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Why Does GPU Accelerate Computing?

* Highly scalable design
* Higher aggregate memory bandwidth
 Huge number of low frequency cores

* Higher aggregate computational power

* Massively parallel processors for data
processing
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Why Does GPU Not Accelerate Computing?

e PCI Bus bottleneck
* Synchronization weakness
* Extremely slow serialized execution
* High complexity
— SPMD(T) + SIMD & Memory Model

 People forget about the Amdahl’s law

— accelerating only the 50% of the original code, the
expected speedup can get at most a value of 2!!
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What is CUDA?

 NVIDIA compute architecture

« Software development capability provided free of
charge by NVIDIA

« Cand C++ programming language extension that
simplifies creation of efficient applications for CUDA-
enabled GPGPUs

 Available for Linux, Windows and Mac OS X



#fdefine N (2048 * 2048)

#define THREADS PER BLOCK 512

int main( void ) {
int *a, *b, *c; // host copies of a, b, c
int *dev_a, *dev_b, *dev _c; // device copies of a, b, c
int size = N * sizeof( int ); // we need space for N integers

// allocate device copies of a, b, c
cudaMalloc( (void**) &dev_a, size );
cudaMalloc( (void**) &dev b, size );

cudaMalloc( (void**)&dev c, size ); Me et,@ F, S’ u m

a (int*)malloc( size ) ;

b = (int*)malloc( size );
c = (int*)malloc( size );

on GRU
random ints( a, N ); -

random ints( b, N );

// copy inputs to device

cudaMemcpy ( dev_a, a, size, cudaMemcpyHostToDevice ) ;
cudaMemcpy ( dev_b, b, size, cudaMemcpyHostToDevice ) ;
// launch add() kernel with blocks and threads

add<<< N/THREADS PER BLOCK, THREADS PER BLOCK >>>(dev_a, dev_b, dev c);
// copy device result back to host copy of c
cudaMemcpy( ¢, dev_c, size, cudaMemcpyDeviceToHost ) ;
free( a ); free( b ); free( c );

cudaFree( dev_a );

cudaFree( dev_b );

cudaFree( dev_c );

return O;
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Directive Based Approaches: OpenACC

* Implementations available now from PGI,
Cray, and GCC

e Same source can be used to generate code for
CPU and GPU

* Easier development
* Less flexibility



#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int main( int argc, char* argv[] )

{
int n = 10000;

dourte sraetzics Vector Sum

double *restrict c;

size_t bytes = n*sizeof (double) ; @BU
a = (double*)malloc (bytes) ; 0 n

[
b (double*)malloc (bytes) ; =

c = (double*)malloc (bytes) ;
// Initialize content of input vectors, vector a[i] = sin(i)”*2 vector b[i] = cos(i)*2
int 1i;
for (i=0; i<n; i++) {
a[i] = sin(i)*sin(1i) ;
b[i] = cos (i) *cos (i) ;

}

// sum component wise and save result into vector c
#fpragma acc kernels copyin(a[0:n],b[0:n]), copyout(c[0:n])
for (i=0; i<n; i++) {
c[i] = a[i] + b[i];
}
free(a);
free (b) ;
free(c) ;

return O;
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Directive Based Approaches: OpenMP
 The APl V4.5 describes OpenMP pragma for
GPUs

At the moment IBM is the only main compiler
supporting it (see http://www.openmp.org/
resources/openmp-compilers/)

* |deally works with same model of OpenACC
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CUDA Fortran

 PGI/ NVIDIA collaboration

 Same CUDA programming model as CUDA-C with Fortran syntax
* Variables with device-type reside in GPUmemory

 Use standard allocate, deallocate

* Copy between CPU and GPU with assignment statements:
GPU _array = CPU_array

» Kernel loop directives (CUF Kernels) to parallelize loops with
device data
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GPUs platforms for HPC

* Deploy balanced and cost effective GPUs based
platforms is still really hard these days

* Management, usage and SW development for add on
accelerated platform requires skills and expertise

 The NVLINK promises delivers high bandwidth
between GPUs but only IBM supports NVILINK
connection GPU/CPU

* General purpose high-density GPU based solution are
limited to specific cases
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GPU SW Development and Applications

* GPU based technology platforms evolve rapidly

* New features are often disruptive and requires
effort for software optimization

e Efficient GPU code requires constant update and
maintenance (today really much true for CPU SW
too)

* Few remarks on GPU based SW for scientific
computing



