
Introduction Pthreads Tasks

POSIX Threads and OpenMP tasks

Jimmy Aguilar Mena

February 16, 2018

Introduction Pthreads Tasks

Introduction Pthreads Tasks

Introduction Pthreads Tasks

Introduction Pthreads Tasks

Two simple schemas

Independent functions

#include<pth read . h>
#include<s t d i o . h>

void f u n c t i o n 1 () {
[. . .] ;

}

void f u n c t i o n 2 () {
[. . .] ;

}

int main (int argc , char ∗∗a rgv) {
f u n c t i o n 1 () ;
f u n c t i o n 2 () ;

return 0 ;
}

Recursion

#include<pth read . h>
#include<s t d i o . h>

int f u n c t i o n (int x , int y) {
[. . .]
int a = f u n c t i o n (x+y) ;
int b = f u n c t i o n (x−y) ;
[. . .]
return 0 ;

}

int main (int argc , char ∗∗a rgv) {
[. . .]
f u n c t i o n (a , b) ;

return 0 ;
}

Introduction Pthreads Tasks

1 Introduction

2 Pthreads

3 Tasks

Introduction Pthreads Tasks

Threads vs Processes
Start

https://computing.llnl.gov/tutorials/pthreads/

https://computing.llnl.gov/tutorials/pthreads/

Introduction Pthreads Tasks

Threads vs Processes
Communication

https://computing.llnl.gov/tutorials/pthreads/

https://computing.llnl.gov/tutorials/pthreads/

Introduction Pthreads Tasks

POSIX Threads

POSIX Threads

A POSIX thread is a single flow of control within a process. It
shares a virtual address space with other threads in the same
process. The following are per-thread attributes:

• execution stack (within shared address space)

• set of blocked signals (the signal mask)

• set of signals pending for the thread

• scheduling policy and priority

• errno value

• thread-specific key-to-attribute mapping

Introduction Pthreads Tasks

Threads workflow

Introduction Pthreads Tasks

PTHREADS
C interface

#inc l ud e<pth read . h>
#inc l ud e<s t d i o . h>

// create the Function to be executed as a thread

void ∗Funct i on (void ∗p t r)
{

int t ype = (int) p t r ;
p r i n t f ("Thread -%d\n" , t ype) ;
return p t r ;

}

int main (int argc , char ∗∗a rgv)
{

p t h r e a d t th r ead1 ; // create the thread objs

int t h r = 1 ; // input

p t h r e a d c r e a t e (&thread1 , NULL , ∗Funct ion , (void ∗) t h r) ;

p r i n t f ("Thread -Master\n") ;

p t h r e a d j o i n (thread1 ,NULL) ; // wait for threads to finish

return 0 ;
}

Build: gcc pthread.c -o pthread.x -lpthread

Introduction Pthreads Tasks

PTHREADS
C++11 interface

#i n c l u d e <th read>
#i n c l u d e <c s t d i o>
#i n c l u d e <c s t d l i b>

using namespace s t d ;
void f u n c t i o n (int i)
{

cout << "Thread -"<<i<< end l ;
}

int main (int argc , char∗∗ a rgv)
{

int t h r = 1 ; //input

t h r ead th r ead1 (f un c t i o n , i) ;

cout << "Thread -Master"<< end l ;

t h r e a d l i s t [i] . j o i n () ;

return 0 ;
}

Build: g++ -std=c++11 thread.cxx -o
thread.x -pthread

Introduction Pthreads Tasks

Create Threads

pthread create

int p t h r e a d c r e a t e (p t h r e a d t ∗ new thread ID ,
const p t h r e a d a t t r t ∗ a t t r ,
void ∗ (∗ f u n c) (void ∗) , void ∗ ar g) ;

Needs to specify a place to store the ID of the new thread, the
procedure that the thread should execute, optionally some thread
creation attributes, and optionally an argument for the thread.

Introduction Pthreads Tasks

Attributes

Creating attributes to default values

p t h r e a d a t t r t t a t t r ;
int r e t ;

// initialize an attribute to the default

r e t = p t h r e a d a t t r i n i t (& t a t t r) ;

// set the thread detach state (for example)

r e t = p t h r e a d a t t r s e t d e t a c h s t a t e (& t a t t r ,
PTHREAD CREATE DETACHED) ;

. . .

// destroy attribute

r e t = p t h r e a d a t t r d e s t r o y (& t a t t r) ;

Introduction Pthreads Tasks

Joining threads

#include <p t h r e a d . h>
int p t h r e a d j o i n (p t h r e a d t t a r g e t t h r e a d ,

void ∗∗ s t a t u s) ;

By default, threads are created joinable. This means that some
other thread is required to call pthread join to collect a terminated
thread, in a fashion similar to the requirement for a parent process
to collect status for terminated child processes.

Introduction Pthreads Tasks

POSIX threads C API
Protecting critical sections (Mutex)

Mutex usage

p t h r e a d m u t e x t M;
p t h r e a d m u t e x l o c k (&M) ;
. . . c r i t i c a l s e c t i o n . . .
p t h r e a d m u t e x u n l o c k (&M) ;

A mutex is a memory-based data object that is used to implement
mutual exclusion. The intent it so provide the kind of protection
that is needed to implement a monitor. Mutexes are designed to
provide the mutual needed for a monitor.

Introduction Pthreads Tasks

Once operations

pthread once t

void i n i t r o u t i n e () {
p t h r e a d mu t e x i n i t (&M, NULL) ;

}

void i n i t i a l i z e () {
static p t h r e a d on c e t i n i t f l a g = PTHREAD ONCE INIT ;
// is initialized at process start time

p th r ead once (& i n i t f l a g , i n i t r o u t i n e) ;
p t h r e ad mut e x l o c k (&M) ;
// now initialize other global data

pth read mutex unock (&M) ;
}

The variable init flag is used to indicate whether the initialization
has been done yet. The difference is that the function
pthread once is guaranteed to atomically test and modify the flag.

Introduction Pthreads Tasks

Programming with pthreads

1 Prevent overhead even if it is small.

2 As usual, programming for the the architecture improves
performance.

3 You can create as many threads as you need, but the machine
has a fix number of cores.

4 Memory affinity (NUMA) and core affinity (taskset) cares.

5 Before doing a serious application READ THE
DOCUMENTATION. Don’t reinvent the wheel!!

Introduction Pthreads Tasks

1 Introduction

2 Pthreads

3 Tasks

Introduction Pthreads Tasks

Tasks vs Threads

Task

A task is something you want done.

Threads

A thread is one of the many possible workers which performs that
task.

OpenMP specification version 3.0 introduced a new feature called
tasking. Tasks are generated dynamically in recursive structures or
while loops.
The task construct can be placed anywhere in the program;
whenever a thread encounters a task construct, a new task is
generated.

Introduction Pthreads Tasks

Task Execution

• The task construct defines a section of code

• Inside a parallel region, a thread encountering a task construct
will package up the task for execution

• Some thread in the parallel region will execute the task at
some point in the future

• If task execution is deferred, then the task is placed in
a pool of tasks.

• Tasks can be nested: i.e. a task may itself generate tasks

• The OMP parallel construct creates “implicit”tasks.

Introduction Pthreads Tasks

Syntax

C++

#pragma omp t a s k [c l a u s e s]
s t r u c t u r e d−b l o c k

Fortran

!$OMP TASK [clauses]

s t r u c t u r e d block

!$OMP END TASK

Introduction Pthreads Tasks

Clauses

if(scalar-expression) Creates conditionally

final(scalar-expression) The generated task will be a final task

untied Any thread in the team can resume the task region
after a suspension

default(shared | none) As expected.

mergeable the generated task is a mergeable task.

private(list) As expected.

firstprivate(list) As expected. (makes a copy during the
generation.)

shared(list) As expected.

depend(dependence-type : list) Dependency with variables.

priority(priority-value) Hint for the priority of the generated task

Introduction Pthreads Tasks

Hello World

#i n c l u d e <s t d i o . h>
#i n c l u d e <omp . h>
#i n c l u d e <un i s t d . h>

void f u n c t i o n 1 () {
p r i n t f ("Hello from function 1\n") ;
s l e e p (5) ;
p r i n t f ("Bye from function 1\n") ;

}

void f u n c t i o n 2 () {
p r i n t f ("Hello from function 2\n") ;
s l e e p (5) ;
p r i n t f ("Bye from function 1\n") ;

}

int main (int argc , char ∗∗a rgv){

#pragma omp p a r a l l e l
#pragma omp s i n g l e
{

#pragma omp ta sk
f u n c t i o n 1 () ;

#pragma omp ta sk
f u n c t i o n 2 () ;

}
return 0 ;

}

Introduction Pthreads Tasks

Tasks synchronization

Thread barriers

Applies to all tasks generated in the current parallel region up to
the barrier.

Taskwait directive

Wait until all tasks defined in the current task have completed.

C #pragma omp taskwait

Fortran !$OMP TASKWAIT

• This is specially useful in recursive applications.

• Like barrier, it must not be executed conditionally.

• You are recommended not to use barrier with active tasks

Introduction Pthreads Tasks

Nested tasks

#pragma omp t a s k p r i v a t e (B)
{

B = . . .
#pragma omp t a s k s h a r e d (B)
{

compute (B) ;
}
. . .

#pragma omp t a s k w a i t
}

• Every outer task has its own copy of B

• All inner tasks use their parent task’s copy of B

• Taskwait ensures these don’t go out of scope

Introduction Pthreads Tasks

Parallel task loading

#pragma omp p a r a l l e l
{

#pragma omp f o r p r i v a t e (p)
for (int i =0; i < N ; ++i) {

#pragma omp t a s k f i r s t p r i v a t e (p)
{
t a s k c o d e f u n c t i o n (i) ;
}

}
}

}

Introduction Pthreads Tasks

Dependencies

void p r o c e s s i n p a r a l l e l ()
{

#pragma omp p a r a l l e l
#pragma omp s i n g l e
{

int x = 1 ;
#pragma omp ta sk sha r ed (x , . . .) depend (out : x)
Task1 (. . .) ;
#pragma omp ta sk sha r ed (x , . . .) depend (i n : x)
Task2 dependent (. . .) ;
#pragma omp ta sk sha r ed (x , . . .) depend (i n : x)
Task3 dependent (. . .) ;

}
}

Introduction Pthreads Tasks

Using Tasks

1 Getting the data attribute scoping right can be quite tricky
• default scoping rules different from other constructs
• as ever, using default(none) is a good idea

2 Don’t use tasks for things already well supported by OpenMP
• e.g. standard do/for loops
• the overhead of using tasks is greater

3 Don’t expect miracles from the runtime
• best results usually obtained where the user controls the

number and granularity of tasks

	Introduction
	Pthreads
	Tasks

