The Abdus Salam
International Centre
(CTP for Theoretical Physics

Overview of Common
Strategies for Parallelization

Ivan Girotto — igirotto@ictp.it
International Centre for Theoretical Physics (ICTP)

The Abdus Salam

(CTP) International Centre

for Theoretical Physics

Serial Programming

A problem is broken into a discrete series of
instructions.

Instructions are executed one after another.

Only one instruction may execute at any
moment in time.

instructions

N 3 2 t1

Program

The Abdus Salam
International Centre
(:CTP) for Theoretical Physics

o

Parallel Programming

()

communication

The Abdus Salam

(CTP) International Centre

for Theoretical Physics

Concurrency

The first step in developing a parallel algorithm is to decompose the problem into tasks that can
be executed concurrently

problem instructions

~ il | -0
~ il | 1-E=0
-~ | 1-=3
~ il | -0

A problem is broken into discrete parts that can be solved concurrently

* Each part is further broken down to a series of instructions

* |nstructions from each part execute simultaneously on different processors
* An overall control / coordination mechanism is employed

The Abdus Salam

(CTP) International Centre

for Theoretical Physics

What is a Parallel Program

0 (init) 1 (init)

A A

Read and Distribute Data < » Read and Distribute Data
comm.
A A
»| Compute on Sub Computeon Sub |
Domain A Domain B
Reduce data Reduce data
update Sub Domain h g update Sub Domain
comm.

l l
D D

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Fundamental Steps of Parallel Design

* |dentify portions of the work that can be performed
concurrently

 Mapping the concurrent pieces of work onto multiple
processes running in parallel

* Distributing the input, output and intermediate data
associated within the program

* Managing accesses to data shared by multiple processors

* Synchronizing the processors at various stages of the
parallel program execution

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Type of Parallelism

* Functional (or task) parallelism:
different people are performing
different task at the same time

* Data Parallelism:
different people are performing the
same task, but on different
equivalent and independent objects

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Process Interactions

* The effective speed-up obtained by the parallelization depend by the
amount of overhead we introduce making the algorithm parallel

* There are mainly two key sources of overhead:
1. Time spent in inter-process interactions (communication)
2. Time some process may spent being idle (synchronization)

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Barrier and Synchronization

k?é&’/“

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Limitations of Parallel Computing

Fraction of serial code limits parallel speedup

Degree to which tasks/data can be subdivided
is limit to concurrency and parallel execution

. ‘ &
Load imbalance: iﬁ o o
. o
* parallel tasks have a different amount of work f.i' &

* CPUs are partially idle &
* redistributing work helps but has limitations
 communication and synchronization overhead ® @

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Shared Resources

* In parallel programming, developers must manage
exclusive access to shared resources

e Resources are in different forms:

— concurrent read/write (including parallel write) to
shared memory locations

— concurrent read/write (including parallel write) to
shared devices

— a message that must be send and received

The Abdus Salam
> International Centre
(CTP for Theoretical Physics

Thread 1 Thread 2
load a load a
Program add a 1 add a 1
store a store a
Private 11 11
data ¥ T
111
Shared
data

The Abdus Salam
) International Centre
(CTP for Theoretical Physics

Parallelism - 101

e there are two main reasons to write a parallel
program:
e access to larger amount of memory (aggregated, going bigger)
* reduce time to solution (going faster)

The Abdus Salam
) International Centre
(CTP for Theoretical Physics

Scalable Programming

|
u_l Memory Dimms ‘

The Abdus Salam
International Centre

for Theoretical Physics

o | 1|2 fs |5 |l e e 20a |45 || o oo |10] Pt et o | NI o e e e e EED oo || B I e e e e [e A A A o 8 e o e | IS e
(S—_= == (S-_ = = (S—_=
Sharea Shred St St Shereats Shareats Shred 13 Sharoa e Storeo 3 Shrea s Shrea s
— r— — — — — r— — - —
it
. —— —— ——
Memory Dimms Memory Dimms | Memory Dimms. Memory Dimms. Memory Dimms. Memory Dimms Memory Dimms Memory Dimms. Memory Dimms. Memory Dimms. | Memory Dimms.
of1lz2f3]a]s QPl 8 e |wo|n 23 |4a]s QP gfla[1w0]n 2|3 |4a]s QPI o1 fl2f3]4|s QP 8 fs |1wo]n of1z2]3|4]s QPL el7|8]a|wo|n o 2345 QPL 6 8o |wo|n
S = —_ — =
Sharod 13] Sharod 13 Staa 15 Staa 5 Sroats : r Shaod 15 Shaod 15 C ' Sareats r e Sareats Shrod s Sharod s
—4 — —5 — —4 — = —5 —4
Memory Dimms Memory Dimms Memory Dimms Memory Dimms Memory Dimms Memory Dimms - | Memory Dimms Memory Dimms Memory Dimms Memory Dimms
of1lz2fs]ae]s QPl 8o w0|n 2|3 |a]s QPl 8 fl9 [1w0]n 2|3 |a]s QPl 6l 7efe 101 || o1 f2]3|4]s QP! 8o w0]n of1f2]3fa]s QPl el7 e |wofn 0 HERERE 6 8o o]
— —_ z — —
Shrea 13 Shred 13 Shaea 3 Sharea 3 Shreats Shreats m Sharea 13 Shared 13 Staea s Staeas Shrea s Shrea s
Memory Dimms Memory Dimms h Memory Dimms h Memory Dimms Memory Dimms E Memory Dimms Memory Dimms h Memory Dimms Memory Dimms Memory Dimms
o1 |z2s 4|5 75 |s o]l — T2 s]| o |10 T2 |5 |45 P N R e e e x o|1]z2|s]¢]|s s |o o] n | o1 z2]5 2|5 || s |7 e e |ofn s 2|3]« s (Ler s S
Shareat Sharedls e Shred Staeos Shrea Shrea Stoeos Stoeos Shreas Shrea s
1 1
— — —4 ! | — — It = it
Memory Dimms. | Memory Dimms. Memory Dimms Memory Dimms Memory Dimms. Memory Dimms | Memory Dimms | Memory Dimms. Memory Dimms. Memory Dimms. Memory Dimms.
= =] ol | L
o1 z2fs]afs|[O 7lefe]ofn ilz2fs|a]s || O 7la]e|0fn 1l2]sfa]s QP fl 6| 7|89 |10fn of1z2]afa]s |l O alo|wofn of 12 a|als | Qe 7]e]o|10]n) 2|afa|s | Q| e g |ofwofn
S [= [
Sroats Sroats Shaod 15 Shaod 15 Saredts Sarodts Shaod 15 Shaod 15 Sarodts Sarodts Sharod s Sharod s
it it it
Memory Dimms I Memory Dimms I Memory Dimms. Memory Dimms Memory Dimms Memory Dimms | Memory Dimms Memory Dimms. | Memory Dimms.
. r .
-
12z fefs QP! 7lefe 0] 123]a]|s QpPl ef7 e |wo|n o123]e|s QP 8o w]|n of1l2]3fa]s QP! 67 e |wo|n o HENERE QPl 6 8o |w|n
Shareats Shareats Shared 13 Shred 13 Staea 3] oo 3 Shred 13 Shred 13 oo 3 Staea s Shrea s Shrea s
= = = = = = =

Memory Dimms |

Memory Dimms |

Memory Dimms |

Memory Dimms |

Memory Dimms ‘

Memory Dimms |

Memory Dimms

Memory Dimms

Memory Dimms |

Memory Dimms

Ivan Girotto - igirotto@ictp.it

Cinvestav Abacus, 16 Feb 2018 R

rategies for Parallelization

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Granularity

* Granularity is determined by the decomposition level
(number of task) on which we want divide the problem

* The degree to which task/data can be subdivided is limit to
concurrency and parallel execution

* Parallelization has to become “topology aware”

= coarse grain and fine grained parallelization has to be mapped
to the topology to reduce memory and I/O contention

" make your code modularized to enhance different levels of
granularity and consequently to become more “platform
adaptable”

The Abdus Salam
> International Centre
(CTP for Theoretical Physics

Static Data Partitioning

The simplest data decomposition schemes for dense matrices are
1-D block distribution schemes.

row-wise distribution column-wise distribution

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Block Array Distribution Schemes

Block distribution schemes can be generalized to higher dimensions as well.

Po| P1| Ps| Ps| Py| Ps| Ps| P

(a) (b)

Degree to which tasks/data can be subdivided is limit to concurrency and parallel execution!!

The Abdus Salam
International Centre
(CTP for Theoretical Physics

1D Distribution of a 3D domain

\

A 4
\

i\

PO

P1

P2

P3

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Distributed Data Vs Replicated Data

* Replicated data distribution is useful if it helps to
reduce the communication among process at the
cost of bounding scalability

* Distributed data is the ideal data distribution but
not always applicable for all data-sets

* Usually complex application are a mix of those
techniques => distribute large data sets; replicate
small data

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Global Vs Local Indexes

* In sequential code you always refer to global indexes

 With distributed data you must handle the distinction
between global and local indexes (and possibly
implementing utilities for transparent conversion)

Local Idx 1/ 2|3 123 123

Global Idx 1/ 2|3 4 5|6 789

The Abdus Salam

> International Centre
(CTP for Theoretical Physics

Collaterals to Domain Decomposition /1

1{0[O0{..
0Of1]0¢{...

1 2 3 4 5 6 7 8 1 2

Are all the domain’s dimensions
always multiple of the number
of tasks/processes we are
willing to use? 12

The Abdus Salam
> International Centre
(CTP for Theoretical Physics

Again on Domain Decomposition

sub-domain boundaries

ilj+1

'11.‘ ili i+1j

-1

The Abdus Salam

International Centre
(CTP for Theoretical Physics

2]

The Abdus Salam
International Centre
(CTP> for Theoretical Physics

i»

|
|

call MPI BCAST(v)
P, (root) P,

H|EEIE

The Abdus Salam C
) International Centre Ty
(CTP for Theoretical Physics :

call evolve(dtfact)

2]

The Abdus Salam
International Centre
(CTP> for Theoretical Physics

i»

|
|

call MPI_Gather(..., ..., ...)
P, (root) P, P,

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Replicated data

e Compute domain (and workload) distribution
among processes

* Master-slaves: P, drives all processes

* Large amount of data communication

— at each step P, distribute data to all processes and
collect the contribution of each process

* Problem size scaling limited in memory
capacity

The Abdus Salam
> International Centre
(CTP for Theoretical Physics

Collaterals to Domain Decomposition /2

sub-domain boundaries

lj+1

~
—

-1

The Abdus Salam
> International Centre
‘CTP for Theoretical Physics

The Transport Code - Parallel Version
I:)0 I:>1 IDZ P3

call evolve(dtfact)

The Abdus Salam
> International Centre
‘CTP for Theoretical Physics

Data exchange among processes
Po/\m P, P;

The Abdus Salam
> International Centre
(CTP for Theoretical Physics

proc_up = mod(proc_me + 1, nprocs)

The Abdus Salam

(CTP) International Centre

for Theoretical Physics

Sendrecv

The easiest way to send and receive data without warring about deadlocks

Sender side
Fortran: - AL <
CALL MPI_SENDRECV(sndbuf, snd_size, snd_type, dest_id, tag,
rcvbuf, rcv_size, rcv_type, sour_id, tag, comm, status, ierr)
\ . _J
I 48

Receiver side

CALL MPI_SENDRECV
sour_id dest_id

> >

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Distributed Data

e Global and Local Indexes

* Ghost Cells Exchange Between Processes

— Compute Neighbor Processes

* Parallel Output

ihe tAbdus Scl;cn I C t @
nternational Centre —T
(CTP for Theoretical Physics Q) 1

The Abdus Salam

(CTP) International Centre

for Theoretical Physics

- X

At every step all the processes receive a block of columns of the Matrix B

PO

P1

P2

P3

The Abdus Salam
> International Centre
‘CTP for Theoretical Physics

The Abdus Salam

{CTP) International Centre

for Theoretical Physics

MPI Allgather

int MPI Allgather (const void *sendbuf, int sendcount, MPI Datatype sendtype,
void *recvbuf, int recvcount, MPI Datatype recvtype, MPI Comm comm)

sendbuf starting address of send buffer (choice)

sendcount number of elements in send buffer (integer)

sendtype data type of send buffer elements (handle)

recvcount number of elements received from any process (integer)
recvtype data type of receive buffer elements (handle)

comm communicator (handle)

The Abdus Salam
> International Centre
(CTP for Theoretical Physics

Master/Slave

W1

W2

W3

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Task Farming

 Many independent programs (tasks) running at once
— each task can be serial or parallel
— “independent” means they don’ t communicate directly
— Processes possibly driven by the mpirun framework

[igirotto@Rlocalhost]$ more my shell wrapper.sh
#!/bin/bash

#example for the OpenMPI implementation

./prog.x --input input ${OMPI_ COMM WORLD RANK} .dat

[igirotto@Rlocalhost]$ mpirun -np 400 ./my shell wrapper.sh

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Easy Parallel Computing

* Farming, embarrassingly parallel

— Executing multiple instances on the same program with different
inputs/initial cond.

— Reading large binary files by splitting the workload among processes
— Searching elements on large data-sets

— Other parallel execution of embarrassingly parallel problem (no
communication among tasks)

* Ensemble simulations (weather forecast)
* Parameter space (find the best wing shape)

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Parallel I/0O

|/O Bandwidth

(CTP)

The Abdus Salam
International Centre
for Theoretical Physics

Parallel I/0O

P

/O Bandwidth

P,

/O Bandwidth

The Abdus Salam

International Centre
(CTP for Theoretical Physics

Parallel I/0O

P P,

MPI 1I/O & Parallel 1/0 Libraries (Hdf5, Netcdf, etc...)

Parallel File System

= a = Ef_L

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Make Use Freely Available Parallel Libraries

e Scalable Parallel Random Number Generators

e Para

* Para
(dea

e Para
e Para

Library (SPRNG)

lel Linear Algebra (ScaLAPACK)

lel Library for Solution of Finite Elements
i)
lel Library for FFT (FFTW)

lel Linear Solver for Sparce Matrices (PETSc)

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Programming Parallel Paradigms

* Are the tools we use to express the parallelism for on
a given architecture (see also SPMD, SIMD, etc...)

* They differ in how programmers can manage and

define key features like:
, <A NVIDIA.
CUDA.

— parallel regions

— concurrency

— process communication
— synchronism

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Fundamental Tools of Parallel Programming

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Phases of an MPI Program

1. Startup
— Parse arguments (mpirun may add some!)
— ldentify parallel environment and rank of process
— Read and distribute all data

2. Execution

— Proceed to subroutine with parallel work (can be same of
different for all parallel tasks)

3. Cleanup

CAUTION: this sequence may be run only once

The Abdus Salam

(CTP) International Centre

for Theoretical Physics

program bcast
implicit none
include "mpif.h"

integer :: myrank, ncpus, imesg, ierr
integer, parameter :: comm = MPI_COMM_WORLD

call MPI_INIT(ierr)
call MPI_COMM_RANK(comm, myrank, ierr)
call MPI_COMM _SIZE(comm, ncpus, ierr)

imesg = myrank
print *, "Before Bcast operation I'm ", myrank, &
"and my message content is ", imesg
call MPI_BCAST(imesg, 1, MPI_INTEGER, O, comm, ierr)

print *, "After Bcast operation I'm ", myrank, &
"and my message content is ", imesg

call MPI_FINALIZE(ierr)

end program bcast

The Abdus Salam

(CTP) International Centre

for Theoretical Physics

program bcast
implicit none
include "mpif.h"

integer :: myrank, ncpus, imesg, ierr
integer, parameter :: comm = MPI_COMM_WORLD

P,

myrank = ??
ncpus = ?7?
imesg = ??

ierr =77

comm = MPI_C...

The Abdus Salam

(CTP) International Centre

for Theoretical Physics

program bcast
PO I:)1

implicit none

include "mpif.h" myrank = ?? myrank = ??
ncpus = ?7? ncpus = ?7?
integer :: myrank, ncpus, imesg, ierr : — 99 : - 99
integer, parameter :: comm = MPI_COMM_WORLD !mesg C !mesg "
ierr = MPI_SUC... ierr = MPI_SUC...
call MPI_INIT(ierr) comm = MPI_C... comm = MPI_C...

P, P

myrank = ?? myrank = ??
ncpus = ?7? ncpus = ??
imesg = ?? imesg = ?7?

ierr = MP1_SUC... ierr = MPI_SUC...
comm = MPI_C... comm = MPI_C...

The Abdus Salam

(CTP) International Centre

for Theoretical Physics

program bcast
P, P,

implicit none

include "mpif.h" myrank = ?? myrank = ??
) ncpus =4 ncpus =4
integer :: myrank, ncpus, imesg, ierr : — 99 : Y}
integer, parameter :: comm = MPI_COMM_WORLD !mesg C !mesg -
ierr = MPI_SUC... ierr = MPI_SUC...
call MPI_INIT(ierr) comm = MPI_C... comm = MPI_C...
call MPI_COMM _SIZE(comm, ncpus, ierr)
call MPI_COMM_RANK(comm, myrank, ierr) P P
2 3
myrank = ?? myrank = ??
ncpus =4 ncpus =4
imesg = ?? imesg = ?7?
ierr = MP1_SUC... ierr = MPI_SUC...
comm = MPI_C... comm = MPI_C...

The Abdus Salam

(CTP) International Centre

for Theoretical Physics

program bcast
P, P,

implicit none

include "mpif.h" myrank = 0 myrank = 1
) ncpus =4 ncpus =4
integer :: myrank, ncpus, imesg, ierr : — 99 : - 99
integer, parameter :: comm = MPI_COMM_WORLD !mesg C !mesg "
ierr = MPI_SUC... ierr = MPI_SUC...
call MPI_INIT(ierr) comm = MPI_C... comm = MPI_C...
call MPI_COMM _SIZE(comm, ncpus, ierr)
call MPI_COMM_RANK(comm, myrank, ierr) P P
2 3
myrank = 2 myrank = 3
ncpus =4 ncpus =4
imesg = ?? imesg = ?7?
ierr = MP1_SUC... ierr = MPI_SUC...
comm = MPI_C... comm = MPI_C...

The Abdus Salam

(CTP) International Centre

for Theoretical Physics

program bcast
implicit none
include "mpif.h"

integer :: myrank, ncpus, imesg, ierr
integer, parameter :: comm = MPI_COMM_WORLD

call MPI_INIT(ierr)
call MPI_COMM_RANK(comm, myrank, ierr)
call MPI_COMM _SIZE(comm, ncpus, ierr)

imesg = myrank
print *, "Before Bcast operation I'm ", myrank, &
"and my message content is ", imesg

P,

myrank =0
ncpus =4

imesg =0

ierr = MP1_SUC...
comm = MPI_C...

P,

myrank = 2
ncpus =4

imesg =2

ierr = MPI_SUC...
comm = MPI_C...

myrank =1
ncpus =4

imesg =1

ierr = MP1_SUC...
comm = MPI_C...

P

myrank = 3
ncpus =4

imesg =3

ierr = MPI_SUC...
comm = MPI_C...

The Abdus Salam

(CTP) International Centre

for Theoretical Physics

program bcast
PO I:)1

implicit none

include "mpif.h" myrank =0 myrank =1
) ncpus =4 ncpus =4
integer :: myrank, ncpus, imesg, ierr : _ : —
integer, parameter :: comm = MPI_COMM_WORLD !mesg =0 !mesg =1
ierr = MP1_SUC... ierr = MP1_SUC...
call MPI_INIT(ierr) comm = MPI_C... mm = MPI
call MPI_COMM_RANK(comm, myrank, ierr) - co (G
call MPI_COMM _SIZE(comm, ncpus, ierr)
imesg = myrank P P
print *, "Before Bcast operation I'm ", myrank, & 2 3
"and my message content is ", imesg
.] myrank = 2 myrank = 3
call MPI_BCAST(imesg, 1, MPI_INTEGER, 0, comm, ierr) ncpus = 4 ncpus = 4
imesg =2 imesg = 3
ierr = MP1_SUC... ierr = MPI_SUC...
comm = MPI_C... comm = MPI_C...

The Abdus Salam

{CTP) International Centre

for Theoretical Physics

call MPl1_BCAST(imesg, 1, MPI_INTEGER, O, comm, ierr)

P, P, P, P,
myrank = 0 myrank =1 myrank = 2 myrank = 3
ncpus =4 ncpus =4 ncpus = 4 ncpus =4

imesg =0 imesg =1 imesg =2 imesg =3

ierr = MPI_SUC... ierr = MPI_SUC... ierr = MPI_SUC... ierr = MPI_SUC...
comm = MPI_C... comm = MPI_C... comm = MPI_C... comm = MPI_C...

st

The Abdus Salam

(CTP) International Centre

for Theoretical Physics

call MPl1_BCAST(imesg, 1, MPI_INTEGER, O, comm, ierr)

P, P, P, P,
myrank = 0 myrank =1 myrank = 2 myrank = 3
ncpus =4 ncpus =4 ncpus = 4 ncpus =4

imesg =0 imesg =0 imesg =0 imesg =0

ierr = MPI_SUC... ierr = MPI_SUC... ierr = MPI_SUC... ierr = MPI_SUC...
comm = MPI_C... comm = MPI_C... comm = MPI_C... comm = MPI_C...

The Abdus Salam

(CTP) International Centre

for Theoretical Physics

program bcast
PO I:)1

implicit none

include "mpif.h" myrank =0 myrank =1
) ncpus =4 ncpus =4
integer :: myrank, ncpus, imesg, ierr . _ - _
integer, parameter :: comm = MPI_COMM_WORLD !mesg =0 !mesg =0
ierr = MPI_SUC... ierr = MPI_SUC...
call MPI_INIT(ierr) comm = MPI_C... mm = MPI
call MPI_COMM_RANK(comm, myrank, ierr) - co (G
call MPI_COMM _SIZE(comm, ncpus, ierr)
imesg = myrank P P
print *, "Before Bcast operation I'm ", myrank, & 2 3
"and my message content is ", imesg
_ _ myrank = 2 myrank = 3
call MPI_BCAST(imesg, 1, MPI_INTEGER, O, comm, ierr) ncpus = 4 ncpus = 4
print *, "After Bcast operation I'm ", myrank, & imesg =0 imesg =0
" and my message content is *, imesg ierr = MPI_SUC... ierr = MPI_SUC...
comm = MPI_C... comm = MPI_C...

The Abdus Salam

(CTP) International Centre

for Theoretical Physics

program bcast
PO I:)1

implicit none

include "mpif.h" myrank =0 myrank =1
) ncpus =4 ncpus =4
integer :: myrank, ncpus, imesg, ierr . _ - _
integer, parameter :: comm = MPI_COMM_WORLD !mesg =0 !mesg =0
ierr = MP1_SUC... ierr = MP1_SUC...
call MPI_INIT(ierr) comm = MPI C mm = MPI
call MPI_COMM_RANK(comm, myrank, ierr) - co (G
call MPI_COMM _SIZE(comm, ncpus, ierr)
imesg = myrank P P
print *, "Before Bcast operation I'm ", myrank, & 2 3
"and my message content is ", imesg
_ _ myrank = 2 myrank = 3
call MPI_BCAST(imesg, 1, MPI_INTEGER, O, comm, ierr) ncpus = 4 ncpus = 4
print *, "After Bcast operation I'm ", myrank, & imesg =0 imesg =0
" and my message content is ", imesg ierr = MPI_SUC... ierr = MPI_SUC...
call MP1_FINALIZE(ierr) comm = MPI_C... comm = MPI_C...

The Abdus Salam

(CTP) International Centre

for Theoretical Physics

program bcast
implicit none
include "mpif.h"

integer :: myrank, ncpus, imesg, ierr
integer, parameter :: comm = MPI_COMM_WORLD

call MPI_INIT(ierr)
call MPI_COMM_RANK(comm, myrank, ierr)
call MPI_COMM_SIZE(comm, ncpus, ierr)

imesg = myrank P
print *, "Before Bcast operation I'm ", myrank, & 2
"and my message content is ", imesg
' . _ myrank = 2
call MPI_BCAST(imesg, 1, MPI_INTEGER, O, comm, ierr) ncpus = 4
print *, "After Bcast operation I'm ", myrank, & imesg =0
"and my message content is ", imesg ierr = MPI SUCC
call MP1_FINALIZE(ierr) comm = MPI_C...

end program bcast

The Abdus Salam

{CTP) International Centre

for Theoretical Physics

Workload Management: system level, High-throughput

Python: Ensemble simulations, workflows

MPI: Domain partition

OpenMP: Node Level shared mem

CUDA/OpenCL/OpenAcc:
floating point accelerators

=
The Abdus Salam ||”-I

International Centre
(CTP for Theoretical Physics

