
Sparse matrix
computations with

common libraries for HPC

Marlon Brenes
brenesnm@tcd.ie

https://www.tcd.ie/Physics/research/groups/qusys/people/navarro/

México, February 2018

mailto:brenesnm@tcd.ie

Outline

• Sparse matrices

• Representation of sparse matrices

• CSR format

• PETSc and SLEPc

• Example of usage

• Case of study: Large scale simulations of unitary
dynamics of quantum systems

Sparse matrices

Sparse matrices (SM)
• A SM is a matrix for which most of the elements are zero

• It is sufficient for the number of non-zero entries to be of
order for the matrix to be considered sparse

• As opposed to this, a dense matrix contains non-zero
entries

O(n)

O(n2)

• Conceptually, a sparse matrix is an object that
represents a system with connections or
interactions

Sparse matrices (SM)

O(n)

1

4

2

5
3

=)

0

BBBB@

0 0 1 1 0
0 1 0 0 1
1 0 0 0 0
1 1 0 0 0
0 0 1 0 0

1

CCCCA

Representation of sparse
matrices

• The objective of a sparse matrix representation is to
store only non-zero elements of the matrix

• There are several ways to represent a sparse matrix

• Each representation provides benefits depending on
the type of operations to be computed on the matrix

Representation of sparse
matrices
• Many types:

• Coordinate format (COO)

• Compressed row format (CSR)

• Compressed column format (CSC)

• Diagonal format (DIA)

• More…

• Performance trade-offs based on operations, lookups and increments

• We will focus on CSR

CSR sparse format
(compressed sparse row)

• Represents the matrix using three one-dimensional
arrays

• Fast matrix-vector products, efficient arithmetic
operations and row-slicing

• Changes in sparsity are expensive, slow column
slicing

0

BB@

1 0 3 0
0 1 2 0
0 4 1 0
0 0 6 1

1

CCA

CSR sparse format
(compressed sparse row)

• Can be represented as follows:

0

BB@

1 0 3 0
0 1 2 0
0 4 1 0
0 0 6 1

1

CCA

value = [nz values sorted by row]

c row = [0, . . . , c row[i] = c row[i - 1] + nnz on row (i - 1)]

column = [column index]

CSR sparse format
(compressed sparse row)

• Can be represented as follows:

0

BB@

1 0 3 0
0 1 2 0
0 4 1 0
0 0 6 1

1

CCA

values = [1 3 1 2 4 1 6 1]

c row = [0 2 4 6 8]

column = [0 2 1 2 1 2 2 3]

Parallel CSR sparse format
(compressed sparse row)

0

BB@

1 0 3 0
0 1 2 0
0 4 1 0
0 0 6 1

1

CCA
Proc 0

Proc 1
Proc 2

..
.

. . .

..
.

PETSc/SLEPc
• HPC library developed by Argonne National Lab

• Devoted to sparse matrix operations with massive parallelism in
mind

• Pure distributed memory parallelism

• Highly tested, solid community of developers and users (over 25 years of
development)

• Profiling tool, clean API

• Low-lying linear algebra operations can be linked using different libraries
(Intel MKL, for instance)

• SLEPc extension for eigenvalue problems (depends on PETSc)

PETSc/SLEPc

• Pro:

• MPI is hidden from the user

• Con:

• MPI is hidden from the user

PETSc/SLEPc

PETSc/SLEPc Krylov subspace method
for matrix functions

Compute lowest and highest
eigenvalue for Chebyshev approach

Steps towards using PETSc for
sparse operations
1. Initialise PETSc environment

2. Allocate memory for sparse matrix

3. Initialise matrix

4. Assemble matrix

5. Allocate and initialise initial vector using same matrix parallel distribution

6. Assemble vectors

7. Call functionality

8. Free memory

9. Close PETSc environment

Allocating memory for a
parallel sparse matrix in PETSc

• Critical step for performance reasons

• One has to compute the number of non-zero
elements that the matrix will contain, or provide an
estimation

• If this step is omitted, there’s a huge performance
penalty related to dynamic increase/resize memory
buffers

Allocating memory for a
parallel sparse matrix in PETSc

0

BB@

1 0 3 0
0 1 2 0
0 4 1 0
0 0 6 1

1

CCA
Proc 0

Proc 1
Proc 2

o nnz

Proc 0

Proc 1

Proc 2

d nnz

[1 1] [1 1]

[1] [1]

[1] [1]

Allocation
buffers

Step 1

Step 2

Step 3

Step 4

Step 6

Step 7

Step 8

Step 9

Case of study: Large scale simulations
of unitary dynamics of quantum systems

i~ @

@t
| (r, t)i = Ĥ| (r, t)i

| (t)i = e�iĤt/~| (t = 0)i w(t) = etAv

Km

Problems when this matrix gets large!

Solution: HPC!

Case of study: Large scale simulations
of unitary dynamics of quantum systems

Indexing of rows overflows 32-bit integers!

PETSc/SLEPc performance on Marconi
A1 for the Krylov subspace approach

0

5

10

15

20

25

30

35

40

1 2 4 8 16 32 64 128

T
im

e
(s
)

Number of nodes

Internode Construction

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

1 2 4 8 16 32 64 128

T
im

e
(s
)

Number of nodes

Internode Evolution
Internode Total

0

5

10

15

20

25

30

35

40

45

50

1 2 4 8 16 32 64 128

T
im

e
(s
)

Number of nodes

Internode Construction

0
500
1000
1500
2000
2500
3000
3500
4000
4500
5000
5500

1 2 4 8 16 32 64 128

T
im

e
(s
)

Number of nodes

Internode Evolution
Internode Total

Figure 5: Strong scaling using a system with L = 28 at half-filling (subspace dimension of 40 116 600) up to t = 100 with
a tolerance of 10�7 for a di↵erent amount of computing nodes: (TOP) using a replicated basis approach, (BOTTOM) using
the node communicator approach, (LEFT) time required for allocation and computation of the Hamiltonian matrix and
(RIGHT) time required for time-evolution procedure and overall walltime

solve a system with size up to L = 34 at half filling using
this approach, although this version is also very useful
on machines with less amount memory per node given
that full replication of the basis is avoided and actual
computation and scalability of the overall application is
not compromised. The actual time evolution of the sys-
tem is unchanged from the replicated basis approach
so Figure 5 shows the same behavior as the previous
version. In Figure 5 it can also be observed that the
increase in time required to construct the Hamiltonian
operator is very small compared to the time evolution of
the system even for this relatively big system size, which
was exactly our goal. Other di↵erent approaches, such
as a systematic re-computation of sections of the basis

to avoid storing this object in memory, proved to be
ine�cient.
Strong scaling behavior for this approach is not linear,

but the results obtained are satisfactory when it comes
to actually solving the problem for a large amount of
processing elements. A flat behavior can be seen at the
transition from 16 to 32 nodes, we believe this could
be related to the network arrangement of the machine
so that communication beyond 16 nodes could be us-
ing di↵erent switches in the interface (higher tree in the
network arrangement); though this would have to be
investigated further in order to ascertain.
Ring exchange approach. — The ring exchange ver-

sion was designed with the purpose to open the possi-

12

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

L=30/2 nodes L=32/8 nodes L=34/32 nodes L=36/128 nodes

T
im

e
(s
)

Number of nodes

Internode Construction
Time Evolution

Figure 6: Running time of the application for the construction of Hamiltonian and time evolution using a di↵erent
problem sizes at half-filling up to t = 100 with a tolerance of 10�7 for a di↵erent amount of computing nodes (Ring
exchange approach)

bility to even larger problem sizes. Recalling the de-
scription in the Implementation section, in this version
no memory replication occurs in the application what-
soever. Memory requirements decrease linearly with in-
creasing number of computing nodes, but time scalabil-
ity is indeed compromised given that a larger amount of
processing elements implicates more overall communi-
cations. So in perspective, a strong scaling view of the
performance like the one shown for the previous devel-
opments is not a meaningful for this approach.

With this version, our goal was to have the ability to
study even larger systems sizes by means of a full distri-
bution of memory and computation overall. To demon-
strate a perspective of the performance accomplished
by this approach we show the time of computation re-
quired in the most important sections of the application
with increasing problem size and processing elements in
Figure 6.

It can be seen that the time to construct the Hamilto-
nian matrix object becomes important as the problem
size increases, up to roughly 10% of the overall compu-
tation time for the larger case (L = 36 at half-filling).
With this approach, most of the communication done

during the construction of the Hamiltonian object oc-
curs inside of the node which is beneficial in general
terms, but when using a large number of processing el-
ements the communication steps start to account for a
considerable percentage of the overall execution time.
Even so, with this approach we were able to solve the

L = 36 at half-filling system; a system that roughly has
a subspace dimension of more than 9 billion elements.
Overall memory occupation. — By using the ap-

proaches described in this paper we have managed to
overcome the problem of basis replication by means
of MPI distribution and communication patterns, how-
ever, a practical limit set by the size of the actual Hamil-
tonian matrix is still present. Table III shows an esti-
mation of the memory required to store the matrix rep-
resentation of the Hamiltonian operator and the overall
memory occupation of the application. The methodol-
ogy of Krylov subspaces requires this matrix representa-
tion to be stored in memory to evaluate the projections
on the subspace, such objects also are required to be
stored internally by the library (SLEPc). The overall
memory occupation presented in Table III during the
time evolution procedure doesn’t include the memory

13

M Brenes, V.K. Varma, A. Scardicchio, I. Girotto. arXiv:1704.02770 (2017).

M Brenes, M. Dalmonte, M. Heyl, A. Scardicchio, Phys. Rev. Lett. 120,030601 (2018)

Final take-home message:
You could use your own implementation of linear

algebra operations, but most likely you’ll be better off
using a good library if you care about performance.

HPC as means to open new avenues in scientific
research.

Thank you!

