
Exponential Integrators using 
Matrix Functions: Krylov Subspace 

Methods and Chebyshev 
Expansion approximations

The HPC Approach

Marlon Brenes 
brenesnm@tcd.ie 

https://www.tcd.ie/Physics/research/groups/qusys/people/navarro/

México, February 2018

mailto:brenesnm@tcd.ie


Outline

• Exponential Integrators 

• Brief Introduction: Chebyshev expansion for matrix 
functions 

• Brief Introduction: Krylov subspace techniques 

• HPC Approach:  

• Relevance and importance of an HPC approach 

• Parallelisation strategy 

• Outlook 



Exponential Integrators
Matrix functions



The problem
• Consider a problem of the type 

• Its analytic solution is 

•  Things to consider: 

•     is a matrix 

• The exponential of the matrix is not really required, but 
merely it’s action on the vector 

dw(t)

dt
= Aw(t), t 2 [0, T ]

w(0) = v, initial condition

w(t) = etAv

A

v

R. B. Sidje, ACM Trans. Math. Softw. 24, 130 (1998).  



Exponential Integrators

• Mathematical models of many physical, biological and 
economic processes systems of linear, constant-coefficient 
ordinary differential equations 

• Growth of microorganisms, population, decay of radiation, 
control engineering, signal processing… 

• More advanced: MHD (magnetohydrodynamics), quantum 
many-body problems, react ion-advect ion-diffusion 
equations…

Moler, C. Van Loan, C. SIAM Rev. 45, 1 (2003).  



Numerical approach
• The idea to use exponential functions for the matrix is not new

• Was considered impractical…

• The development of Krylov subspace techniques to the action 
of the matrix exponential substantially changed the landscape

• Different types of solution evaluation for matrix exponentials: 

• ODE methods: numerical integration 

• Polynomial methods 

• Matrix decomposition methods
Moler, C. Van Loan, C. SIAM Rev. 45, 1 (2003).  

Hochbruck, M. Lubich, C. Selhofer, H. SIAM J. Sci. Comp. 19, 5 (1998). 



Numerical approach
• We’re interested in the case where    is large and sparse

• A sole implementation may not be reliable for all types of 
problems

• Chebyshev expansion approach 

• The technique of Krylov subspaces has been proven to 
be very efficient for many classes of problems 

• Convergence is faster than applying the solution to linear 
systems in both techniques

Moler, C. Van Loan, C. SIAM Rev. 45, 1 (2003).  

Hochbruck, M. Lubich, C. Selhofer, H. SIAM J. Sci. Comp. 19, 5 (1998). 
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Take-home message #1:  
There’s a big number of problems in science and 
engineering that can be tackled using exponential 

integrators and matrix functions 



Polynomial approximation: 
Chebyshev expansion

A brief introduction



Definition
• We intend to employ a polynomial expansion as an 

approximation 

• Let us start with a definition of the matrix 
exponential by convergent power series: 

• An effective computation of the action of this 
operator on a vector is the main topic of this talk

etA = I+ tA+
t2A2

2!
+ . . .

Moler, C. Van Loan, C. SIAM Rev. 45, 1 (2003).  



Chebyshev expansion
• We intend to employ a good converging polynomial 

expansion 

• Explicit computation of        has to be avoided 

• Key component: Efficient matrix-vector product 
operations 

• Upside: Efficient parallelisation and vectorisation, 
extremely simple approach

• Downside: Requires computation of two eigenvalues, not 
so versatile

eAt



Chebyshev polynomials
• The polynomials are defined by a three-term recursion relationship in the  

interval                         : 

          

•                constitutes an orthogonal basis, therefore one can write: 

•  with 

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)� Tn�1(x)

Tn(x)

x 2 [�1, 1]

f(x) =
1X

n=0

bnTn(x) ⇡
NX

n=0

bnTn(x)

Sharon, N. Shkolniski, Y. arXiv preprint arXiv:1507.03917 (2016) 

Kosloff, R. Annu. Rev. Phys. Chem. 45, 145-78. (1994)  

Bessel coefficients for the particular 
case of the exponential functionbn =

2� �n
⇡

Z 1

�1

f(y)Tn(y)p
1� y2

dy



Chebyshev polynomials
• We’re interested in applying the approximation to the action of the operator on a vector 

• First step: Find the extremal eigenvalues of     , more on this later 

• Second step: Rescale operator such that it’s spectrum is bounded by  

  

• Third step: Use the Chebyshev recursion relation 

•  The recursion can be truncated up to a desired tolerance

Sharon, N. Shkolniski, Y. arXiv preprint arXiv:1507.03917 (2016) 

Kosloff, R. Annu. Rev. Phys. Chem. 45, 145-78. (1994)  

[�1, 1]

A
0
= 2

A� �minI

�max � �min
� I

�min �max

A

f(tA0)v = etA
0
v ⇡

NX

n=0

bnTn(tA
0)v



Chebyshev recursion 
relation

• The recursion relation  

• Goes as follows: 

• Then: 

• Until desired tolerance

Sharon, N. Shkolniski, Y. arXiv preprint arXiv:1507.03917 (2016) 

Kosloff, R. Annu. Rev. Phys. Chem. 45, 145-78. (1994)  

f(tA0)v = etA
0
v ⇡

NX

n=0

bnTn(tA
0)v

�0 = v

�1 = tA0v

�n+1 = 2tA0�n � �n�1

f(tA0)v ⇡
NX

n=0

bn�n



Chebyshev polynomials
• Why do we choose the Chebyshev polynomials as basis 

set? Why not another polynomial set? 

• Because of the asymptotic property of the Bessel function! 

• When the order  of the polynomial becomes larger 
t h a n t h e a r g u m e n t , t h e f u n c t i o n d e c a y s 
exponentially fast  

• This means that in order to obtain a good 
approximation, an exponentially decreasing amount 
of terms are required in the expansion as a function of 
the argument (related to   ,          and          ) 

Sharon, N. Shkolniski, Y. arXiv preprint arXiv:1507.03917 (2016) 

Kosloff, R. Annu. Rev. Phys. Chem. 45, 145-78. (1994)  

n

t �min �max



Take-home message #2:  
The Chebyshev expansion approach provides a 

numerically stable and scalable approach at the cost of 
some restrictions of the problem 



Krylov subspace techniques 
to evaluate the solution

A brief introduction



Krylov subspace techniques
• We intend to employ a combination of a Krylov subspace 

technique and other known methods for matrix exponential 

• Explicit computation of        has to be avoided 

• Key component: Efficient matrix-vector product 
operations 

• Upside: Extremely versatile

• Downside: Storage of the subspace for large problems, 
“time scales”

eAt



Main idea
• Building a Krylov subspace of dimension  

• The idea is to approximate the solution to the problem by 
an element of  

• In order to manipulate the subspace, it’s convenient to 
generate an orthonormal basis 

• This can be achieved with the Arnoldi algorithm 

m

Km = span{v,Av,A2v, . . . ,Am�1v}

Km

Vm = [v1, v2, . . . , vm] v1 = v/||v||2

Gallopoulos, E. Saad, Y. ICS. 89’, 17—28 (1989).  

Moler, C. Van Loan, C. SIAM Rev. 45, 1 (2003). 



• Step 2-b is a modified Gram-Schmidt process. 

• Lanczos can be applied for the case of symmetric 
matrices

be extended to solving systems of stiff nonlinear differential equations. In the work
by Nour-Omid [9] systems of ODEs are solved by first projecting them onto Krylov
subspaces and then solving reduced tridiagonal systems of ODEs. This is equivalent
to the method used in [10] which consists of projecting the exponential operator on
the Krylov subspace. The evaluation of arbitrary functions of a matrix with Krylov
subspaces has also been briefly mentioned by van der Vorst [13].

The purpose of this paper is to explore these techniques a little further both from a
practical and a theoretivcal viewpoint. On the practical side we introduce new schemes
that can be viewed as simple extensions or slight improvements of existing ones. We also
provide a-posteriori error estimates which can be of help when developing integration
schemes for ODE’s. On the theoretical side, we prove some characterization results and
a few additional a priori error bounds.

2. Krylov subspace approximations for eAv . We are interested in approxi-
mations to the matrix exponential operation exp(A)v of the form

eAv ≈ pm−1(A)v,(1)

where A is a matrix of dimension N , v an arbitrary nonzero vector, and pm−1 is a
polynomial of degree m − 1. Since this approximation is an element of the Krylov
subspace

Km ≡ span{v, Av, . . . , Am−1v},

the problem can be reformulated as that of finding an element of Km that approximates
u = exp(A)v. In the next subsections we consider three different possibilities for finding
such approximations. The first two are based on the usual Arnoldi and nonsymmetric
Lanczos algorithms respectively. Both reduce to the same technique when the matrix
is symmetric. The third technique presented can be viewed as a corrected version of
either of these two basic approaches.

2.1. Exponential propagation using the Arnoldi algorithm. In this section
we give a brief description of the method presented in [3] which is based on Arnoldi’s al-
gorithm. The procedure starts by generating an orthogonal basis of the Krylov subspace
with the well-known Arnoldi algorithm using v1 = v/∥v∥2 as an initial vector.

Algorithm: Arnoldi

1. Initialize: Compute v1 = v/∥v∥2.
2. Iterate: Do j = 1, 2, ...,m

(a) Compute w := Avj

(b) Do i = 1, 2, . . . , j
i. Compute hi,j := (w, vi)
ii. Compute w := w − hi,jvi

(c) Compute hj+1,j := ∥w∥2 and vj+1 := w/hj+1,j.

2

Gallopoulos, E. Saad, Y. ICS. 89’, 17—28 (1989).  

Moler, C. Van Loan, C. SIAM Rev. 45, 1 (2003). 



• The Arnoldi procedure produces a basis        of         and an upper 
Hesseberg matrix         of dimension              with coefficients    

• We start by the relation given by 

• Where             satisfies                             and   

• From which we obtain  

• Therefore,         is the projection of the linear transformation      onto 
the Krylov subspace        with respect to the basis    

Krylov subspace techniques
Vm Km

m x m hijHm

AVm = VmHm + hm+1,mvm+1e
T
m

Hm = V T
mAVm

Hm A
Km Vm

Gallopoulos, E. Saad, Y. ICS. 89’, 17—28 (1989).  

Moler, C. Van Loan, C. SIAM Rev. 45, 1 (2003). 

vm+1 V T
mvm+1 = 0 em 2 Im



Krylov subspace techniques
• Given that       is a projection of the linear operator, an 

approximation can be made such that 

• The approximation is exact when the dimension of the 
Krylov subspace is equal to the dimension of the linear 
transformation 

• Error 

Hm

etAv ⇡ ||v||2VmetHme1

||etAv � ||v||2VmetHme1||  2||v||2
(t||A||2)met||A||2

m!
Gallopoulos, E. Saad, Y. ICS. 89’, 17—28 (1989).  

Moler, C. Van Loan, C. SIAM Rev. 45, 1 (2003). 



Krylov subspace techniques
• With this approach: 

• A large sparse matrix problem is approximated by a small 
dense matrix problem 

• There are several methods to evaluate the small dense matrix 
exponential 

• Series methods, ODE methods, diagonalisation, matrix 
decomposition methods… 

• Padè methods 

• This method can be used to compute           and            for the 
Chebyshev approach, very effective

Moler, C. Van Loan, C. SIAM Rev. 45, 1 (2003). 

�min �max



Take-home message #3:  
Krylov subspace methods to evaluate the solution provides 

a more versatile and less restricted approach, at the 
expense of higher computational cost and memory 

consumption



HPC Approach



Relevance and importance 
• A platform for numerical calculations 

• Important for current research 

• Undertake simulations efficiently 

• Quantum physics, CFD, finite-element methods… 

• Establish an instance where HPC approach has 
been used recently in scientific research 



Parallelisation strategy
• The linear operator is sparse (low density) and 

huge (big dimension, i.e, large amount of degrees 
of freedom 

• Approach: 

• Distribute the operator among processing 
elements

y = Ax



Take-home message #4:  
Your numerical evaluation of the exponential integrator 

using matrix functions is only going to be as good as your 
implementation of the sparse matrix-vector product 



Outlook

• Two different approximation methods to target the 
solutions to matrix exponentials, which can be 
interpreted analytically as solutions to a particular 
set of differential equations  

• We will discuss the practical approach using 
techniques, practices and libraries from the HPC 
perspective next session…



Thank you!  


