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Introduction

The Fourier Transform
What, who, why?
Mathematics and and its inherent properties

Discrete Fourier Transform
Fast Fourier Transform, or FFT
Parallel FFTs
FFT libraries
Fastest Fourier Transform in the West

Configuration, installation, compilation and runtime tuning
Execution times and other users experiences



Fourier Transforms

Jean Baptiste Joseph Fourier (1768-1830) first 
employed what we now call Fourier transforms whilst 
working on the theory of heat

Mathematical tool which alters the problem to one 
which is more easily solved
Linear transform which converts temporal or spatial 
information and converts into information which lies in 
the frequency domain

And visa versa
Frequency domain also known as Fourier space, Reciprocal space, or 
G-space



Pictures of Joseph Fourier



Who would use            
Fourier Transforms?

Physics
Cosmology (P3M N-body solvers)
Fluid mechanics
Quantum physics
Signal and image processing

Antenna studies
Optics

Numerical analysis
Linear systems analysis
Boundary value problems
Large integer multiplication (Prime finding)

Statistics
Random process modelling
Probability theory



Fourier Transforms 
in a nutshell

All periodic signals may be represented by an 
infinite sum of sines and cosines of different 

The cosines and sines are associated with the symmetrical and 
asymmetric information, respectively

each chunk may be considered periodic.

Fourier transforms encode this information via

sincos iei



The Top Hat function

The top hat function, along with the individual 
1st, 2nd and 3rd Fourier components and their 
sum.



animation

The Top Hat function and its
discrete Fourier components

fft-tophat.gif


The Fourier transform of a 
continuous Top Hat function



The Fourier transform of a complex function f ( x )
is given as

The inverse Fourier transform is given as

The Fourier pair is defined as

Mathematics of the 
Fourier Transform
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Properties 1: Scaling

Time scaling

Frequency scaling
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Properties 2: Shifting

Time shifting

Frequency shifting
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Properties 3: 
Convolution Theorem

Say we have two functions, g ( t ) and h ( t ),
then the convolution of the two functions is 
defined as

The Fourier transform of the convolution is simply 
the product of the individual Fourier transforms
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Properties 4: Correlation

The correlation of the two functions is defined by

The Fourier transform of the correlation is simply 
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The discrete Fourier transform of N complex points fk is 
defined as

The discrete inverse Fourier transform, which recovers the 
set of fk s exactly from Fns is

Both the input function and its Fourier transform are periodic

Discrete Fourier Transform
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Discrete 
Fourier Transform II

The DFT can be rewritten as

Thus, DFT routines are basically returning real number 
values for ak and bk , stored in a complex array 

ak and bk are functions of fk
remaining trigonometric constants (twiddle factors) may be pre-computed 
for a given N

The scaling, shifting, convolution and correlation 
relationships, which hold for the continuous case, also hold 
for the discrete case.
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Fast Fourier Transforms
What is the computational cost of the DFT?

Each of the N points of the DFT is calculated in terms of all the N 
points in the original function: O( N 2 )

In 1965, J.W. Cooley and J.W. Tukey published an 
DFT algorithm which is of O(N log N)

N is a power of 2
FFTs are not limited to powers of 2, however, the order may resort 
to O( N 2 )
Details are beyond the scope of this talk

F(N) = F(N/2)+F(N/2)
Bit reversal

In hindsight, faster algorithms were previously, independently 
discovered

Gauss was probably first to use such an algorithm in 1805



Parallel 1D FFT

Parallelisations of a 1D FFT is hard
Typically N 100 in many scientific codes
Algorithm is hard to decompose
Literature example:
Franchetti, Voronenko, Püschel

SC06, Tampa, FL 
http://sc06.supercomputing.org/schedule/pdf/pap169.pdf



What needs calculating for a 2D FFT:

We may compute this in a 2 separate calculations
as each part is linearly independent

FFTs in two dimensions



Parallel array transpose

Assignment of a 4x4 grid to 4 processors for 
an array transpose 
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Algorithm for distributed 2D FFT 
on a 1D grid of processors

Calculate 1st FFT in first direction
Perform parallel transpose

MPI_Alltoall
Now, what used to be the columns of the original matrix is now 
processor local 

Now we may perform the 2nd FFT in second 
direction
Finally, perform parallel transpose back

Sometimes this last expensive step can be avoided
Code performs calculations in Fourier space using this new processor 
grid



Definition of the Fourier Transformation of a three 
dimensional array Ax,y,z

Can be performed as three subsequent 1 dimensional 
Fourier Transformations

Fourier Transformation of a 
3D array



Parallel FFT of a 3D array
Traditionally: 1 dimensional processor grid
Each processor gets several 
Perform FFT in two of the three directions
Single All-to-all before performing FFT in third direction  



Alternatively: 2D processor 
grid for 3D FFT

of 
the 3D array
Perform FFT in 1st direction
Perform All-to-all transformation in the columns of the 
processor grid



2D processor grid for 3D 
FFT (cont.)

Perform FFT in the 2nd direction
Perform All-to-all in the rows of the processor grid
Perform 3rd FFT in the last direction



Performance comparison of 1D 
pencils vs 2D slabs: IBM BlueGene/L
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Pencils vs Slabs
For 3D data points, users employ 1D or 2D processor grid

1D processor grid: sticks/pencils
More communications
Requires less memory
In general, better scalability

2D processor grid: slabs/slices
Less communications
Requires more memory

The optimum choice depends on both the problem and the 
target platform
Tip: let the physics be your guide and pick the decomposition 
that suits your problem

Try not to make your code platform-specific



Use of general FFT libraries 1

FFTs do not normalise
Each FFT/Inverse FFT pair scales by a factor of N
Left as an exercise for the programmer.

DFTs are complex-to-complex transforms, 
however, most applications require real-to-
complex transforms

Simple solution: set imaginary part of input data to be zero
This will be relatively slow

Better to pack and unpack data
Place all the real data into all slots of the input, complex array (of 
length (n/2) and then unpack the result on the other side ( O(n) )
Around twice as fast as the simple solution
Good details in Numerical Recipes

Some libraries have real-to-complex wrappers



Use of general FFT libraries 2

Multidimensional FFTs
simply successive FFTs over each dimension

order immaterial: linearly independent operations
pack data into 1D array see practical
strided FFTs
some libraries have multidimensional FFT wrappers

Parallel FFTs 
performing FFT on distributed data
1D FFTs are cumbersome to parallelise 

Suitable only for huge N
parallel, array transpose operation

distributed data is collated on one processor before FFT
diagram on next slide

most FFT libraries have parallel FFT wrappers



Introduction to the FFTW library

Fastest Fourier Transform in the West
www.fftw.org

The FFTW package was developed at MIT by 
Matteo Frigo and Steven G. Johnson
Free under GNU General Public License
Portable, self-optimising C code

Runs on a wide range of platforms
Arbitrary sized FFTs of one or more 
dimensions 

Fastest routines where extents are composed of powers of 2, 
3, 5 and  7 (other sizes can be optimised for at configuration 
time)



FFTW2 versus FFTW3

Many legacy codes employ FFTW2
Simple(r) C interface, with wrappers for many other languages
Supports MPI

Different interface to FFTW2 to allow more 
freedom to optimise

Users must rewrite code

Most codes implement the parallel transpose, and perform the 1D 
FFTs using FFTW

Somewhat faster than FFTW2 (~10% or more)



Some technical              
details of the FFTW2

Can perform FFTs on distributed data
MPI for distributed memory platforms
OpenMP or POSIX for SMPs

If users rewrite their code to this FFT just once then the 
user is saved from

learning platform dependent, proprietary FFT routines
rewriting their code every time they port their code

No standard interface to FFTs
drastically rewriting their makefiles

Although the location of FFTW libraries may vary

FORTRAN wrappers for the majority of routines
-

The input and output arrays must be separate and distinct
Nor are the strided FFT calls (in FFTW 2)

The input/output arrays must be contiguous



FFTW2 Plans in a nutshell

All FFT libraries pre-compute the twiddle factors

codelets
Codelets compiled when FFTW configured

Two forms of plans
Estimated

The best numerical routines are guessed, based on information 
gleaned from the configuration process.

Measured
Different numerical routines are actually run and timed with the fastest 
being used for all future FFTW calls using this plan.

Old plans can be reused or even read from file: 
wisdom



Configuration and Installation

Download library from the website and unpack 
(gzipped tar file)
./configure;;  make;;  make  install

Probes the local environment 
Compiles many small C object codes called codelets
User can provide non-standard compiler optimisation flags
Libraries (both static and dynamic) are then installed along with 
online documentation and header files

Includes test suite
Very important for any numerical library



Compiling code

gfortran fft_code.f O3   lfftw
If using C, FFTW must be linked with lfftw lm
If the FFTW library configured for both single and double precision, then link 
with lsfftw and lfftw, respectively.

Example FORTRAN code:
integer  plan
integer,  parameter  ::  n  =  1024
complex  in(n),  out(n)
!  plan  the  computation

!  execute  the  plan

NB: actual correct incantations are not given here as reading documentation 
is integral to utilising any numerical library



Performance

The FFTW homepage, www.fftw.org, details the 
performance of the library compared to proprietary FFTs 
on a wide range of platforms.
The FFTW library is faster than any other portable FFT 
library
Comparable with machine-specific libraries provided by 
vendors

Performance results from http://www.fftw.org/speed/



AMD Opteron 275 2.2 GHz



Intel Core Duo 3.0 GHz



IBM POWER5 1.65 GHz



Accolades
Winner of the 1998 J.H. Wilkinson Prize for Numerical 
Software 

awarded every four years to the software that "best addresses all phases 
of the preparation of high quality numerical software." 

Quotes from www.fftw.org. 

Dr. Richard Field
Former Vice-principal of University of Edinburgh and Chairman of NAG



Summary

Introduced both the continuous and discrete forms of 
the Fourier Transform
Stated the translation theorems of the Fourier 
transform

Scaling, Shifting, Convolution and Correlation
Fast Fourier Transform
Parallel FFTs
FFTW

Fast, robust and portable
FORTRAN and C, serial and parallel.
Simple to use
Recommended and used in major projects by EPCC



Thank you

Any questions?

gavin@epcc.ed.ac.uk


