Parallel Fast Fourier Transforms

Gavin J. Pringle
Joahcim Hein

» The Fourier Transform
— What, who, why?
— Mathematics and and its inherent properties

» Discrete Fourier Transform

» Fast Fourier Transform, or FFT
» Parallel FFTs

» FFT libraries

» Fastest Fourier Transform in the West
— Configuration, installation, compilation and runtime tuning
— Execution times and other users experiences

Introduction

Fourier Transforms

> Jean Baptiste Joseph Fourier (1768-1830) first
employed what we now call Fourier transforms whilst

working on the theory of heat

— The Fourier transform first appeared in “On the Propagation of Heat in
Solid Bodies”, memoir to Paris Institute, 21 Dec., 1807.

» Mathematical tool which alters the problem to one
which is more easily solved

» Linear transform which converts temporal or spatial
information and converts into information which lies in
the frequency domain

— And visa versa

— Frequency domain also known as Fourier space, Reciprocal space, or
G-space

Pictures of Joseph Fourier

Who would use

Fourier Transforms?

> Physics
— Cosmology (P3M N-body solvers)
— Fluid mechanics
— Quantum physics

— Signal and image processing
* Antenna studies
* Optics

» Numerical analysis

— Linear systems analysis
— Boundary value problems
— Large integer multiplication (Prime finding)

» Statistics

— Random process modelling
— Probability theory

Fourier Transforms

In a nutshell

» All periodic signals may be represented by an
infinite sum of sines and cosines of different

periods and amplitudes. (Fourier’'s Theorem)

— The cosines and sines are associated with the symmetrical and
asymmetric information, respectively

— Any signal can be broken into a sequence of ‘chunks’, where
each chunk may be considered periodic.

» Fourier transforms encode this information via

e’ =cos@+isin @

e O CC The Top Hat function

» The top hat function, along with the individual
st 2nd and 3f0I Fourler components and their

Sum. 2 19*cns{x.f150} 15*n:|:|s{x.-*’80} _—
L1 %cos (x/ 800
-, 19%cos(x/1B0) ——
2 —]
“tophat” u 1:2

0.8 F

0.6 F

/N
0_\// \\/

-0,2
200 1000

The Top Hat function and its

discrete Fourier components

1.2 %5
it — LY — 1.2
(i e
20
1
1
15
0.8
10 0.8
0.6 5
0.6
0.4 o
0.4
-5
0,2
-10 0,2
o
-15 .
-0.2 -20
0 10 zo EY 0 50 60 70 a0 10 100 -20 -15 -10 5 o 5 10 15 20 0.2
0 10 zo EY 0 50 60 70 a0 10 100
1.2 %5
‘it — P2t — 3%
2 "R —
20
1 20
15
15
0.8
10 1
0.6 5 5
N N Ll o
g : T [T
5 -5
0,2
10 -10
) -15
-15
-20
-0.2 -20 -20 -15 -10 -5 0 5 10 15 20
0 10 zo EY 0 50 60 70 a0 10 100 -20 -15 -10 5 o 5 10 15 20
1.2 %5
‘it — F3 —
fres
20
1 —————
15
0.8
10
0.6 5
0.4 o
-5
0,2
-10
o
-15
-0.2 -20

fft-tophat.gif

0,15 F

N

0,05

—0,05

The Fourier transform of a

continuous Top Hat function

¥ zintpikok DS pikok 20—

-B0

—40

-0

Mathematics of the

Fourier Transform

» The Fourier transform of a complex function f (x)
IS given as

F(s)=| f(x)e ™™ dx
» The inverse Fourier transform is given as

fx)= [F(s)e™™ds
» The Fourier pair is defined as

f(x) <=>F(5s)

cSOCC Properties 1: Scaling

» Time scaling

f(at)<:>‘ ‘ (Sj

» Frequency scaling

Vl?\ (tj < F(bs)

cSOCC Properties 2: Shifting

» Time shifting

f(t—1,) < F(s)e*™

» Frequency shifting

f(He ™ < F(s—s,)

Properties 3:

Convolution Theorem

> Say we have two functions, g (t)and h (t),
then the convolution of the two functions is
defined as

g®h=| g(@)h(t-r)dr

» The Fourier transform of the convolution is simply
the product of the individual Fourier transforms

g®h < G(s)H(s)

e O CC Properties 4: Correlation

» The correlation of the two functions is defined by

Corr(g.h)= | g(x+Dh(r)dz

» The Fourier transform of the correlation is simply

Corr(g,h) < G(s)H(—s)

Discrete Fourier Transform

» The discrete Fourier transform of N complex points f, is
defined as
N-1
. 27mkn/ N
F = Z f.e
k=0

» The discrete inverse Fourier transform, which recovers the
set of f, s exactly from F s is

1 N-1
—2mikn/ N
f — Fe mikn
k N n
n=0

» Both the input function and its Fourier transform are periodic

Discrete

Fourier Transform Il

» The DFT can be rewritten as

~ n . n
F =a0+z a, cos| 2k — |+ b,ism| 2xk —
e N N

» Thus, DFT routines are basically returning real number
values for a, and b, , stored in a complex array

- a, and b, are functions of f,

— remaining trigonometric constants (twiddle factors) may be pre-computed
for a given N

» The scaling, shifting, convolution and correlation
relationships, which hold for the continuous case, also hold
for the discrete case.

Fast Fourier Transforms

» What is the computational cost of the DFT?

— Each of the N points of the DFT is calculated in terms of all the N
points in the original function: O(N 2)

> In 1965, J.W. Cooley and J.W. Tukey published an
DFT algorithm which is of O(N log N)

- Nis a power of 2
— FFTs are not limited to powers of 2, however, the order may resort
to O(N 2)
— Details are beyond the scope of this talk
* F(N) = F(N/2)+F(N/2)
 Bit reversal

— In hindsight, faster algorithms were previously, independently
discovered

» Gauss was probably first to use such an algorithm in 1805

e CC Parallel 1D FFT

» Parallelisations of a 1D FFT is hard
» Typically N=~100 in many scientific codes

» Algorithm is hard to decompose

> Literature example:

Franchetti, Voronenko, Plschel, “FFT Program Generation for
Shared Memory: SMP and Multicore”, Paper presented as
SCO06, Tampa, FL
http://sc06.supercomputing.org/schedule/pdf/pap169.pdf

e o CC FFTs in two dimensions

» What needs calculating for a 2D FFT:
o (-2miyy)
exp Hulﬁ

. M (N ke

fib) = SAS [f e (27
y=1 \lz=1 N

» We may compute this in a 2 separate calculations

— as each part is linearly independent

N

flk,y)= %

r=1

ke
flx,y)exp (27 I)

) Mo(- Ly
- £ (o)

y=1

Parallel array transpose

» Assignment of a 4x4 grid to 4 processors for
an array transpose

1
P2
P3
P4

P1 P2 P3 P4

.

2

3

4

10

11

12

S

6

/

8

14

15

16

9

10

11

12

13

14

15

16

Algorithm for distributed 2D FFT

on a 1D grid of processors

» Calculate 1st FFT in first direction

» Perform parallel transpose
— MPI_Alltoall

— Now, what used to be the columns of the original matrix is now
processor local

» Now we may perform the 2nd FFT in second
direction

» Finally, perform parallel transpose back

— Sometimes this last expensive step can be avoided

— Code performs calculations in Fourier space using this new processor
grid

Fourier Transformation of a

3D array

» Definition of the Fourier Transformation of a three
dimensional array 4
Au,v?w c=

X,)5%

L—-1M-1N-1
LWz ()

. UY UL
y: y: y: Ay eXP(_QWIT) exp(—2mi==) exp(—Qfmf)

M
=0 y=0 z=0

1st 1D F'I' along =z

S

2nd 1D F'T along y

-

3rd 1D F'T along x
» Can be performed as three subsequent 1 dimensional

Fourier Transformations

SPOCC Parallel FFT of a 3D array

» Traditionally: 1 dimensional processor grid

» Each processor gets several “planes” (or “slices”)

» Perform FFT in two of the three directions

> Single All-to-all before performing FFT in third direction

Alternatively: 2D processor

grid for 3D FFT

» Each processor gets several “sticks” (or “pencils”) of
the 3D array

» Perform FFT in 1st direction

» Perform All-to-all transformation in the columns of the
processor grid

2D processor grid for 3D

FFT (cont.)

» Perform FFT in the 2nd direction
» Perform All-to-all in the rows of the processor grid
» Perform 3" FFT in the last direction

Performance comparison of 1D

pencils vs 2D slabs: IBM BlueGene/L

Number of nodes

1 10 100 1000 10000
10.0000 = ST S Y 1094° 1D
10242 2D

1.0000 —= 5123 1D

@ —=—51232D
£ 0.1000 —e 256° 1D
5 —— 2563 2D

= . 3

S 0.0100 - 128°1D
0] —e—12832D

] —— 6431D

0.0010 - —— 643 2D

] 323 1D

0.0001 323 2D

» Heike Jagode, MSc thesis, University of Edinburgh, 2006

Pencils vs Slabs

» For 3D data points, users employ 1D or 2D processor grid

— 1D processor grid: sticks/pencils
* More communications
* Requires less memory
* In general, better scalability

— 2D processor grid: slabs/slices
* Less communications
* Requires more memory
» The optimum choice depends on both the problem and the
target platform

> Tip: let the physics be your guide and pick the decomposition
that suits your problem
— Try not to make your code platform-specific

Use of general FFT libraries 1

» FFTs do not normalise

— Each FFT/Inverse FFT pair scales by a factor of N
— Left as an exercise for the programmer.

» DFTs are complex-to-complex transforms,
however, most applications require real-to-

complex transforms

— Simple solution: set imaginary part of input data to be zero
 This will be relatively slow
— Better to pack and unpack data

* Place all the real data into all slots of the input, complex array (of
length (n/2) and then unpack the result on the other side (O(n))

» Around twice as fast as the simple solution
» Good details in Numerical Recipes

— Some libraries have real-to-complex wrappers

Use of general FFT libraries 2

» Multidimensional FFTs
— simply successive FFTs over each dimension
« order immaterial: linearly independent operations
— pack data into 1D array — see practical
— strided FFTs
some libraries have multidimensional FFT wrappers

4 ParaIIeI FFTs

— performing FFT on distributed data

— 1D FFTs are cumbersome to parallelise
 Suitable only for huge N

— parallel, array transpose operation
« distributed data is collated on one processor before FFT
 diagram on next slide

— most FFT libraries have parallel FFT wrappers

Introduction to the FFTW library

» Fastest Fourier Transform in the West
— www.fftw.org

» The FFTW package was developed at MIT by
Matteo Frigo and Steven G. Johnson

» Free under GNU General Public License

» Portable, self-optimising C code
— Runs on a wide range of platforms

» Arbitrary sized FFTs of one or more

dimensions

— Fastest routines where extents are composed of powers of 2,
3, 5 and 7 (other sizes can be optimised for at configuration
time)

FFTWZ2 versus FFTW3

» Previous version: “FFTW2”

— Many legacy codes employ FFTW2

— Simple(r) C interface, with wrappers for many other languages
— Supports MPI

— Rest of this lecture assumes “FFTW2"

» New version: “FFTW3”

— Different interface to FFTW2 — to allow “planner” more
freedom to optimise

» Users must rewrite code
— Doesn’t support MPI (currently in alpha release)

* Most codes implement the parallel transpose, and perform the 1D
FFTs using FFTW

— Somewhat faster than FFTW2 (~10% or more)

Some technical

details of the FFTW2

» Can perform FFTs on distributed data
— MPI for distributed memory platforms
— OpenMP or POSIX for SMPs

> If users rewrite their code to this FFT just once then the
user is saved from
— learning platform dependent, proprietary FFT routines

— rewriting their code every time they port their code
» No standard interface to FFTs

— drastically rewriting their makefiles
* Although the location of FFTW libraries may vary
» FORTRAN wrappers for the majority of routines

— Currently FORTRAN FFTs are not “in-place”

« The input and output arrays must be separate and distinct
— Nor are the strided FFT calls (in FFTW 2)

« The input/output arrays must be contiguous

FFTW2 Plans in a nutshell

» All FFT libraries pre-compute the twiddle factors

» FFTW ‘plans’ also generates the FFT code from

codelets
— Codelets compiled when FFTW configured

» Two forms of plans

— Estimated

« The best numerical routines are guessed, based on information
gleaned from the configuration process.

— Measured

« Different numerical routines are actually run and timed with the fastest
being used for all future FFTW calls using this plan.

» Old plans can be reused or even read from file:
wisdom

Configuration and Installation

» Download library from the website and unpack
(gzipped tar file)

» /configure; make; make install
— Probes the local environment
— Compiles many small C object codes called codelets
— User can provide non-standard compiler optimisation flags

— Libraries (both static and dynamic) are then installed along with
online documentation and header files

> Includes test suite
— Very important for any numerical library

Compiling code

» gfortran fft code.f -03 -1lfftw

— Ifusing C, FFTW must be linked with -1 fftw -1m

— If the FFTW library configured for both single and double precision, then link
with —1sfftw and —-1££ftw, respectively.

» Example FORTRAN code:
integer plan
integer, parameter :: n = 1024
complex in(n), out(n)
! plan the computation
call fftw f£77 create plan(..)
! execute the plan

call fftw f£77 one((..)

— NB: actual correct incantations are not given here as reading documentation
is integral to utilising any numerical library

Performance

» The FFTW homepage, www.fftw.org, details the
performance of the library compared to proprietary FFTs
on a wide range of platforms.

» The FFTW library is faster than any other portable FFT
library

» Comparable with machine-specific libraries provided by
vendors

> Performance results from http://www.fftw.org/speed/

AMD Opteron 275 2.2 GHz

double-precision complex, 1d transforms

powers of two

3000
o—a w3 out-of-place
e fTtw3 in-place
B—8 coura-sgh
7500 w----.a intel-mkl-dtti in-place
E—a intel-mkl-dfti out-of-place
S—d aoml
—s green
— — Lisstht
2000 P
— G -8 bloodworth
&, sciport
= dfftpack
E 1500 rmayer-unstable
=] nurnutils
H monnier
% # - —# mixftt
m-m mpfun?7
1000 & --8 scimark2e
+—+ Cross
m--m esrffi
jmftts
owplib

91

¢

9
BCI
9¢c
cls
Lol
80T
960t
618
F8E91
BOLTE
QEEC9
Pr1C9C

SPCCU VLU s

10000
9500
9000
8500
8000
7500
7000
6500
6000
3500
5000
4500
4000

3500
3000 §

2500
2000

[/

1500 |/ X
10004 &
500 §

double-precision complex, 1d transforms

powers of two

8CI
9¢t

s
il

80T

9E£ES9
CLOIEl

8 1L60T

OTCTLLLYT
CEPPEEEE

Intel Core Duo 3.0 GHz

-

Q==

- dffipack

intel-ipps
intel-rnkl-dfti in-place
w3 out-of-pl ace
w3 in-place
intel-rnkl-dfti out-of-pl ace
tte

ocoura-sgt

w2

spiral-egner-fit

gresn

emayer

gal-rnixed-radix
rpfun20
bloodworth
harm
sciport

ki sttt

MO Nier
nurmnutil s
esrftt
rmix
CID&S
scimark2c
cwplib
jmttte

s o o L e

3500

2500

s
=

r
S
S

speed (mflops)

double-precision complex, 1d transforms

powers of two

CLOlEl

IBM POWERS 1.65 GHz

csslin-place

essl out-of -place
w3 out-of-place
w3 in-place
ooura-sgt

green

- dffipack

sciport
kassftt
bloodworth
Mo nier
arprec
harm
numutils
scimark2c
CTOSS
cwplib
mixftt
esrttt
jmffte
valkenburg

Accolades

» Winner of the 1998 J.H. Wilkinson Prize for Numerical

Software

— awarded every four years to the software that "best addresses all phases
of the preparation of high quality numerical software."

> Quotes from www.fftw.org.
— “It's the best FFT package | have ever seen”

— ‘It performs my standard 256 iterations of 1024pt complex FFT about 20
times faster than the previous one | used.”

— “FFTW is the best thing since microwave popcorn”

» Dr. Richard Field

— Former Vice-principal of University of Edinburgh and Chairman of NAG

— “I'think FFTW is terrific. It's the best piece of software I've seen written in
a bunch of years. [...] | give FFTW very high marks (probably as high
marks as | would ever give).”

Summary

» Introduced both the continuous and discrete forms of
the Fourier Transform

» Stated the translation theorems of the Fourier
transform
— Scaling, Shifting, Convolution and Correlation

» Fast Fourier Transform
» Parallel FFTs
> FFTW

— Fast, robust and portable

— FORTRAN and C, serial and parallel.

— Simple to use

— Recommended and used in major projects by EPCC

> Any questions?

» gavin@epcc.ed.ac.uk

