpus =4
integer :: myrank, ncpus, imesg, ierr . _ - _
integer, parameter :: comm = MPI_COMM_WORLD !mesg =0 !mesg =0
ierr = MPI_SUC... ierr = MPI_SUC...
call MPI_INIT(ierr) comm = MPI_C... mm = MPI
call MPI_COMM_RANK(comm, myrank, ierr) - co (G
call MPI_COMM _SIZE(comm, ncpus, ierr)
imesg = myrank P P
print *, "Before Bcast operation I'm ", myrank, & 2 3
"and my message content is ", imesg
_ _ myrank = 2 myrank = 3
call MPI_BCAST(imesg, 1, MPI_INTEGER, O, comm, ierr) ncpus = 4 ncpus = 4
print *, "After Bcast operation I'm ", myrank, & imesg =0 imesg =0
" and my message content is *, imesg ierr = MPI_SUC... ierr = MPI_SUC...
comm = MPI_C... comm = MPI_C...
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program bcast
PO I:)1

implicit none

include "mpif.h" myrank =0 myrank =1
) ncpus =4 ncpus =4
integer :: myrank, ncpus, imesg, ierr . _ - _
integer, parameter :: comm = MPI_COMM_WORLD !mesg =0 !mesg =0
ierr = MP1_SUC... ierr = MP1_SUC...
call MPI_INIT(ierr) comm = MPI C mm = MPI
call MPI_COMM_RANK(comm, myrank, ierr) - co (G
call MPI_COMM _SIZE(comm, ncpus, ierr)
imesg = myrank P P
print *, "Before Bcast operation I'm ", myrank, & 2 3
"and my message content is ", imesg
_ _ myrank = 2 myrank = 3
call MPI_BCAST(imesg, 1, MPI_INTEGER, O, comm, ierr) ncpus = 4 ncpus = 4
print *, "After Bcast operation I'm ", myrank, & imesg =0 imesg =0
" and my message content is ", imesg ierr = MPI_SUC... ierr = MPI_SUC...
call MP1_FINALIZE(ierr) comm = MPI_C... comm = MPI_C...
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program bcast
implicit none
include "mpif.h"

integer :: myrank, ncpus, imesg, ierr
integer, parameter :: comm = MPI_COMM_WORLD

call MPI_INIT(ierr)
call MPI_COMM_RANK(comm, myrank, ierr)
call MPI_COMM_SIZE(comm, ncpus, ierr)

imesg = myrank P
print *, "Before Bcast operation I'm ", myrank, & 2
"and my message content is ", imesg
' . _ myrank = 2
call MPI_BCAST(imesg, 1, MPI_INTEGER, O, comm, ierr) ncpus = 4
print *, "After Bcast operation I'm ", myrank, & imesg =0
"and my message content is ", imesg ierr = MPI SUCC
call MP1_FINALIZE(ierr) comm = MPI_C...

end program bcast
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Workload Management: system level, High-throughput

Python: Ensemble simulations, workflows

MPI: Domain partition

OpenMP: Node Level shared mem

CUDA/OpenCL/OpenAcc:
floating point accelerators
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