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Overview

The numerical solution of
partial differential equations

  is an immensely practical field!

It requires us to know about:

● Partial differential equations

● Methods for discretizations, solvers, preconditioners

● Programming

● Adequate tools
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Partial differential equations

Many of the big problems in scientific computing are 
described by partial differential equations (PDEs):

● Structural statics and dynamics
– Bridges, roads, cars, …

● Fluid dynamics
– Ships, pipe networks, …

● Aerodynamics
– Cars, airplanes, rockets, …

● Plasma dynamics
– Astrophysics, fusion energy

● But also in many other fields: Biology, finance, epidemiology, ...
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Numerics for PDEs

There are 3 standard tools for the numerical solution of PDEs:
● Finite element method (FEM)
● Finite volume method (FVM)
● Finite difference method (FDM)

Common features:
● Split the domain into small volumes (cells)

Ω Ω
h

Meshing
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Numerics for PDEs

There are 3 standard tools for the numerical solution of PDEs:
● Finite element method (FEM)
● Finite volume method (FVM)
● Finite difference method (FDM)

Common features:
● Split the domain into

small volumes (cells)

http://www.dealii.org/


http://www.dealii.org/    Wolfgang Bangerth

 7

Numerics for PDEs

There are 3 standard tools for the numerical solution of PDEs:
● Finite element method (FEM)
● Finite volume method (FVM)
● Finite difference method (FDM)

Common features:
● Split the domain into small volumes (cells)
● Define balance relations on each cell
● Obtain and solve very large (non-)linear systems
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Numerics for PDEs

There are 3 standard tools for the numerical solution of PDEs:
● Finite element method (FEM)
● Finite volume method (FVM)
● Finite difference method (FDM)

Common features:
● Split the domain into small volumes (cells)
● Define balance relations on each cell
● Obtain and solve very large (non-)linear systems

Today and tomorrow: We will not go into details of this, but 
consider only the parallel computing aspects.
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Numerics for PDEs

Common features:
● Split the domain into small volumes (cells)
● Define balance relations on each cell
● Obtain and solve very large (non-)linear systems

Problems:
● Every code has to implement these steps
● There is only so much time in a day
● There is only so much expertise anyone can have

In addition:
● We don't just want a simple algorithm
● We want state-of-the-art methods for everything
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Numerics for PDEs

Examples of what we would like to have:
● Adaptive meshes
● Realistic, complex geometries

● Quadratic or even higher order elements

● Multigrid solvers
● Scalability to 1000s of processors
● Efficient use of current hardware

● Graphical output suitable for high quality rendering

Q: How can we make all of this happen in a single code?
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How we develop software

Q: How can we make all of this happen in a single code?

Not a question of feasibility but of how we develop software:
● Is every student developing their own software?
● Or are we re-using what others have done?

● Do we insist on implementing everything from scratch?
● Or do we build our software on existing libraries?
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How we develop software

Q: How can we make all of this happen in a single code?

Not a question of feasibility but of how we develop software:
● Is every student developing their own software?
● Or are we re-using what others have done?

● Do we insist on implementing everything from scratch?
● Or do we build our software on existing libraries?

There has been a major shift on how we approach the second 
question in scientific computing over the past 10-15 years!
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How we develop software

The secret to good scientific software is
(re)using existing libraries!
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Existing software

There is excellent software for almost every purpose!

Basic linear algebra (dense vectors, matrices):
● BLAS
● LAPACK

Parallel linear algebra (vectors, sparse matrices, solvers):
● PETSc
● Trilinos

Meshes, finite elements, etc:
● deal.II – the topic of this class
● …

Visualization, dealing with parameter files, ...
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deal.II

deal.II is a finite element library. It provides:

● Meshes

● Finite elements, quadrature,

● Linear algebra

● Most everything you will ever need when writing a finite element 
code

On the web at

http://www.dealii.org/
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What's in deal.II

Linear algebra in deal.II:

● Has its own sub-library for dense + sparse linear algebra

● Interfaces to PETSC, Trilinos, UMFPACK

Parallelization:

● Uses threads and tasks on multicore machines

● Uses MPI, up to 100,000s of processors
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On the web

Visit the deal.II library:

http://www.dealii.org/
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deal.II

● Mission: 
To provide everything that is needed in finite element
computations.

● Development:
As an open source project

 As an inviting community to all who want to contribute
As professional-grade software to users
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General approach to parallel solvers

Historically, there are three general approaches to 
solving PDEs in parallel:

● Domain decomposition:
– Split the domain on which the PDE is posed
– Discretize and solve (small) problems on subdomains
– Iterate out solutions

● Global solvers:
– Discretize the global problem
– Receive one (very large) linear system
– Solve the linear system in parallel

● A compromise: Mortar methods
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Domain decomposition

Historical idea: Consider solving a PDE on such a domain:

Source: Wikipedia

Note: We know how to solve PDEs analytically on each part 
of the domain.
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Domain decomposition

Historical idea: Consider solving a PDE on such a domain:

Approach (Hermann Schwarz, 1870):
● Solve on circle using arbitrary boundary values, get u1

● Solve on rectangle using u1 as boundary values, get u2

● Solve on circle using u2 as boundary values, get u3

● Iterate (proof of convergence: Mikhlin, 1951)
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Domain decomposition

Historical idea: Consider solving a PDE on such a domain:

This is called the Alternating Schwarz method. When 
discretized:

● Shape of subdomains no longer important

● Easily generalized to many subdomains

● This is called Overlapping Domain Decomposition method
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Domain decomposition

History's verdict:

● Some beautiful mathematics came of it

● Iteration converges too slowly

● Particularly with large numbers of subdomains (lack of 
global information exchange)

● Does not play nicely with modern ideas for discretization:
– mesh adaptation
– hp adaptivity
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Global solvers

General approach:
● Mesh the entire domain in one mesh
● Partition the mesh between processors

● Each processor discretizes its part of the domain

● Obtain one very large linear system
● Solve it with an iterative solver
● Apply a preconditioner to the whole system
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Global solvers

General approach:
● Mesh the entire domain in one mesh
● Partition the mesh between processors

● Each processor discretizes its part of the domain

● Obtain one very large linear system
● Solve it with an iterative solver
● Apply a preconditioner to the whole system

Note: Each step here requires communication; much more 
sophisticated software necessary!
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Global solvers

Pros:
● Convergence independent of subdivision into subdomains 

(if good preconditioner)
● Load balancing with adaptivity not a problem
● Has been shown to scale to 100,000s of processors

Cons:
● Requires much more sophisticated software
● Relies on iterative linear solvers
● Requires sophisticated preconditioners

But: Powerful software libraries available for all steps.
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Finite element methods with MPI

Philosophy:
● Global objects require O(N) memory (N=# of cells)
● Every global data structure needs to be distributed:

– Triangulation
– Constraints on the solution
– Data attached to cells
– Matrix
– Solution and right hand side vectors
– Postprocessed data (DataOut)

● No processor may hold all data for a global object

● Processors hold O(N/P) “locally owned” data
● Processors may also hold O(εN/P) “ghost elements”

http://www.dealii.org/
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Finite element methods with MPI

Philosophy:
● Every processor may only work on locally owned data

(possibly using ghost data as necessary)

● Software must carefully communicate data that may be 
necessary early on, try to avoid further communication

● Use PETSc/Trilinos for linear algebra

● (Almost) No handwritten MPI necessary in user code
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Finite element methods with MPI

Example:
● There is an “abstract”, global triangulation
● Each processor has a triangulation object that stores 

“locally owned”, “ghost” and “artificial” cells (and that's 
all it knows):

    P=0               P=1                 P=2                 P=3
(magenta, green, yellow, red: cells owned by processors 
0, 1, 2, 3;  blue: artificial cells)
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Parallel user programs

How user programs need to be modified for parallel 
computations:

● Need to let
– system matrix, vectors
– hanging node constraints
know about what is locally owned, locally relevant

● Need to restrict work to locally owned data
Communicate everything else on an as-needed basis

● Need to create one output file per processor

● Everything else can happen in libraries under the hood
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An MPI example: MatVec

Situation:
● Multiply a large NxN matrix by a vector of size N
● Matrix is assumed to be dense

● Every one of P processors stores N/P rows of the matrix
● Every processor stores N/P elements of each vector

● For simplicity: N is a multiple of P
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An MPI example: MatVec

struct ParallelVector {
    unsigned int size;
    unsigned int my_elements_begin;
    unsigned int my_elements_end;
    double *elements;

    ParallelVector (unsigned int sz,MPI_Comm comm) {
        size = sz;
        int comm_size, my_rank;
        MPI_Comm_size (comm, &comm_size);
        MPI_Comm_rank (comm, &my_rank);
        my_elements_begin = size/comm_size*my_rank;
        my_elements_end = size/comm_size*(my_rank+1);
        elements = new double[my_elements_end-my_elements_begin];
    }
};
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An MPI example: MatVec

struct ParallelSquareMatrix {
    unsigned int size;
    unsigned int my_rows_begin;
    unsigned int my_rows_end;
    double *elements;

    ParallelSquareMatrix (unsigned int sz,MPI_Comm comm) {
        size = sz;
        int comm_size, my_rank;
        MPI_Comm_size (comm, &comm_size);
        MPI_Comm_rank (comm, &my_rank);
        my_rows_begin = size/comm_size*my_rank;
        my_rows_end = size/comm_size*(my_rank+1);
        elements = new double[(my_rows_end-my_rows_begin)*size];    
    }
};
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An MPI example: MatVec

What does processor P need:
● Graphical representation of what P owns:

                A              x          y

● To compute the locally owned elements of y, processor P 
needs all elements of x

http://www.dealii.org/
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An MPI example: MatVec

void mat_vec (A, x, y) {
     int comm_size=..., my_rank=...;
     for (row_block=0; row_block<comm_size; ++row_block)
         if (row_block == my_rank) {
             for (col_block=0; col_block<comm_size; ++col_block)
                 if (col_block == my_rank) {
                     for (i=A.my_rows_begin; i<A.my_rows_end; ++i)
                       for (j=A.size/comm_size*col_block; ...)
                          y.elements[i-y.my_rows_begin] = A[...i,j...] * x[...j...];
                 } else {
                     double *tmp = new double[A.size/comm_size];
                     MPI_Recv (tmp, …, row_block, …);
                     for (i=A.my_rows_begin; i<A.my_rows_end; ++i)
                       for (j=A.size/comm_size*col_block; ...)
                          y.elements[i-y.my_rows_begin] = A[...i,j...] * tmp[...j...];                      
                     delete tmp;
                 }
         } else {
             MPI_Send (x.elements, …, row_block, …);
         }
}
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An MPI example: MatVec

Analysis of this algorithm
● We only send data right when we need it:

– receiving processor has to wait
– has nothing to do in the meantime
A better algorithm would:
– send out its data to all other processors
– receive messages as needed (maybe already here)

● As a general rule:
– send data as soon as possible
– receive it as late as possible
– try to interleave computations between sends/receives

● We repeatedly allocate/deallocate memory – should set 
up buffer only once
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An MPI example: MatVec

void vmult (A, x, y) {
     int comm_size=..., my_rank=...;
     for (row_block=0; row_block<comm_size; ++row_block)
         if (row_block != my_rank)
             MPI_Send (x.elements, …, row_block, …);
  
    col_block = my_rank;
    for (i=A.my_rows_begin; i<A.my_rows_end; ++i)
       for (j=A.size/comm_size*col_block; ...)
          y.elements[i-y.my_rows_begin] = A[...i,j...] * x[...j...];

    double *tmp = new double[A.size/comm_size];
     for (col_block=0; col_block<comm_size; ++col_block)
         if (col_block != my_rank) {
             MPI_Recv (tmp, …, row_block, …);
             for (i=A.my_rows_begin; i<A.my_rows_end; ++i)
                  for (j=A.size/comm_size*col_block; ...)
                       y.elements[i-y.my_rows_begin] = A[...i,j...] * tmp[...j...];                      
         }
     delete tmp;
}
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Message Passing Interface (MPI)

Notes on using MPI:
● Usually, algorithms need data that resides elsewhere
● Communication needed

● Distributed computing lives in the conflict zone between
– trying to keep as much data available locally to avoid
   communication
– not creating a memory/CPU bottleneck

● MPI makes the flow of information explicit
● Forces programmer to design data structures/algorithms 

for communication

● Well written programs have relatively few MPI calls
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Solver questions

The finite element method provides us with a linear system

We know:
● A is large: typically a few 1,000 up to a few billions
● A is sparse: typically no more than a few 100 entries per 

row
● A is typically ill-conditioned: condition numbers up to 109

Question:
How do we go about solving

such linear systems?

A x  =  b
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Direct solvers

Direct solvers – compute a decomposition of A:
● Can be thought of as variant of LU decomposition that 

finds triangular factors L, U so that

● Sparse direct solvers save memory and CPU time by 
considering the sparsity pattern of A

● Very robust
● Work grows as

– O(N2) in 2d
– O(N7/3) in 3d

● Memory grows
– O(N3/2) in 2d
– O(N5/3) in 3d

A  =  LU
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Direct solvers

Where to get a direct solver:
● Several very high quality, open source packages
● The most widely used ones are

- UMFPACK
- SuperLU
- MUMPS

● The latter two are even parallelized

But:

It is generally very difficult to implement
direct solvers efficiently in parallel.
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Iterative solvers

Iterative solvers improve the solution in each 
iteration:

● Start with an initial guess x
0

● Continue iterations till a stopping criterion is satisfied
(typically that the error/residual is less than a tolerance)

● Return final guess x
k

● Depending on solver and preconditioner type, work can be O(N) 
or (much) worse

● Memory is typically linear, i.e., O(N)

Note: The final guess does not solve Ax=b exactly!
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Iterative solvers

There is a wide variety of iterative solvers:

● CG, MinRes, GMRES, …

● All of them are actually rather simple to implement:
They usually need less than 200 lines of code

● Consequently, many high quality implementations

Advantage: Only need multiplication with the matrix, no 
modification/insertion of matrix elements required.

Disadvantage: Efficiency hinges on availability of good 
preconditioners.
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Direct vs iterative

Guidelines for direct solvers vs iterative solvers:

Direct solvers:
✔ Always work, for any invertible matrix
✔ Faster for problems with <100k unknowns
✗ Need too much memory + CPU time for larger problems
✗ Do not parallelize well

Iterative solvers:
✔ Need O(N) memory
✔ Can solve very large problems
✔ Often parallelize well
✗ Choice of solver/preconditioner depends on problem
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Advice for iterative solvers

There is a wide variety of iterative solvers:
● CG: Conjugate gradients
● MinRes: Minimal residuals
● GMRES: Generalized minimal residuals
● F-GMRES: Flexible GMRES
● SymmLQ: Symmetric LQ decomposition
● BiCGStab: Biconjugate gradients stabilized
● QMR: Quasi-minimal residual
● TF-QMR: Transpose-free QMR
● …

Which solver to choose depends on the properties
of the matrix, primarily symmetry and definiteness!

http://www.dealii.org/
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Advice for iterative solvers

Guidelines for use:
● CG: Matrix is symmetric, positive definite
● MinRes: –
● GMRES: Catch-all
● F-GMRES: Catch-all with variable preconditioners
● SymmLQ: –
● BiCGStab: Matrix is non-symmetric but positive definite
● QMR: –
● TF-QMR: – 
● All others: –

In reality, only CG, BiCGStab and (F-)GMRES
are used much.
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Advice for iterative solvers

Summary:

All iterative solvers are bad
without a good preconditioner!

The art of devising a good iterative solver
is to devise a good preconditioner!
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Observations on iterative solvers

The finite element method provides us with a linear system

that we then need to solve.

Factors affecting performance of iterative solvers:
● Symmetry of a matrix
● Whether A is definite
● Condition number of A
● How the eigenvalues of A are clustered

● Whether A is reducible/irreducible

A x  =  b
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Observations on iterative solvers

Example 1: Using CG to solve

where A is SPD, each iteration reduces the residual by a 
factor of

● For a tolerance ε we need                iterations

● Problem: The condition number typically grows with the 
problem size    number of iterations grows→

A x  =  b

r  = √ κ(A )−1

√ κ(A )+1
 <  1

n  = 
log ϵ
log r
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Observations on iterative solvers

Example 2: When solving

where A has the form

then every decent iterative solver converges in 1 iteration.

Note 1: This, even though condition number may be large
Note 2: This is true, in particular, if A=I.

A x  =  b

A  =  (
a11 0 0 ⋯
0 a22 0 ⋯
0 0 a33 ⋯
⋮ ⋮ ⋮ ⋱

)
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The idea of preconditioners

Idea: When solving

maybe we can find a matrix P-1 and instead solve

Observation 1: If  P-1A~D  then solving should require 
fewer iterations

Corollary: The perfect preconditioner is the inverse matrix, 
i.e., P-1=A-1.

A x  =  b

P−1 A x  =  P−1b
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The idea of preconditioners

Idea: When solving

maybe we can find a matrix P-1 and instead solve

Observation 2: Iterative solvers only need matrix-vector 
multiplications, no element-by-element access.

Corollary: It is sufficient if  P-1  is just an operator

A x  =  b

P−1 A x  =  P−1b
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The idea of preconditioners

Idea: When solving

maybe we can find a matrix P-1 and instead solve

Observation 3: There is a tradeoff:
fewer iterations vs cost of preconditioner.

Corollary: Preconditioning only works if  P-1  is cheap to 
compute and if  P-1  is cheap to apply to a vector.

Consequence: P-1=A-1 does not qualify.

A x  =  b

P−1 A x  =  P−1b

http://www.dealii.org/
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The idea of preconditioners

Notes on the following lectures:
● For quantitative analysis, one typically needs to consider 

the spectrum of operators and preconditioners

● Here, the goal is simply to get an “intuition” on how 
preconditioners work
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Constructing preconditioners

Remember: When solving the preconditioned system

then the best preconditioner is P-1=A-1.

Problem: (i) We can't compute it efficiently. (ii) If we could, 
we would not need an iterative solver.

But: Maybe we can approximate P-1~A-1.

Idea 1: Do we know of other iterative solution techniques?

Idea 2: Use incomplete decompositions.

P−1 A x  =  P−1b
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Constructing preconditioners

Approach 1: Remember the oldest iterative techniques!

To solve                 we can use defect correction:
● Under certain conditions, the iteration:

will converge to the exact solution x

● Unlike Krylov-space methods, convergence is linear
● The best preconditioner is again P-1~A-1

x(k+1)  = x(k )−P−1(A x(k )−b)

A x  =  b
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Constructing preconditioners

Approach 1: Remember the oldest iterative techniques!

Preconditioned defect correction for                                   :
● Jacobi iteration:

● The Jacobi preconditioner is then

which is easy to compute and apply.

Note: We don't need the scaling (“relaxation”) factor.

x(k+1)  = x(k )−ω D−1(A x(k )−b)

Ax  = b ,       A  =  L+D+U

P−1  = ω D−1

http://www.dealii.org/


http://www.dealii.org/    Wolfgang Bangerth

 

Constructing preconditioners

Approach 1: Remember the oldest iterative techniques!

Preconditioned defect correction for                                   :
● Gauss-Seidel iteration:

● The Gauss-Seidel preconditioner is then

which is easy to compute and apply as L+D is triangular.

Note 1: We don't need the scaling (“relaxation”) factor.
Note 2: This preconditioner is not symmetric.

x(k+1)  = x(k )−ω(L+D)−1(A x(k )−b)

Ax  = b ,       A  =  L+D+U

P−1  = ω(L+D)−1                       i.e. h=P−1r  solves (L+D)h=ωr
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Constructing preconditioners

Approach 1: Remember the oldest iterative techniques!

Preconditioned defect correction for                                   :
● SOR (Successive Over-Relaxation) iteration:

● The SOR preconditioner is then

Note 1: This preconditioner is not symmetric.
Note 2: We again don't care about the constant factor in P.

x(k+1)  = x(k )−ω(D+ωL)−1(A x(k )−b)

Ax  = b ,       A  =  L+D+U

P−1  = (D+ω L)−1
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Constructing preconditioners

Approach 1: Remember the oldest iterative techniques!

Preconditioned defect correction for                                   :
● SSOR (Symmetric Successive Over-Relaxation) iteration:

● The SSOR preconditioner is then

Note: This preconditioner is now symmetric if A is 
symmetric!

x(k+1)  = x(k )− 1
ω(2−ω)

(D+ωU )−1 D(D+ωL)−1(A x(k )−b)

Ax  = b ,       A  =  L+D+U

P−1  = (D+ωU )−1 D(D+ωL)−1
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Constructing preconditioners

Approach 1: Remember the oldest iterative techniques!

Common observations about preconditioners from 
stationary iterations:

● Have been around for a long time

● Generally useful for small problems (<100,000 DoFs)

● Not particularly useful for larger problems
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Constructing preconditioners

Approach 2: Approximations to A-1

Idea 1: Incomplete decompositions
● Incomplete LU (ILU): 

Perform an LU decomposition on A but only keep 
elements of L, U that fit into the sparsity pattern of A

● Incomplete Cholesky (IC):
LLT decomposition if A is symmetric

● Many variants:
– strengthen diagonal
– augment sparsity pattern
– thresholding of small/large elements

Note: This preconditioner is again symmetric.
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Summary

Conceptually: We now need to solve the linear system

Goal: We would like to approximate P-1≈A-1.

But: We don’t need to know the entries of P-1 – we only see 
it as an operator.

Then: We can put it all into an iterative solver such as 
Conjugate Gradients that only requires matrix-vector 
products.

P−1 A x  =  P−1b
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Global solvers

Examples for a few necessary steps:
● Matrix-vector products in iterative solvers

(Point-to-point communication)

● Dot product synchronization

● Available parallel preconditioners
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Matrix-vector product

What does processor P need:
● Graphical representation of what P owns:

                 A              x          y

● To compute the locally owned elements of y, processor P 
needs all elements of x

● All processors need to send their share of x to everyone
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Matrix-vector product

What does processor P need:
● But: Finite element matrices look like this:

                 A              x          y

For the locally owned elements of y, processor P needs all x
j
 

for which there is a nonzero A
ij
 for a locally owned row i.
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Matrix-vector product

What does processor P need to compute its part of y:

● All elements x
j
 for which there is a nonzero A

ij
 for a locally 

owned row i.

● In other words, if  x
i
  is a locally owned DoF, we need all  

x
j
  that couple with x

i

● These are exactly the locally relevant degrees of freedom
● They live on ghost cells
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Matrix-vector product

What does processor P need to compute its part of y:

● All elements x
j
 for which there is a nonzero A

ij
 for a locally 

owned row i.

● In other words, if  x
i
  is a locally owned DoF, we need all  

x
j
  that couple with x

i

● These are exactly the locally relevant degrees of freedom
● They live on ghost cells
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Matrix-vector product

Parallel matrix-vector products for sparse matrices:
● Requires determining which elements

we need from which processor
● Exchange this up front once

Performing matrix-vector product:
● Send vector elements to all processors

that need to know
● Do local product (dark red region)
● Wait for data to come in
● For each incoming data packet, do

nonlocal product (light red region)
Note: Only point-to-point comm. needed!
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Vector-vector dot product

Consider the Conjugate Gradient algorithm:

Source: Wikipedia
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Vector-vector dot product

Consider the Conjugate Gradient algorithm:

Source: Wikipedia
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Vector-vector dot product

Consider the dot product:

x⋅y  =  ∑i=1

N
xi y i  = ∑p=1

P

(∑local elements on proc p
xi y i)

http://www.dealii.org/


http://www.dealii.org/    Wolfgang Bangerth

 

Parallel considerations

Consider the Conjugate Gradient algorithm:
● Implementation requires

– 1 matrix-vector product
– 2 vector-vector (dot) products
per iteration

● Matrix-vector product can be done with point-to-point 
communication

● Dot-product requires global sum (reduction) and sending 
the sum to everyone (broadcast)

● All of this is easily doable in a parallel code
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Parallel preconditioners

Consider Krylov-space methods algorithm:
To solve  Ax=b  we need

● Matrix-vector products  z=Ay
● Various vector-vector operations
● A preconditioner  v=Pw

● Want:  P  approximates  A-1

Question: What are the issues in parallel?
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Parallel preconditioners

First idea: Block-diagonal preconditioners

Pros:
● P can be computed locally
● P can be applied locally (without communication)
● P can be approximated (SSOR, ILU on each block)

Cons:
● Deteriorates with larger numbers

of processors
● Equivalent to Jacobi in the extreme

of one row per processor

Lesson: Diagonal block preconditioners
don't work well! We need data exchange!
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Parallel preconditioners

Second idea: Block-triangular preconditioners

Consider distributed storage of the matrix on 3 processors:

 A =

Then form the preconditioner          P-1 =
from the lower triangle
of blocks:
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Parallel preconditioners

Second idea: Block-triangular preconditioners

Pros:
● P can be computed locally
● P can be applied locally
● P can be approximated (SSOR, ILU on each block)
● Works reasonably well

Cons:
● Equivalent to Gauss-Seidel in the

extreme of one row per processor
● Is sequential!

Lesson: Data flow must have fewer 
then O(#procs) synchronization points!
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Parallel preconditioners

What works:
● Geometric multigrid methods for elliptic problems:

– Require point-to-point communication in smoother
– Very difficult to load balance with adaptive meshes
– O(N) effort for overall solver

● Algebraic multigrid methods for elliptic problems:
– Require point-to-point communication
   . in smoother
   . in construction of multilevel hierarchy
– Difficult (but easier) to load balance
– Not quite O(N) effort for overall solver

– “Black box” implementations available (ML, hypre)

http://www.dealii.org/


http://www.dealii.org/    Wolfgang Bangerth

 

Parallel preconditioners

Examples (strong scaling):

Laplace equation (from Bangerth et al., 2011)
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Parallel preconditioners

Examples (strong scaling):

Elasticity equation (from Frohne, Heister, Bangerth, submitted)
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Parallel preconditioners

Examples (weak scaling):

Elasticity equation (from Frohne, Heister, Bangerth, submitted)
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Parallel solvers

Summary:

● Mental model: See linear system as a large whole

● Apply Krylov-solver at the global level

● Use algebraic multigrid method (AMG) as black box 
preconditioner for elliptic blocks

● Build more complex preconditioners for block systems
(see lecture 38)

● Might also try parallel direct solvers
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The bigger picture

HPC methods are only one piece in the scientific computing 
world.

The goal is always the simulation of real processes 
for prediction and optimization. 

This also involves:
● Understanding the application
● Implementation of numerical methods
● Understanding the complexity of algorithms
● Understanding the hardware characteristics
● Interfacing with pre- and postprocessing tools

Together, these are called High Performance Computing.
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Examples of FEM applications in HPC

Examples from a wide variety of fields:
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Workflow for HPC in PDEs

Step 1: Identify geometry and details of the model

May involve tens of thousands of pieces, very labor 
intensive, interface to designers and to manufacturing
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Workflow for HPC in PDEs

Step 2: Mesh generation and maybe partitioning 
(preprocessing)

May involve 10s of millions or more of cells; requires lots 
of memory; very difficult to parallelize
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Workflow for HPC in PDEs

Step 2: Mesh generation and maybe partitioning 
(preprocessing)

May involve 10s of millions or more of cells; requires lots 
of memory; very difficult to parallelize
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Workflow for HPC in PDEs

Step 3: Solve model on this mesh using finite elements, 
finite volumes, finite differences, …

Involves some of the biggest computations ever done, 
10,000s of processors, millions of CPU hours, wide variety 
of algorithms
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Workflow for HPC in PDEs

Step 4: Visualization to learn from the numerical results

Can be done in parallel, difficulty is amount of data.
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Workflow for HPC in PDEs

Step 4: Visualization to learn from the numerical results

Goal: Not to plot data, but to provide insight!
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Workflow for HPC in PDEs

Step 5: Repeat

● To improve on the design

● To investigate different conditions (speed, altitude, 
angle of attack, …)

● To vary physical parameters that may not be known 
exactly

● To vary parameters of the numerical model (e.g. mesh 
size)

● To improve match with experiments
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Software issues in HPC

Ultimately, HPC is about applications, not just algorithms 
and their analysis.

Thus, we need to consider the issue of software that 
implements these applications:

● How complex is the software?
● How do we write software? Are there tools?
● How do we verify the correctness of the software?
● How do we validate the correctness of the model?

● Testing
● Documentation
● Social issues
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Complexity of software

Many HPC applications are several orders of magnitude 
larger than everything you have probably ever seen!

For example, a crude measure of complexity is the number 
of lines of code in a package (as of 2018):

● Deal.II has 1.1M
● PETSc has 720k
● Trilinos has 3.3M

At this scale, software development does not work the 
same as for small projects:

● No single person has a global overview
● There are many years of work in such packages
● No person can remember even the code they wrote
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Complexity of software

The only way to deal with the complexity of such software 
is to:

● Modularize: Different people are responsible for 
different parts of the project.

● Define interfaces: Only a small fraction of functions in a 
module is available to other modules

● Document: For users, for developers, for authors, and 
at different levels

● Test, test, test
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How do we write software

Successful software must follow the prime directive of 
software:

● Developer time is the single most scarce resource!

As a consequence (part 1):
● Do not reinvent the wheel: use what others have 

already implemented
● Use the best tools
● Do not become the bottleneck (e.g. by not writing 

documentation)

● Delegate. You can't do it all.
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How do we write software

Successful software must follow the prime directive of 
software:

● Developer time is the single most scarce resource!

As a consequence (part 2):
● Re-use code, don't duplicate
● Use strategies to avoid introducing bugs

● Test, test, test: 
- The earlier a bug is detected the easier it is to find
- Even good programmers spend more time debugging
  code than writing it
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Verification & validation (V&V): Verification

Verification refers to the process of ensuring that the 
software solves the problem it is supposed to solve: 

“The program solves the problem correctly”

A common strategy to achieve this is to...
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Verification refers to the process of ensuring that the 
software solves the problem it is supposed to solve: 

“The program solves the problem correctly”

A common strategy to achieve this is to test test test:
● Unit tests verify that a function/class does what it is 

supposed to do (assuming that correct result is known)
● Integration tests verify a whole algorithm (e.g. using 

what is known as the Method of Manufactured 
Solutions)

● Write regression tests that verify that the output of a 
program does not change over time

Software that is not tested does not
produce the correct results!

(Note that I say “does not”, and not “may not”!)

Verification & validation (V&V): Verification
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Validation refers to the process of ensuring that the 
software solves a formulation that accurately represents 
the application:

“The program solves the correct problem”

The details of this go beyond this class.

Verification & validation (V&V): Validation
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Testing

Let me repeat the fundamental truth about software with 
more than a few 100 lines of code:

Software that is not tested does not
produce the correct results!

No software that does not run lots of automatic tests can 
be good/usable.

As just one example (numbers as of 2018):
● deal.II runs ~9,500 tests after every single change
● This takes ~20 CPU hours every time
● The test suite has another 520,000 lines of code.
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Documentation

Documentation serves different purposes:
● It spells out to the developer what the implementation 

of a function/class is supposed to do (it's a contract)
● It tells a user what a function does
● It must come at different levels (e.g. functions, classes, 

modules, tutorial programs)

Also:
● Later reminds the author what she had in mind with a 

function
● Avoids that everyone has to ask the developer for 

information (bottleneck!)
● Document the history of a code by using a version 

control system
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Social issues

Most HPC software is a collaborative effort. Some of 
the most difficult aspects in HPC are social:

● Can I modify this code?
● X just modified the code but didn't update the 

documentation and didn't write a test!
● Y1 has written a great piece of code but it doesn't 

conform to our coding style and he's unwilling to adjust 
it.

● Y2 seems clever but still has to learn. How do I interest 
her to collaborate without accepting subpar code?

● Z agreed to fix this bug 3 weeks ago but nothing has 
happened.

● M never replies to emails with questions about his code.

http://www.dealii.org/
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