The Abdus Salam
International Centre
(CTP for Theoretical Physics

Overview on GPU Accelerators and
Programming Paradigms

Ivan Girotto — igirotto@ictp.it
Information & Communication Technology Section (ICTS)
International Centre for Theoretical Physics (ICTP)

lllllll Salam
International Centre
(:CTP) for Theoretical Physics

el

Multiple Socket CPUs

The Abdus Salam
> International Centre
(CTP for Theoretical Physics

AL Ll

Memory Dimms Memory Dimms

The Abdus Salam

International Centre

for Theoretical Physics

“ The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again

The Abdus Salam C @ Y
International Centre o
(CTP for Theoretical Physics A

Application Code

< (1 Rest of Sequential

CPU Code

Compute-Intensive Functions

The Abdus Salam

International Centre o
(CTP for Theoretical Physics

_ b @

B

gt
i

1. Copy Data 2. Launch Kernel

‘ 4. Copy Result
3. Execute

Device Memory GPU kernel

h

Ivan Girotto igirotto@ictp.it Overview on GPU Accelerators and Programming Paradigms 6

Y ~110/120 GByte

The Abdus Salam

International Centre
(CTP for Theoretical Physics

Why Does GPU Accelerate Computing?

* Highly scalable design
* Higher aggregate memory bandwidth
 Huge number of low frequency cores

* Higher aggregate computational power

* Massively parallel processors for data
processing

The Abdus Salam

International Centre :
(CTP for Theoretical Physics

SMX Processor & W

Warp Scheduler Warp Scheduler
D Di
<z -

Register File (65,536 x 32-bit)

3 4+ 3 3 3 3 3
Core - LosT SFU Core Core Core - Core Lo/ST

Core - Lo/sT SFU (Core Core Core - Core Lo/ST
Core - LosT SFU Core Core Core - Core LoIST
Core - Lo/sT SFU (Core Core Core - Core LD/ST
Core - Lo/sT SFU Core Core Core - Core LoiST
Core - Lo/sT SFU [Core Core Core - Core

Core - Lo/sT SFU [Core Core Core: - Core LDIST
Core - LO/ST SFU Core Core Core - Core LoIST
Core - Lo/sT SFU Core Core Core - Core

Core - Lo/sT SFU Core Core Core: - Core

Core - LosT SFU Core Core Core - Core LD/ST
Core - Lo/sT SFU Core Core Core - Core LoiST
Core - LO/ST SFU Core Core Core - Core LDIST
Core - Lo/sT SFU (Core Core Core - Core LoIST

CUDA Core

SFU Core Core Core - Core LoiST

SFU Core Core Core - Core LoisT Opjrand Collei:tor

SMX

Result Queue

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Why Does GPU Not Accelerate Computing?

e PCI Bus bottleneck
* Synchronization weakness
* Extremely slow serialized execution
* High complexity
— SPMD(T) + SIMD & Memory Model

 People forget about the Amdahl’s law

— accelerating only the 50% of the original code, the
expected speedup can get at most a value of 2!!

The Abdus Salam
International Centre
(CTP for Theoretical Physics

What is CUDA?

 NVIDIA compute architecture

« Software development capability provided free of
charge by NVIDIA

« Cand C++ programming language extension that
simplifies creation of efficient applications for CUDA-
enabled GPGPUs

 Available for Linux, Windows and Mac OS X

#fdefine N (2048 * 2048)

#define THREADS PER BLOCK 512

int main(void) {
int *a, *b, *c; // host copies of a, b, c
int *dev_a, *dev_b, *dev _c; // device copies of a, b, c
int size = N * sizeof(int); // we need space for N integers

// allocate device copies of a, b, c
cudaMalloc((void**) &dev_a, size);
cudaMalloc((void**) &dev b, size);

cudaMalloc((void**)&dev c, size); Me et,@ F, S’ u m

a (int*)malloc(size) ;

b = (int*)malloc(size);
c = (int*)malloc(size);

on GRU
random ints(a, N); -

random ints(b, N);

// copy inputs to device

cudaMemcpy (dev_a, a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (dev_b, b, size, cudaMemcpyHostToDevice) ;
// launch add() kernel with blocks and threads

add<<< N/THREADS PER BLOCK, THREADS PER BLOCK >>>(dev_a, dev_b, dev c);
// copy device result back to host copy of c
cudaMemcpy(¢, dev_c, size, cudaMemcpyDeviceToHost) ;
free(a); free(b); free(c);

cudaFree(dev_a);

cudaFree(dev_b);

cudaFree(dev_c);

return O;

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Directive Based Approaches: OpenACC

* Implementations available now from PGI,
Cray, and GCC

e Same source can be used to generate code for
CPU and GPU

* Easier development
* Less flexibility

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

int main(int argc, char* argv[])

{
int n = 10000;

dourte sraetzics Vector Sum

double *restrict c;

size_t bytes = n*sizeof (double) ; @BU
a = (double*)malloc (bytes) ; 0 n

[
b (double*)malloc (bytes) ; =

c = (double*)malloc (bytes) ;
// Initialize content of input vectors, vector a[i] = sin(i)”*2 vector b[i] = cos(i)*2
int 1i;
for (i=0; i<n; i++) {
a[i] = sin(i)*sin(1i) ;
b[i] = cos (i) *cos (i) ;

}

// sum component wise and save result into vector c
#fpragma acc kernels copyin(a[0:n],b[0:n]), copyout(c[0:n])
for (i=0; i<n; i++) {
c[i] = a[i] + b[i];
}
free(a);
free (b) ;
free(c) ;

return O;

The Abdus Salam
International Centre
(CTP for Theoretical Physics

Directive Based Approaches: OpenMP
 The APl V4.5 describes OpenMP pragma for
GPUs

At the moment IBM is the only main compiler
supporting it (see http://www.openmp.org/
resources/openmp-compilers/)

* |deally works with same model of OpenACC

The Abdus Salam
International Centre
(CTP for Theoretical Physics

CUDA Fortran

 PGI/ NVIDIA collaboration

 Same CUDA programming model as CUDA-C with Fortran syntax
* Variables with device-type reside in GPUmemory

 Use standard allocate, deallocate

* Copy between CPU and GPU with assignment statements:
GPU _array = CPU_array

» Kernel loop directives (CUF Kernels) to parallelize loops with
device data

The Abdus Salam

(CTP) International Centre

for Theoretical Physics

CPU & GPU

NUMANode P#0 (16GB)
Socket P#0
L3 (20MB)
M\ | \ L L L2 L2 L 2
l L L Ll Ll L L1
L L Ll Ll Ll L1 L1
Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P£6 Core P#7
PUP#0 PUP#] PUP#2 PUP#3 PUP#4 PUP#5 PUPE£6 PUP#7

The Intel Xeon E5-2665
Sandy Bridge-EP 2.4GHz

The Abdus Salam

(CTP) International Centre

for Theoretical Physics

CPU & GPU

NUMANode P#0 (16GB)

Socket P#0

L3 (20MB)

—T m—

Core P#0 Core

PUP#0 PUI

The Intel Xeon E5-2665
Sandy Bridge-EP 2.4GHz

The Abdus Salam

(CTP) International Centre

for Theoretical Physics

CPU & GPU

NUMANode P#0 (16GB)
Socket P#0
L3 (20MB)
I Il 8] Il Ll Il 8]
- B
J1 J L J |
Core P#0 Core P21 Core P#2 Core P#3 Core P£4 Core P#5 Core P£6 Core P#7
PUP#0 PUP#] PUP#2 PUP#3 PUP#4 PUP#5 PUPE6R PUP#7

The Intel Xeon E5-2665
Sandy Bridge-EP 2.4GHz

The Abdus Salam
International Centre
(CTP for Theoretical Physics

GPUs platforms for HPC

* Deploy balanced and cost effective GPUs based
platforms is still really hard these days

* Management, usage and SW development for add on
accelerated platform requires skills and expertise

 The NVLINK promises delivers high bandwidth
between GPUs but only IBM supports NVILINK
connection GPU/CPU

* General purpose high-density GPU based solution are
limited to specific cases

The Abdus Salam
International Centre
(CTP for Theoretical Physics

GPU SW Development and Applications

* GPU based technology platforms evolve rapidly

* New features are often disruptive and requires
effort for software optimization

e Efficient GPU code requires constant update and
maintenance (today really much true for CPU SW
too)

* Few remarks on GPU based SW for scientific
computing

