
http://www.dealii.org/ Wolfgang Bangerth

Finite element methods in
scientific computing

Wolfgang Bangerth, Colorado State University

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Lecture 1

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Overview

The numerical solution of
partial differential equations

 is an immensely practical field!

It requires us to know about:

● Partial differential equations

● Methods for discretizations, solvers, preconditioners

● Programming

● Adequate tools

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 4

Partial differential equations

Many of the big problems in scientific computing are
described by partial differential equations (PDEs):

● Structural statics and dynamics
– Bridges, roads, cars, …

● Fluid dynamics
– Ships, pipe networks, …

● Aerodynamics
– Cars, airplanes, rockets, …

● Plasma dynamics
– Astrophysics, fusion energy

● But also in many other fields: Biology, finance, epidemiology, ...

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 5

Numerics for PDEs

There are 3 standard tools for the numerical solution of PDEs:
● Finite element method (FEM)
● Finite volume method (FVM)
● Finite difference method (FDM)

Common features:
● Split the domain into small volumes (cells)

Ω Ω
h

Meshing

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 6

Numerics for PDEs

There are 3 standard tools for the numerical solution of PDEs:
● Finite element method (FEM)
● Finite volume method (FVM)
● Finite difference method (FDM)

Common features:
● Split the domain into

small volumes (cells)

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 7

Numerics for PDEs

There are 3 standard tools for the numerical solution of PDEs:
● Finite element method (FEM)
● Finite volume method (FVM)
● Finite difference method (FDM)

Common features:
● Split the domain into small volumes (cells)
● Define balance relations on each cell
● Obtain and solve very large (non-)linear systems

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 8

Numerics for PDEs

There are 3 standard tools for the numerical solution of PDEs:
● Finite element method (FEM)
● Finite volume method (FVM)
● Finite difference method (FDM)

Common features:
● Split the domain into small volumes (cells)
● Define balance relations on each cell
● Obtain and solve very large (non-)linear systems

Today and tomorrow: We will not go into details of this, but
consider only the parallel computing aspects.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 9

Numerics for PDEs

Common features:
● Split the domain into small volumes (cells)
● Define balance relations on each cell
● Obtain and solve very large (non-)linear systems

Problems:
● Every code has to implement these steps
● There is only so much time in a day
● There is only so much expertise anyone can have

In addition:
● We don't just want a simple algorithm
● We want state-of-the-art methods for everything

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 10

Numerics for PDEs

Examples of what we would like to have:
● Adaptive meshes
● Realistic, complex geometries

● Quadratic or even higher order elements

● Multigrid solvers
● Scalability to 1000s of processors
● Efficient use of current hardware

● Graphical output suitable for high quality rendering

Q: How can we make all of this happen in a single code?

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 11

How we develop software

Q: How can we make all of this happen in a single code?

Not a question of feasibility but of how we develop software:
● Is every student developing their own software?
● Or are we re-using what others have done?

● Do we insist on implementing everything from scratch?
● Or do we build our software on existing libraries?

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 12

How we develop software

Q: How can we make all of this happen in a single code?

Not a question of feasibility but of how we develop software:
● Is every student developing their own software?
● Or are we re-using what others have done?

● Do we insist on implementing everything from scratch?
● Or do we build our software on existing libraries?

There has been a major shift on how we approach the second
question in scientific computing over the past 10-15 years!

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 13

How we develop software

The secret to good scientific software is
(re)using existing libraries!

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 14

Existing software

There is excellent software for almost every purpose!

Basic linear algebra (dense vectors, matrices):
● BLAS
● LAPACK

Parallel linear algebra (vectors, sparse matrices, solvers):
● PETSc
● Trilinos

Meshes, finite elements, etc:
● deal.II – the topic of this class
● …

Visualization, dealing with parameter files, ...

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 15

deal.II

deal.II is a finite element library. It provides:

● Meshes

● Finite elements, quadrature,

● Linear algebra

● Most everything you will ever need when writing a finite element
code

On the web at

http://www.dealii.org/

http://www.dealii.org/
http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 16

What's in deal.II

Linear algebra in deal.II:

● Has its own sub-library for dense + sparse linear algebra

● Interfaces to PETSC, Trilinos, UMFPACK

Parallelization:

● Uses threads and tasks on multicore machines

● Uses MPI, up to 100,000s of processors

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 17

On the web

Visit the deal.II library:

http://www.dealii.org/

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

 18

deal.II

● Mission:
To provide everything that is needed in finite element
computations.

● Development:
As an open source project

 As an inviting community to all who want to contribute
As professional-grade software to users

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Lecture 2

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

General approach to parallel solvers

Historically, there are three general approaches to
solving PDEs in parallel:

● Domain decomposition:
– Split the domain on which the PDE is posed
– Discretize and solve (small) problems on subdomains
– Iterate out solutions

● Global solvers:
– Discretize the global problem
– Receive one (very large) linear system
– Solve the linear system in parallel

● A compromise: Mortar methods

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Domain decomposition

Historical idea: Consider solving a PDE on such a domain:

Source: Wikipedia

Note: We know how to solve PDEs analytically on each part
of the domain.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Domain decomposition

Historical idea: Consider solving a PDE on such a domain:

Approach (Hermann Schwarz, 1870):
● Solve on circle using arbitrary boundary values, get u1

● Solve on rectangle using u1 as boundary values, get u2

● Solve on circle using u2 as boundary values, get u3

● Iterate (proof of convergence: Mikhlin, 1951)

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Domain decomposition

Historical idea: Consider solving a PDE on such a domain:

This is called the Alternating Schwarz method. When
discretized:

● Shape of subdomains no longer important

● Easily generalized to many subdomains

● This is called Overlapping Domain Decomposition method

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Domain decomposition

History's verdict:

● Some beautiful mathematics came of it

● Iteration converges too slowly

● Particularly with large numbers of subdomains (lack of
global information exchange)

● Does not play nicely with modern ideas for discretization:
– mesh adaptation
– hp adaptivity

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Global solvers

General approach:
● Mesh the entire domain in one mesh
● Partition the mesh between processors

● Each processor discretizes its part of the domain

● Obtain one very large linear system
● Solve it with an iterative solver
● Apply a preconditioner to the whole system

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Global solvers

General approach:
● Mesh the entire domain in one mesh
● Partition the mesh between processors

● Each processor discretizes its part of the domain

● Obtain one very large linear system
● Solve it with an iterative solver
● Apply a preconditioner to the whole system

Note: Each step here requires communication; much more
sophisticated software necessary!

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Global solvers

Pros:
● Convergence independent of subdivision into subdomains

(if good preconditioner)
● Load balancing with adaptivity not a problem
● Has been shown to scale to 100,000s of processors

Cons:
● Requires much more sophisticated software
● Relies on iterative linear solvers
● Requires sophisticated preconditioners

But: Powerful software libraries available for all steps.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Lecture 3

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Finite element methods with MPI

Philosophy:
● Global objects require O(N) memory (N=# of cells)
● Every global data structure needs to be distributed:

– Triangulation
– Constraints on the solution
– Data attached to cells
– Matrix
– Solution and right hand side vectors
– Postprocessed data (DataOut)

● No processor may hold all data for a global object

● Processors hold O(N/P) “locally owned” data
● Processors may also hold O(εN/P) “ghost elements”

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Finite element methods with MPI

Philosophy:
● Every processor may only work on locally owned data

(possibly using ghost data as necessary)

● Software must carefully communicate data that may be
necessary early on, try to avoid further communication

● Use PETSc/Trilinos for linear algebra

● (Almost) No handwritten MPI necessary in user code

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Finite element methods with MPI

Example:
● There is an “abstract”, global triangulation
● Each processor has a triangulation object that stores

“locally owned”, “ghost” and “artificial” cells (and that's
all it knows):

 P=0 P=1 P=2 P=3
(magenta, green, yellow, red: cells owned by processors
0, 1, 2, 3; blue: artificial cells)

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Parallel user programs

How user programs need to be modified for parallel
computations:

● Need to let
– system matrix, vectors
– hanging node constraints
know about what is locally owned, locally relevant

● Need to restrict work to locally owned data
Communicate everything else on an as-needed basis

● Need to create one output file per processor

● Everything else can happen in libraries under the hood

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

An MPI example: MatVec

Situation:
● Multiply a large NxN matrix by a vector of size N
● Matrix is assumed to be dense

● Every one of P processors stores N/P rows of the matrix
● Every processor stores N/P elements of each vector

● For simplicity: N is a multiple of P

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

An MPI example: MatVec

struct ParallelVector {
 unsigned int size;
 unsigned int my_elements_begin;
 unsigned int my_elements_end;
 double *elements;

 ParallelVector (unsigned int sz,MPI_Comm comm) {
 size = sz;
 int comm_size, my_rank;
 MPI_Comm_size (comm, &comm_size);
 MPI_Comm_rank (comm, &my_rank);
 my_elements_begin = size/comm_size*my_rank;
 my_elements_end = size/comm_size*(my_rank+1);
 elements = new double[my_elements_end-my_elements_begin];
 }
};

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

An MPI example: MatVec

struct ParallelSquareMatrix {
 unsigned int size;
 unsigned int my_rows_begin;
 unsigned int my_rows_end;
 double *elements;

 ParallelSquareMatrix (unsigned int sz,MPI_Comm comm) {
 size = sz;
 int comm_size, my_rank;
 MPI_Comm_size (comm, &comm_size);
 MPI_Comm_rank (comm, &my_rank);
 my_rows_begin = size/comm_size*my_rank;
 my_rows_end = size/comm_size*(my_rank+1);
 elements = new double[(my_rows_end-my_rows_begin)*size];
 }
};

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

An MPI example: MatVec

What does processor P need:
● Graphical representation of what P owns:

 A x y

● To compute the locally owned elements of y, processor P
needs all elements of x

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

An MPI example: MatVec

void mat_vec (A, x, y) {
 int comm_size=..., my_rank=...;
 for (row_block=0; row_block<comm_size; ++row_block)
 if (row_block == my_rank) {
 for (col_block=0; col_block<comm_size; ++col_block)
 if (col_block == my_rank) {
 for (i=A.my_rows_begin; i<A.my_rows_end; ++i)
 for (j=A.size/comm_size*col_block; ...)
 y.elements[i-y.my_rows_begin] = A[...i,j...] * x[...j...];
 } else {
 double *tmp = new double[A.size/comm_size];
 MPI_Recv (tmp, …, row_block, …);
 for (i=A.my_rows_begin; i<A.my_rows_end; ++i)
 for (j=A.size/comm_size*col_block; ...)
 y.elements[i-y.my_rows_begin] = A[...i,j...] * tmp[...j...];
 delete tmp;
 }
 } else {
 MPI_Send (x.elements, …, row_block, …);
 }
}

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

An MPI example: MatVec

Analysis of this algorithm
● We only send data right when we need it:

– receiving processor has to wait
– has nothing to do in the meantime
A better algorithm would:
– send out its data to all other processors
– receive messages as needed (maybe already here)

● As a general rule:
– send data as soon as possible
– receive it as late as possible
– try to interleave computations between sends/receives

● We repeatedly allocate/deallocate memory – should set
up buffer only once

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

An MPI example: MatVec

void vmult (A, x, y) {
 int comm_size=..., my_rank=...;
 for (row_block=0; row_block<comm_size; ++row_block)
 if (row_block != my_rank)
 MPI_Send (x.elements, …, row_block, …);

 col_block = my_rank;
 for (i=A.my_rows_begin; i<A.my_rows_end; ++i)
 for (j=A.size/comm_size*col_block; ...)
 y.elements[i-y.my_rows_begin] = A[...i,j...] * x[...j...];

 double *tmp = new double[A.size/comm_size];
 for (col_block=0; col_block<comm_size; ++col_block)
 if (col_block != my_rank) {
 MPI_Recv (tmp, …, row_block, …);
 for (i=A.my_rows_begin; i<A.my_rows_end; ++i)
 for (j=A.size/comm_size*col_block; ...)
 y.elements[i-y.my_rows_begin] = A[...i,j...] * tmp[...j...];
 }
 delete tmp;
}

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Message Passing Interface (MPI)

Notes on using MPI:
● Usually, algorithms need data that resides elsewhere
● Communication needed

● Distributed computing lives in the conflict zone between
– trying to keep as much data available locally to avoid
 communication
– not creating a memory/CPU bottleneck

● MPI makes the flow of information explicit
● Forces programmer to design data structures/algorithms

for communication

● Well written programs have relatively few MPI calls

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Lecture 4

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Solver questions

The finite element method provides us with a linear system

We know:
● A is large: typically a few 1,000 up to a few billions
● A is sparse: typically no more than a few 100 entries per

row
● A is typically ill-conditioned: condition numbers up to 109

Question:
How do we go about solving

such linear systems?

A x = b

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Direct solvers

Direct solvers – compute a decomposition of A:
● Can be thought of as variant of LU decomposition that

finds triangular factors L, U so that

● Sparse direct solvers save memory and CPU time by
considering the sparsity pattern of A

● Very robust
● Work grows as

– O(N2) in 2d
– O(N7/3) in 3d

● Memory grows
– O(N3/2) in 2d
– O(N5/3) in 3d

A = LU

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Direct solvers

Where to get a direct solver:
● Several very high quality, open source packages
● The most widely used ones are

- UMFPACK
- SuperLU
- MUMPS

● The latter two are even parallelized

But:

It is generally very difficult to implement
direct solvers efficiently in parallel.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Iterative solvers

Iterative solvers improve the solution in each
iteration:

● Start with an initial guess x
0

● Continue iterations till a stopping criterion is satisfied
(typically that the error/residual is less than a tolerance)

● Return final guess x
k

● Depending on solver and preconditioner type, work can be O(N)
or (much) worse

● Memory is typically linear, i.e., O(N)

Note: The final guess does not solve Ax=b exactly!

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Iterative solvers

There is a wide variety of iterative solvers:

● CG, MinRes, GMRES, …

● All of them are actually rather simple to implement:
They usually need less than 200 lines of code

● Consequently, many high quality implementations

Advantage: Only need multiplication with the matrix, no
modification/insertion of matrix elements required.

Disadvantage: Efficiency hinges on availability of good
preconditioners.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Direct vs iterative

Guidelines for direct solvers vs iterative solvers:

Direct solvers:
✔ Always work, for any invertible matrix
✔ Faster for problems with <100k unknowns
✗ Need too much memory + CPU time for larger problems
✗ Do not parallelize well

Iterative solvers:
✔ Need O(N) memory
✔ Can solve very large problems
✔ Often parallelize well
✗ Choice of solver/preconditioner depends on problem

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Advice for iterative solvers

There is a wide variety of iterative solvers:
● CG: Conjugate gradients
● MinRes: Minimal residuals
● GMRES: Generalized minimal residuals
● F-GMRES: Flexible GMRES
● SymmLQ: Symmetric LQ decomposition
● BiCGStab: Biconjugate gradients stabilized
● QMR: Quasi-minimal residual
● TF-QMR: Transpose-free QMR
● …

Which solver to choose depends on the properties
of the matrix, primarily symmetry and definiteness!

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Advice for iterative solvers

Guidelines for use:
● CG: Matrix is symmetric, positive definite
● MinRes: –
● GMRES: Catch-all
● F-GMRES: Catch-all with variable preconditioners
● SymmLQ: –
● BiCGStab: Matrix is non-symmetric but positive definite
● QMR: –
● TF-QMR: –
● All others: –

In reality, only CG, BiCGStab and (F-)GMRES
are used much.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Advice for iterative solvers

Summary:

All iterative solvers are bad
without a good preconditioner!

The art of devising a good iterative solver
is to devise a good preconditioner!

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Lecture 5

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Observations on iterative solvers

The finite element method provides us with a linear system

that we then need to solve.

Factors affecting performance of iterative solvers:
● Symmetry of a matrix
● Whether A is definite
● Condition number of A
● How the eigenvalues of A are clustered

● Whether A is reducible/irreducible

A x = b

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Observations on iterative solvers

Example 1: Using CG to solve

where A is SPD, each iteration reduces the residual by a
factor of

● For a tolerance ε we need iterations

● Problem: The condition number typically grows with the
problem size number of iterations grows→

A x = b

r = √ κ(A)−1

√ κ(A)+1
 < 1

n =
log ϵ
log r

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Observations on iterative solvers

Example 2: When solving

where A has the form

then every decent iterative solver converges in 1 iteration.

Note 1: This, even though condition number may be large
Note 2: This is true, in particular, if A=I.

A x = b

A = (
a11 0 0 ⋯
0 a22 0 ⋯
0 0 a33 ⋯
⋮ ⋮ ⋮ ⋱

)

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

The idea of preconditioners

Idea: When solving

maybe we can find a matrix P-1 and instead solve

Observation 1: If P-1A~D then solving should require
fewer iterations

Corollary: The perfect preconditioner is the inverse matrix,
i.e., P-1=A-1.

A x = b

P−1 A x = P−1b

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

The idea of preconditioners

Idea: When solving

maybe we can find a matrix P-1 and instead solve

Observation 2: Iterative solvers only need matrix-vector
multiplications, no element-by-element access.

Corollary: It is sufficient if P-1 is just an operator

A x = b

P−1 A x = P−1b

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

The idea of preconditioners

Idea: When solving

maybe we can find a matrix P-1 and instead solve

Observation 3: There is a tradeoff:
fewer iterations vs cost of preconditioner.

Corollary: Preconditioning only works if P-1 is cheap to
compute and if P-1 is cheap to apply to a vector.

Consequence: P-1=A-1 does not qualify.

A x = b

P−1 A x = P−1b

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

The idea of preconditioners

Notes on the following lectures:
● For quantitative analysis, one typically needs to consider

the spectrum of operators and preconditioners

● Here, the goal is simply to get an “intuition” on how
preconditioners work

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Lecture 6

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Constructing preconditioners

Remember: When solving the preconditioned system

then the best preconditioner is P-1=A-1.

Problem: (i) We can't compute it efficiently. (ii) If we could,
we would not need an iterative solver.

But: Maybe we can approximate P-1~A-1.

Idea 1: Do we know of other iterative solution techniques?

Idea 2: Use incomplete decompositions.

P−1 A x = P−1b

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Constructing preconditioners

Approach 1: Remember the oldest iterative techniques!

To solve we can use defect correction:
● Under certain conditions, the iteration:

will converge to the exact solution x

● Unlike Krylov-space methods, convergence is linear
● The best preconditioner is again P-1~A-1

x(k+1) = x(k)−P−1(A x(k)−b)

A x = b

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Constructing preconditioners

Approach 1: Remember the oldest iterative techniques!

Preconditioned defect correction for :
● Jacobi iteration:

● The Jacobi preconditioner is then

which is easy to compute and apply.

Note: We don't need the scaling (“relaxation”) factor.

x(k+1) = x(k)−ω D−1(A x(k)−b)

Ax = b , A = L+D+U

P−1 = ω D−1

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Constructing preconditioners

Approach 1: Remember the oldest iterative techniques!

Preconditioned defect correction for :
● Gauss-Seidel iteration:

● The Gauss-Seidel preconditioner is then

which is easy to compute and apply as L+D is triangular.

Note 1: We don't need the scaling (“relaxation”) factor.
Note 2: This preconditioner is not symmetric.

x(k+1) = x(k)−ω(L+D)−1(A x(k)−b)

Ax = b , A = L+D+U

P−1 = ω(L+D)−1 i.e. h=P−1r solves (L+D)h=ωr

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Constructing preconditioners

Approach 1: Remember the oldest iterative techniques!

Preconditioned defect correction for :
● SOR (Successive Over-Relaxation) iteration:

● The SOR preconditioner is then

Note 1: This preconditioner is not symmetric.
Note 2: We again don't care about the constant factor in P.

x(k+1) = x(k)−ω(D+ωL)−1(A x(k)−b)

Ax = b , A = L+D+U

P−1 = (D+ω L)−1

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Constructing preconditioners

Approach 1: Remember the oldest iterative techniques!

Preconditioned defect correction for :
● SSOR (Symmetric Successive Over-Relaxation) iteration:

● The SSOR preconditioner is then

Note: This preconditioner is now symmetric if A is
symmetric!

x(k+1) = x(k)− 1
ω(2−ω)

(D+ωU)−1 D(D+ωL)−1(A x(k)−b)

Ax = b , A = L+D+U

P−1 = (D+ωU)−1 D(D+ωL)−1

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Constructing preconditioners

Approach 1: Remember the oldest iterative techniques!

Common observations about preconditioners from
stationary iterations:

● Have been around for a long time

● Generally useful for small problems (<100,000 DoFs)

● Not particularly useful for larger problems

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Constructing preconditioners

Approach 2: Approximations to A-1

Idea 1: Incomplete decompositions
● Incomplete LU (ILU):

Perform an LU decomposition on A but only keep
elements of L, U that fit into the sparsity pattern of A

● Incomplete Cholesky (IC):
LLT decomposition if A is symmetric

● Many variants:
– strengthen diagonal
– augment sparsity pattern
– thresholding of small/large elements

Note: This preconditioner is again symmetric.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Summary

Conceptually: We now need to solve the linear system

Goal: We would like to approximate P-1≈A-1.

But: We don’t need to know the entries of P-1 – we only see
it as an operator.

Then: We can put it all into an iterative solver such as
Conjugate Gradients that only requires matrix-vector
products.

P−1 A x = P−1b

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Lecture 7

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Global solvers

Examples for a few necessary steps:
● Matrix-vector products in iterative solvers

(Point-to-point communication)

● Dot product synchronization

● Available parallel preconditioners

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Matrix-vector product

What does processor P need:
● Graphical representation of what P owns:

 A x y

● To compute the locally owned elements of y, processor P
needs all elements of x

● All processors need to send their share of x to everyone

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Matrix-vector product

What does processor P need:
● But: Finite element matrices look like this:

 A x y

For the locally owned elements of y, processor P needs all x
j

for which there is a nonzero A
ij
 for a locally owned row i.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Matrix-vector product

What does processor P need to compute its part of y:

● All elements x
j
 for which there is a nonzero A

ij
 for a locally

owned row i.

● In other words, if x
i
 is a locally owned DoF, we need all

x
j
 that couple with x

i

● These are exactly the locally relevant degrees of freedom
● They live on ghost cells

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Matrix-vector product

What does processor P need to compute its part of y:

● All elements x
j
 for which there is a nonzero A

ij
 for a locally

owned row i.

● In other words, if x
i
 is a locally owned DoF, we need all

x
j
 that couple with x

i

● These are exactly the locally relevant degrees of freedom
● They live on ghost cells

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Matrix-vector product

Parallel matrix-vector products for sparse matrices:
● Requires determining which elements

we need from which processor
● Exchange this up front once

Performing matrix-vector product:
● Send vector elements to all processors

that need to know
● Do local product (dark red region)
● Wait for data to come in
● For each incoming data packet, do

nonlocal product (light red region)
Note: Only point-to-point comm. needed!

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Vector-vector dot product

Consider the Conjugate Gradient algorithm:

Source: Wikipedia

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Vector-vector dot product

Consider the Conjugate Gradient algorithm:

Source: Wikipedia

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Vector-vector dot product

Consider the dot product:

x⋅y = ∑i=1

N
xi y i = ∑p=1

P

(∑local elements on proc p
xi y i)

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Parallel considerations

Consider the Conjugate Gradient algorithm:
● Implementation requires

– 1 matrix-vector product
– 2 vector-vector (dot) products
per iteration

● Matrix-vector product can be done with point-to-point
communication

● Dot-product requires global sum (reduction) and sending
the sum to everyone (broadcast)

● All of this is easily doable in a parallel code

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Parallel preconditioners

Consider Krylov-space methods algorithm:
To solve Ax=b we need

● Matrix-vector products z=Ay
● Various vector-vector operations
● A preconditioner v=Pw

● Want: P approximates A-1

Question: What are the issues in parallel?

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Parallel preconditioners

First idea: Block-diagonal preconditioners

Pros:
● P can be computed locally
● P can be applied locally (without communication)
● P can be approximated (SSOR, ILU on each block)

Cons:
● Deteriorates with larger numbers

of processors
● Equivalent to Jacobi in the extreme

of one row per processor

Lesson: Diagonal block preconditioners
don't work well! We need data exchange!

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Parallel preconditioners

Second idea: Block-triangular preconditioners

Consider distributed storage of the matrix on 3 processors:

 A =

Then form the preconditioner P-1 =
from the lower triangle
of blocks:

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Parallel preconditioners

Second idea: Block-triangular preconditioners

Pros:
● P can be computed locally
● P can be applied locally
● P can be approximated (SSOR, ILU on each block)
● Works reasonably well

Cons:
● Equivalent to Gauss-Seidel in the

extreme of one row per processor
● Is sequential!

Lesson: Data flow must have fewer
then O(#procs) synchronization points!

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Parallel preconditioners

What works:
● Geometric multigrid methods for elliptic problems:

– Require point-to-point communication in smoother
– Very difficult to load balance with adaptive meshes
– O(N) effort for overall solver

● Algebraic multigrid methods for elliptic problems:
– Require point-to-point communication
 . in smoother
 . in construction of multilevel hierarchy
– Difficult (but easier) to load balance
– Not quite O(N) effort for overall solver

– “Black box” implementations available (ML, hypre)

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Parallel preconditioners

Examples (strong scaling):

Laplace equation (from Bangerth et al., 2011)

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Parallel preconditioners

Examples (strong scaling):

Elasticity equation (from Frohne, Heister, Bangerth, submitted)

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Parallel preconditioners

Examples (weak scaling):

Elasticity equation (from Frohne, Heister, Bangerth, submitted)

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Parallel solvers

Summary:

● Mental model: See linear system as a large whole

● Apply Krylov-solver at the global level

● Use algebraic multigrid method (AMG) as black box
preconditioner for elliptic blocks

● Build more complex preconditioners for block systems
(see lecture 38)

● Might also try parallel direct solvers

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Lecture 8

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

The bigger picture

HPC methods are only one piece in the scientific computing
world.

The goal is always the simulation of real processes
for prediction and optimization.

This also involves:
● Understanding the application
● Implementation of numerical methods
● Understanding the complexity of algorithms
● Understanding the hardware characteristics
● Interfacing with pre- and postprocessing tools

Together, these are called High Performance Computing.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Examples of FEM applications in HPC

Examples from a wide variety of fields:

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Workflow for HPC in PDEs

Step 1: Identify geometry and details of the model

May involve tens of thousands of pieces, very labor
intensive, interface to designers and to manufacturing

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Workflow for HPC in PDEs

Step 2: Mesh generation and maybe partitioning
(preprocessing)

May involve 10s of millions or more of cells; requires lots
of memory; very difficult to parallelize

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Workflow for HPC in PDEs

Step 2: Mesh generation and maybe partitioning
(preprocessing)

May involve 10s of millions or more of cells; requires lots
of memory; very difficult to parallelize

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Workflow for HPC in PDEs

Step 3: Solve model on this mesh using finite elements,
finite volumes, finite differences, …

Involves some of the biggest computations ever done,
10,000s of processors, millions of CPU hours, wide variety
of algorithms

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Workflow for HPC in PDEs

Step 4: Visualization to learn from the numerical results

Can be done in parallel, difficulty is amount of data.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Workflow for HPC in PDEs

Step 4: Visualization to learn from the numerical results

Goal: Not to plot data, but to provide insight!

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Workflow for HPC in PDEs

Step 5: Repeat

● To improve on the design

● To investigate different conditions (speed, altitude,
angle of attack, …)

● To vary physical parameters that may not be known
exactly

● To vary parameters of the numerical model (e.g. mesh
size)

● To improve match with experiments

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Lecture 9

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Software issues in HPC

Ultimately, HPC is about applications, not just algorithms
and their analysis.

Thus, we need to consider the issue of software that
implements these applications:

● How complex is the software?
● How do we write software? Are there tools?
● How do we verify the correctness of the software?
● How do we validate the correctness of the model?

● Testing
● Documentation
● Social issues

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Complexity of software

Many HPC applications are several orders of magnitude
larger than everything you have probably ever seen!

For example, a crude measure of complexity is the number
of lines of code in a package (as of 2018):

● Deal.II has 1.1M
● PETSc has 720k
● Trilinos has 3.3M

At this scale, software development does not work the
same as for small projects:

● No single person has a global overview
● There are many years of work in such packages
● No person can remember even the code they wrote

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Complexity of software

The only way to deal with the complexity of such software
is to:

● Modularize: Different people are responsible for
different parts of the project.

● Define interfaces: Only a small fraction of functions in a
module is available to other modules

● Document: For users, for developers, for authors, and
at different levels

● Test, test, test

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

How do we write software

Successful software must follow the prime directive of
software:

● Developer time is the single most scarce resource!

As a consequence (part 1):
● Do not reinvent the wheel: use what others have

already implemented
● Use the best tools
● Do not become the bottleneck (e.g. by not writing

documentation)

● Delegate. You can't do it all.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

How do we write software

Successful software must follow the prime directive of
software:

● Developer time is the single most scarce resource!

As a consequence (part 2):
● Re-use code, don't duplicate
● Use strategies to avoid introducing bugs

● Test, test, test:
- The earlier a bug is detected the easier it is to find
- Even good programmers spend more time debugging
 code than writing it

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Verification & validation (V&V): Verification

Verification refers to the process of ensuring that the
software solves the problem it is supposed to solve:

“The program solves the problem correctly”

A common strategy to achieve this is to...

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Verification refers to the process of ensuring that the
software solves the problem it is supposed to solve:

“The program solves the problem correctly”

A common strategy to achieve this is to test test test:
● Unit tests verify that a function/class does what it is

supposed to do (assuming that correct result is known)
● Integration tests verify a whole algorithm (e.g. using

what is known as the Method of Manufactured
Solutions)

● Write regression tests that verify that the output of a
program does not change over time

Software that is not tested does not
produce the correct results!

(Note that I say “does not”, and not “may not”!)

Verification & validation (V&V): Verification

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Validation refers to the process of ensuring that the
software solves a formulation that accurately represents
the application:

“The program solves the correct problem”

The details of this go beyond this class.

Verification & validation (V&V): Validation

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Testing

Let me repeat the fundamental truth about software with
more than a few 100 lines of code:

Software that is not tested does not
produce the correct results!

No software that does not run lots of automatic tests can
be good/usable.

As just one example (numbers as of 2018):
● deal.II runs ~9,500 tests after every single change
● This takes ~20 CPU hours every time
● The test suite has another 520,000 lines of code.

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Documentation

Documentation serves different purposes:
● It spells out to the developer what the implementation

of a function/class is supposed to do (it's a contract)
● It tells a user what a function does
● It must come at different levels (e.g. functions, classes,

modules, tutorial programs)

Also:
● Later reminds the author what she had in mind with a

function
● Avoids that everyone has to ask the developer for

information (bottleneck!)
● Document the history of a code by using a version

control system

http://www.dealii.org/

http://www.dealii.org/ Wolfgang Bangerth

Social issues

Most HPC software is a collaborative effort. Some of
the most difficult aspects in HPC are social:

● Can I modify this code?
● X just modified the code but didn't update the

documentation and didn't write a test!
● Y1 has written a great piece of code but it doesn't

conform to our coding style and he's unwilling to adjust
it.

● Y2 seems clever but still has to learn. How do I interest
her to collaborate without accepting subpar code?

● Z agreed to fix this bug 3 weeks ago but nothing has
happened.

● M never replies to emails with questions about his code.

http://www.dealii.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110

