
Overview	on	GPU	Accelerators	and	
Programming	Paradigms		

Ivan	Giro7o	–	igiro7o@ictp.it	
Informa(on	&		Communica(on	Technology	Sec(on	(ICTS)	

Interna(onal	Centre	for	Theore(cal	Physics	(ICTP)			



Mul(ple	Socket	CPUs	

Ivan	GiroAo			igiroAo@ictp.it	 Overview	on	GPU	Accelerators	and	Programming	Paradigms		 2	



Mul(ple	Socket	CPUs	+	Accelerators	

Ivan	GiroAo			igiroAo@ictp.it	 Overview	on	GPU	Accelerators	and	Programming	Paradigms		 3	



The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.



The	General	Concept	of	Accelerated	Compu(ng		

Ivan	GiroAo			igiroAo@ictp.it	 Overview	on	GPU	Accelerators	and	Programming	Paradigms		 5	



2.	Launch	Kernel	

CPU	
Host	Memory	

Device	Memory	

1.	Copy	Data	
4.	Copy	Result	

3.	Execute	
GPU	kernel	

GPU	

~	30/40	GBytes	

~	110/120	GByte	

Ivan	GiroAo			igiroAo@ictp.it	 Overview	on	GPU	Accelerators	and	Programming	Paradigms		 6	



Why	Does	GPU	Accelerate	Compu(ng?			
•  Highly	scalable	design	
•  Higher	aggregate	memory	bandwidth		
•  Huge	number	of	low	frequency	cores		
•  Higher	aggregate	computa(onal	power		
•  Massively	parallel	processors	for	data	
processing		

Ivan	GiroAo			igiroAo@ictp.it	 Overview	on	GPU	Accelerators	and	Programming	Paradigms		 7	



SMX	Processor	&	Warp	Scheduler	&	Core	



Why	Does	GPU	Not	Accelerate	Compu(ng?		
•  PCI	Bus	boAleneck		
•  Synchroniza(on	weakness		
•  Extremely	slow	serialized	execu(on	
•  High	complexity		
–  SPMD(T)	+	SIMD	&	Memory	Model		

•  	People	forget	about	the	Amdahl’s	law		
–  accelera(ng	only	the	50%	of	the	original	code,	the	
expected	speedup	can	get	at	most	a	value	of	2!!	

Ivan	GiroAo			igiroAo@ictp.it	 Overview	on	GPU	Accelerators	and	Programming	Paradigms		 9	



What is CUDA? 
•  NVIDIA compute architecture 

•  Software development capability provided free of 
charge by NVIDIA  

•  C and C++ programming language extension that 
simplifies creation of efficient applications for CUDA-
enabled GPGPUs  

•  Available for Linux, Windows and Mac OS X 

Ivan	GiroAo			igiroAo@ictp.it	 Overview	on	GPU	Accelerators	and	Programming	Paradigms		 10	



Ivan	GiroAo			igiroAo@ictp.it	 Overview	on	GPU	Accelerators	and	Programming	Paradigms		 11	

#define N  (2048 * 2048) 
#define THREADS_PER_BLOCK 512 
int main( void ) { 
    int *a, *b, *c;               // host copies of a, b, c 
    int *dev_a, *dev_b, *dev_c;   // device copies of a, b, c 
    int size = N * sizeof( int ); // we need space for N integers 

 // allocate device copies of a, b, c 
    cudaMalloc( (void**)&dev_a, size ); 
    cudaMalloc( (void**)&dev_b, size ); 
    cudaMalloc( (void**)&dev_c, size ); 

    a = (int*)malloc( size );  
    b = (int*)malloc( size ); 
    c = (int*)malloc( size ); 

    random_ints( a, N );  
    random_ints( b, N ); 
 
   // copy inputs to device 
   cudaMemcpy( dev_a, a, size, cudaMemcpyHostToDevice ); 
   cudaMemcpy( dev_b, b, size, cudaMemcpyHostToDevice ); 
   // launch add() kernel with blocks and threads 
   add<<< N/THREADS_PER_BLOCK, THREADS_PER_BLOCK >>>(dev_a, dev_b, dev_c); 
   // copy device result back to host copy of c 
   cudaMemcpy( c, dev_c, size,   cudaMemcpyDeviceToHost ); 
   free( a ); free( b ); free( c ); 
   cudaFree( dev_a ); 
   cudaFree( dev_b ); 
   cudaFree( dev_c ); 
   return 0; 
} 
 



Direc(ve	Based	Approaches:	OpenACC	
•  Implementa(ons	available	now	from	PGI,	
Cray,	and	GCC	

•  Same	source	can	be	used	to	generate	code	for	
CPU	and	GPU	

•  Easier	development		
•  Less	flexibility	

Ivan	GiroAo			igiroAo@ictp.it	 Overview	on	GPU	Accelerators	and	Programming	Paradigms		 12	



Ivan	GiroAo			igiroAo@ictp.it	 Overview	on	GPU	Accelerators	and	Programming	Paradigms		 13	

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
  
int main( int argc, char* argv[] ) 
{ 
    int n = 10000; 
  
    double *restrict a; 
    double *restrict b; 
    double *restrict c; 
  
    size_t bytes = n*sizeof(double); 
    a = (double*)malloc(bytes); 
    b = (double*)malloc(bytes); 
    c = (double*)malloc(bytes); 
  
    // Initialize content of input vectors, vector a[i] = sin(i)^2 vector b[i] = cos(i)^2 
    int i; 
    for(i=0; i<n; i++) { 
        a[i] = sin(i)*sin(i); 
        b[i] = cos(i)*cos(i); 
    }    
  
    // sum component wise and save result into vector c 
    #pragma acc kernels copyin(a[0:n],b[0:n]), copyout(c[0:n]) 
    for(i=0; i<n; i++) { 
        c[i] = a[i] + b[i]; 
    } 
    free(a); 
    free(b); 
    free(c); 
  
    return 0; 
} 
 



Direc(ve	Based	Approaches:	OpenMP	
•  The	API	V4.5	describes	OpenMP	pragma	for	
GPUs		

•  At	the	moment	IBM	is	the	only	main	compiler	
suppor(ng	it	(see	hAp://www.openmp.org/
resources/openmp-compilers/)	

•  Ideally	works	with	same	model	of	OpenACC	

Ivan	GiroAo			igiroAo@ictp.it	 Overview	on	GPU	Accelerators	and	Programming	Paradigms		 14	



CUDA	Fortran	
•  PGI	/	NVIDIA	collabora(on	
•  Same	CUDA	programming	model	as	CUDA-C	with	Fortran	syntax	

•  Variables	with	device-type	reside	in	GPUmemory	

•  Use	standard	allocate,	deallocate	
•  Copy	between	CPU	and	GPU	with	assignment	statements:	

	 	GPU_array	=	CPU_array	

•  Kernel	loop	direc(ves	(CUF	Kernels)	to	parallelize	loops	with	
device	data	

Ivan	GiroAo			igiroAo@ictp.it	 Overview	on	GPU	Accelerators	and	Programming	Paradigms		 15	



CPU	&	GPU	

Ivan	GiroAo			igiroAo@ictp.it	 Overview	on	GPU	Accelerators	and	Programming	Paradigms		 16	

The	Intel	Xeon	E5-2665		
Sandy	Bridge-EP	2.4GHz	

~	8	GBytes	



Ivan	GiroAo			igiroAo@ictp.it	 Overview	on	GPU	Accelerators	and	Programming	Paradigms		 17	

The	Intel	Xeon	E5-2665		
Sandy	Bridge-EP	2.4GHz	

~	8	GBytes	

CPU	&	GPU	



Ivan	GiroAo			igiroAo@ictp.it	 Overview	on	GPU	Accelerators	and	Programming	Paradigms		 18	

The	Intel	Xeon	E5-2665		
Sandy	Bridge-EP	2.4GHz	

~	8	GBytes	

CPU	&	GPU	



GPUs	planorms	for	HPC	
•  Deploy	balanced	and	cost	effec(ve	GPUs	based	
planorms	is	s(ll	really	hard	these	days	

•  Management,	usage	and	SW	development	for	add	on	
accelerated	planorm	requires	skills	and	exper(se	

•  The	NVLINK	promises	delivers	high	bandwidth	
between	GPUs	but	only	IBM	supports	NVILINK	
connec(on	GPU/CPU	

•  General	purpose	high-density	GPU	based	solu(on	are	
limited	to	specific	cases	

Ivan	GiroAo			igiroAo@ictp.it	 Overview	on	GPU	Accelerators	and	Programming	Paradigms		 19	



GPU	SW	Development	and	Applica(ons	
•  GPU	based	technology	planorms	evolve	rapidly		
•  New	features	are	oqen	disrup(ve	and	requires	
effort	for	soqware	op(miza(on	

•  Efficient	GPU	code	requires	constant	update	and	
maintenance	(today	really	much	true	for	CPU	SW	
too)	

•  Few	remarks	on	GPU	based	SW	for	scien(fic	
compu(ng		

Ivan	GiroAo			igiroAo@ictp.it	 Overview	on	GPU	Accelerators	and	Programming	Paradigms		 20	


