
Parallel Fast Fourier Transforms

Gavin J. Pringle
Joahcim Hein

Introduction

The Fourier Transform
What, who, why?
Mathematics and and its inherent properties

Discrete Fourier Transform
Fast Fourier Transform, or FFT
Parallel FFTs
FFT libraries
Fastest Fourier Transform in the West

Configuration, installation, compilation and runtime tuning
Execution times and other users experiences

Fourier Transforms

Jean Baptiste Joseph Fourier (1768-1830) first
employed what we now call Fourier transforms whilst
working on the theory of heat

Mathematical tool which alters the problem to one
which is more easily solved
Linear transform which converts temporal or spatial
information and converts into information which lies in
the frequency domain

And visa versa
Frequency domain also known as Fourier space, Reciprocal space, or
G-space

Pictures of Joseph Fourier

Who would use
Fourier Transforms?

Physics
Cosmology (P3M N-body solvers)
Fluid mechanics
Quantum physics
Signal and image processing

Antenna studies
Optics

Numerical analysis
Linear systems analysis
Boundary value problems
Large integer multiplication (Prime finding)

Statistics
Random process modelling
Probability theory

Fourier Transforms
in a nutshell

All periodic signals may be represented by an
infinite sum of sines and cosines of different

The cosines and sines are associated with the symmetrical and
asymmetric information, respectively

each chunk may be considered periodic.

Fourier transforms encode this information via

sincos iei

The Top Hat function

The top hat function, along with the individual
1st, 2nd and 3rd Fourier components and their
sum.

animation

The Top Hat function and its
discrete Fourier components

fft-tophat.gif

The Fourier transform of a
continuous Top Hat function

The Fourier transform of a complex function f (x)
is given as

The inverse Fourier transform is given as

The Fourier pair is defined as

Mathematics of the
Fourier Transform

dxexfsF xsi2)()(

dsesFxf xsi2)()(

)()(sFxf

Properties 1: Scaling

Time scaling

Frequency scaling

a
sF

a
atf 1)(

)(1 bsF
b
tf

b

Properties 2: Shifting

Time shifting

Frequency shifting

02
0)()(istesFttf

)()(0
2 0 ssFetf tis

Properties 3:
Convolution Theorem

Say we have two functions, g (t) and h (t),
then the convolution of the two functions is
defined as

The Fourier transform of the convolution is simply
the product of the individual Fourier transforms

dthghg)()(

)()(sHsGhg

Properties 4: Correlation

The correlation of the two functions is defined by

The Fourier transform of the correlation is simply

dhtghgCorr)()(),(

)()(),(sHsGhgCorr

The discrete Fourier transform of N complex points fk is
defined as

The discrete inverse Fourier transform, which recovers the
set of fk s exactly from Fns is

Both the input function and its Fourier transform are periodic

Discrete Fourier Transform

1

0

/2
N

k

Nikn
kn efF

1

0

/21 N

n

Nikn
nk eF

N
f

Discrete
Fourier Transform II

The DFT can be rewritten as

Thus, DFT routines are basically returning real number
values for ak and bk , stored in a complex array

ak and bk are functions of fk
remaining trigonometric constants (twiddle factors) may be pre-computed
for a given N

The scaling, shifting, convolution and correlation
relationships, which hold for the continuous case, also hold
for the discrete case.

1

1
0 2sin2cos

N

k
kkn N

nkib
N
nkaaF

Fast Fourier Transforms
What is the computational cost of the DFT?

Each of the N points of the DFT is calculated in terms of all the N
points in the original function: O(N 2)

In 1965, J.W. Cooley and J.W. Tukey published an
DFT algorithm which is of O(N log N)

N is a power of 2
FFTs are not limited to powers of 2, however, the order may resort
to O(N 2)
Details are beyond the scope of this talk

F(N) = F(N/2)+F(N/2)
Bit reversal

In hindsight, faster algorithms were previously, independently
discovered

Gauss was probably first to use such an algorithm in 1805

Parallel 1D FFT

Parallelisations of a 1D FFT is hard
Typically N 100 in many scientific codes
Algorithm is hard to decompose
Literature example:
Franchetti, Voronenko, Püschel

SC06, Tampa, FL
http://sc06.supercomputing.org/schedule/pdf/pap169.pdf

What needs calculating for a 2D FFT:

We may compute this in a 2 separate calculations
as each part is linearly independent

FFTs in two dimensions

Parallel array transpose

Assignment of a 4x4 grid to 4 processors for
an array transpose

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

1 2 3 4
5 6 7 8
9 10 11 12

13 14 15 16

P1

P3
P4

P1

P2

P2 P3 P4

Algorithm for distributed 2D FFT
on a 1D grid of processors

Calculate 1st FFT in first direction
Perform parallel transpose

MPI_Alltoall
Now, what used to be the columns of the original matrix is now
processor local

Now we may perform the 2nd FFT in second
direction
Finally, perform parallel transpose back

Sometimes this last expensive step can be avoided
Code performs calculations in Fourier space using this new processor
grid

Definition of the Fourier Transformation of a three
dimensional array Ax,y,z

Can be performed as three subsequent 1 dimensional
Fourier Transformations

Fourier Transformation of a
3D array

Parallel FFT of a 3D array
Traditionally: 1 dimensional processor grid
Each processor gets several
Perform FFT in two of the three directions
Single All-to-all before performing FFT in third direction

Alternatively: 2D processor
grid for 3D FFT

of
the 3D array
Perform FFT in 1st direction
Perform All-to-all transformation in the columns of the
processor grid

2D processor grid for 3D
FFT (cont.)

Perform FFT in the 2nd direction
Perform All-to-all in the rows of the processor grid
Perform 3rd FFT in the last direction

Performance comparison of 1D
pencils vs 2D slabs: IBM BlueGene/L

0.0001

0.0010

0.0100

0.1000

1.0000

10.0000
1 10 100 1000 10000

Number of nodes

E
xe

cu
tio

n
tim

es

1024³ 1D
1024³ 2D
512³ 1D
512³ 2D
256³ 1D
256³ 2D
128³ 1D
128³ 2D
64³ 1D
64³ 2D
32³ 1D
32³ 2D

Heike Jagode, MSc thesis, University of Edinburgh, 2006

Pencils vs Slabs
For 3D data points, users employ 1D or 2D processor grid

1D processor grid: sticks/pencils
More communications
Requires less memory
In general, better scalability

2D processor grid: slabs/slices
Less communications
Requires more memory

The optimum choice depends on both the problem and the
target platform
Tip: let the physics be your guide and pick the decomposition
that suits your problem

Try not to make your code platform-specific

Use of general FFT libraries 1

FFTs do not normalise
Each FFT/Inverse FFT pair scales by a factor of N
Left as an exercise for the programmer.

DFTs are complex-to-complex transforms,
however, most applications require real-to-
complex transforms

Simple solution: set imaginary part of input data to be zero
This will be relatively slow

Better to pack and unpack data
Place all the real data into all slots of the input, complex array (of
length (n/2) and then unpack the result on the other side (O(n))
Around twice as fast as the simple solution
Good details in Numerical Recipes

Some libraries have real-to-complex wrappers

Use of general FFT libraries 2

Multidimensional FFTs
simply successive FFTs over each dimension

order immaterial: linearly independent operations
pack data into 1D array see practical
strided FFTs
some libraries have multidimensional FFT wrappers

Parallel FFTs
performing FFT on distributed data
1D FFTs are cumbersome to parallelise

Suitable only for huge N
parallel, array transpose operation

distributed data is collated on one processor before FFT
diagram on next slide

most FFT libraries have parallel FFT wrappers

Introduction to the FFTW library

Fastest Fourier Transform in the West
www.fftw.org

The FFTW package was developed at MIT by
Matteo Frigo and Steven G. Johnson
Free under GNU General Public License
Portable, self-optimising C code

Runs on a wide range of platforms
Arbitrary sized FFTs of one or more
dimensions

Fastest routines where extents are composed of powers of 2,
3, 5 and 7 (other sizes can be optimised for at configuration
time)

FFTW2 versus FFTW3

Many legacy codes employ FFTW2
Simple(r) C interface, with wrappers for many other languages
Supports MPI

Different interface to FFTW2 to allow more
freedom to optimise

Users must rewrite code

Most codes implement the parallel transpose, and perform the 1D
FFTs using FFTW

Somewhat faster than FFTW2 (~10% or more)

Some technical
details of the FFTW2

Can perform FFTs on distributed data
MPI for distributed memory platforms
OpenMP or POSIX for SMPs

If users rewrite their code to this FFT just once then the
user is saved from

learning platform dependent, proprietary FFT routines
rewriting their code every time they port their code

No standard interface to FFTs
drastically rewriting their makefiles

Although the location of FFTW libraries may vary

FORTRAN wrappers for the majority of routines
-

The input and output arrays must be separate and distinct
Nor are the strided FFT calls (in FFTW 2)

The input/output arrays must be contiguous

FFTW2 Plans in a nutshell

All FFT libraries pre-compute the twiddle factors

codelets
Codelets compiled when FFTW configured

Two forms of plans
Estimated

The best numerical routines are guessed, based on information
gleaned from the configuration process.

Measured
Different numerical routines are actually run and timed with the fastest
being used for all future FFTW calls using this plan.

Old plans can be reused or even read from file:
wisdom

Configuration and Installation

Download library from the website and unpack
(gzipped tar file)
./configure;; make;; make install

Probes the local environment
Compiles many small C object codes called codelets
User can provide non-standard compiler optimisation flags
Libraries (both static and dynamic) are then installed along with
online documentation and header files

Includes test suite
Very important for any numerical library

Compiling code

gfortran fft_code.f O3 lfftw
If using C, FFTW must be linked with lfftw lm
If the FFTW library configured for both single and double precision, then link
with lsfftw and lfftw, respectively.

Example FORTRAN code:
integer plan
integer, parameter :: n = 1024
complex in(n), out(n)
! plan the computation

! execute the plan

NB: actual correct incantations are not given here as reading documentation
is integral to utilising any numerical library

Performance

The FFTW homepage, www.fftw.org, details the
performance of the library compared to proprietary FFTs
on a wide range of platforms.
The FFTW library is faster than any other portable FFT
library
Comparable with machine-specific libraries provided by
vendors

Performance results from http://www.fftw.org/speed/

AMD Opteron 275 2.2 GHz

Intel Core Duo 3.0 GHz

IBM POWER5 1.65 GHz

Accolades
Winner of the 1998 J.H. Wilkinson Prize for Numerical
Software

awarded every four years to the software that "best addresses all phases
of the preparation of high quality numerical software."

Quotes from www.fftw.org.

Dr. Richard Field
Former Vice-principal of University of Edinburgh and Chairman of NAG

Summary

Introduced both the continuous and discrete forms of
the Fourier Transform
Stated the translation theorems of the Fourier
transform

Scaling, Shifting, Convolution and Correlation
Fast Fourier Transform
Parallel FFTs
FFTW

Fast, robust and portable
FORTRAN and C, serial and parallel.
Simple to use
Recommended and used in major projects by EPCC

Thank you

Any questions?

gavin@epcc.ed.ac.uk

