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Motivation

In Quantum Field Theory (QFT) (the theory of local observables), one
studies families M(O) of von Neumann algebras on a Hilbert space H
associated to space time regions O ⊆ M. Among these regions, the test
regions are enough to generate the whole theory. So one would like to
understand their geometry.
By Tomita–Takesaki theory, every test region O specifies a standard
subspace VO ⊆ H. This leads to a set V of standard subspaces of H with

an order structure (by inclusion)

a duality operation (causal compl. for O, symplectic compl. for VO)

symmetries (generated by modular automorphism groups).

A key motivation to study the space of standard subspaces is to learn more
about the geometry of test regions in QFT. This is of particular interest in
curved (but homogeneous) settings and if the geometric structure of
quantum space time is not a priori given.
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Standard subspaces of a complex Hilbert space H
A standard subspace V ⊆ H is a closed real subspace satisfying

V ∩ iV = {0} and V + iV = H.

Def: Stand(H)= set of standard subspaces. We have obvious structures:

partial order ≤ (by set inclusion ⊆),

duality V ′ := (iV )⊥R (symplectic complement)
It is antitone: V1 ⊆ V2 ⇒ V ′2 ⊆ V ′1 and involutive: V ′′ = V .

symmetries: AU(H) (group of unitary and antiunitary ops on H)

Parametrization by modular operators:
The antilinear involution S : V + iV → H,S(x + iy) := x − iy is closed
and has a polar decomposition S = J∆1/2 with a
conjugation J (antiunitary involution) and ∆ > 0 satisfying J∆J = ∆−1.
We write

Mod(H) = {(∆, J) : 0 < ∆ = ∆∗, J∆J = ∆−1, J conjugation}

for the set of all such pairs.
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We thus obtain a bijection

Stand(H)→ Mod(H), V 7→ (∆V , JV ) with V = Fix(JV ∆
1/2
V ).

Exs: (a) V = L2([0, 1],R) ⊆ H = L2([0, 1],C) with ∆V = 1 and JV f = f .

(b) H = L2(R×+, dxx ) with ∆f (x) = xf (x), (Jf )(x) = f (x−1) satisfies the
modular relations and leads to

V =
{
f ∈ H :

∫ ∞
0
|f (x)|2 dx <∞, f (x−1) = x1/2 · f (x)

}
.

Properties:

JVV = V ′ and ∆it
VV = V for t ∈ R.

∆V bd. ⇔ V + iV = H ⇔ [V1 ⊆ V ⊆ V2 ⇒ V1 = V = V2].

∆V = 1 ⇔ H = VC with J(x + iy) = x − iy .

Order on Stand(Cn) ∼= GLn(C)/GLn(R) is trivial.
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From operator algebras to standard subspaces

B(H) ∗-algebra of bounded operators on H
S ′ := {A ∈ B(H) : (∀S ∈ S) AS = SA} = commutant of S ⊆ B(H)

M⊆ B(H) is a von Neumann algebra if M is a ∗-alg. and M =M′′

Ω ∈ H is cyclic for M if MΩ = H
Ω ∈ H is separating for M if M→H,M 7→ MΩ is injective.

Tomita-Takesaki-Theorem (1960s): If Ω ∈ H is cyclic and generating
for the von Neumann algebra M, then

VM := {MΩ: M∗ = M ∈M} is standard (hence defines (∆, J)

JMJ =M′ (duality)

∆itM∆−it =M for t ∈ R (modular automorphisms).

Stand(H) carries information on von Neumann algebras:
Write vN(Ω) for the set of von Neumann algs M with Ω cyclic and
separating for M. Then vN(Ω)→ Stand(H),M 7→ VM is injective,
(VM)′ = VM′ and M1 ⊆M2 iff VM1 ⊆ VM2 .
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Connections with Quantum Field Theory

In QFT one studies nets of von Neumann algebras (M(O))O⊆M in B(H).
Here M(O) corresponds to observables measurable in the “laboratory”
O ⊆ M. Requirements:

O1 ⊆ O2 implies M(O1) ⊆M(O2) (Isotony)

O1 ⊆ O′2 implies M(O1) ⊆M(O2)′ (Locality) [O′ = causal compl.]

(∀g ∈ Aut(M))(∃Ug ∈ U(H)) UgM(O)U−1
g =M(gO) (Covariance)

Given a unit vector Ω ∈ H (vacuum state), we call O ⊆ M a test region if
Ω is cyclic and separating for M(O). Then VO := VM(O) is a standard
subspace and we obtain (∆O, JO) ∈ Mod(H).
The technique of modular localization aims at the construction of the
whole QFT from one M(O0), O0 a fixed test region, by using the group

G := 〈∆it
O, JO | t ∈ R,O test region〉 ⊆ AU(H).

Often the Bisognano–Wichmann Theorem implies that g .VO = Vg .O for
an action of the group G on the space-time manifold M.
Problem: Understand space time geometry of orbits G .VO ⊆ Stand(H).

Karl-Hermann Neeb (FAU) Standard subspaces of a Hilbert space 7 / 18



Σ-spaces (according to O. Loos, 1967)

Def.: Let Σ be a Lie group and M be a manifold. The structure of a
Σ-space on M is given by a family of diffeomorphisms (gx)g∈Σ,x∈M such
that

gx(x) = x , gxhx = (gh)x , gxhy = hgx (y)gx .

For every x ∈ M we have a Σ-action g 7→ gx on M fixing x and every gx is
a symmetry of the whole structure.
Special cases: (a) Σ = R×: dilation spaces
(b) Σ = {±1}: reflection spaces
(c) Σ = {±1} and x ∈ Fix((−1)x) isolated: symmetric spaces

Exs: (a) M = G/H, G Lie group, τ ∈ Aut(G ) involution and H ⊆ G τ .
Then

(−1)xH(yH) := xτ(x−1y)H

turns G/H into a reflection space; a symmetric space iff H is open in G τ .
For M = G we have (−1)g (h) = gτ(g−1h);
for M = Rn and τ(x) = −x , we get (−1)x(y) = 2x − y (point reflections).

Karl-Hermann Neeb (FAU) Standard subspaces of a Hilbert space 8 / 18



Homogeneous spaces as dilation spaces

Lemma: Let G be a Lie group, α : Σ→ Aut(G ) a homomorphism and
H ⊆ Fix(α(Σ)). Then

rxH(yH) := xαr (x−1y)H, x , y ∈ G , r ∈ Σ

defines on G/H the structure of a Σ-space.

Ex: M = Rn is a dilation space with rx(y) = x + r(y − x).
Def.: If M is a reflection (dilation) space, then a morphism of reflection
(dilation) spaces γ : R→ M is called a (dilation) geodesic.

Theorem (Stand(H) as a dilation space)

(a) Stand(H) carries a natural structure of a dilation space, where

(−1)VW = JVW
′ and (et)VW = ∆

−it/2π
V W , t ∈ R.

(b) Conj(H) is a symmetric space w.r.t. (−1)J I = JIJ.
(c) q : Stand(H)→ Conj(H),V 7→ JV is a morphism of reflection spaces.
(d) Continuous geodesics: γ(t) = Ut/2V , with U : R→ U(H) a

continuous homomorphism satisfying JVUtJV = U−t .
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Antiunitary representations

Def: A graded group is a pair (G ,G1), where G1 ≤ G and G/G1
∼= {±1}.

Ex: The (antiunitary group) (AU(H),U(H)) of all unitary and antiunitary
operators on H. By Wigner’s Theorem, AU(H)/T is the symmetry group
of quantum state space P(H) preserving transition probabilities.

Def: An antiunitary representation (U,H) of a graded Lie group (G ,G1)
is a morphism U : G → AU(H) of graded groups, for which all orbit maps
Uξ : G → H, g 7→ Ugξ are continuous.

Examples: (where G1 = G0 is the identity component):

R× ∼= R× Z2 (dilation group)

the affine group of the line: Aff(R) ∼= Ro R×

the projective group PGL2(R), acting on P1(R) ∼= S1

the proper Lorentz group SO1,d−1(R).

the proper Poincaré group P(d)+
∼= Rd o SO1,d−1(R)

the proper conformal group of Minkowski space SO2,d(R).
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Brunetti–Guido–Longo (BGL) construction

If (U,G ) is an antiunitary representation, we obtain a map

B : Homgr(R×,G )→ Stand(H), γ 7→ Vγ ,

determined uniquely by
Vγ = Fix(Jγ∆1/2

γ ), Jγ = Uγ(−1), ∆−it/2π
γ = Uγ(et).

Note: For v ∈ Vγ , we have Uγ(e iπ)v = ∆
1/2
γ v = Jγv = Uγ(−1)v .

Theorem (Dilation geodesics in Stand(H))

For an antiunitary rep. (U,H) of G = Aff(R) ∼= Ro R× and
γx : R× → Aff(R), γx(r) = rx (dilation structure of R), we have:

(a) η : R→ Stand(H), η(x) := Vγx is a dilation geodesic (all obtained).

(b) Borchers ’92: η decreasing (incr.) iff U(t,1) = e itH with ±H ≥ 0.

(c) Wiesbrock ’93: For a standard subspace W ⊆ V , there is a
decreasing dilation geodesic from V to W iff ∆it

VW ⊆W for t ≥ 0
(W ↪→ V is called a half-sided modular inclusion).
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Homogeneous spaces of standard subspaces

For every γ ∈ Homgr(R×,G ), the subset

Vγ := {UgVγ : g ∈ G1} = UG1Vγ ⊆ Stand(H)

is a dilation subspace and a G1-homogeneous space G1/Hγ , where
Hγ := {g ∈ G1 : UgVγ = Vγ}. The order on Vγ is non-trivial if and only if
the semigroup

Sγ := {g ∈ G1 : UgVγ ⊆ Vγ} with Sγ ∩ S−1
γ = Hγ

is not a group. Then the order on Vγ ∼= G1/Hγ is encoded in Sγ via

gVγ ⊆ hVγ iff h−1g ∈ Sγ .

Ex: For antiunitary representations of G = Aff(R), the subset Vγ ∼= R is a
dilation geodesic.
Order non-trivial ⇔ positive/negative energy cond. ±H ≥ 0 (Borchers).
Then the order is determined by

Vγ ∼= {[x ,∞) : x ∈ R} ⊆ 2R and Sγ = {g ∈ Aff(R) : g(0) ≥ 0}.
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Problem: Determine the semigroups Sγ? When do they have interior
points? Describe the corresponding ordered homogeneous spaces Mγ .

Ex: (a) For antiunitary representations of G = PGL2(R) (the Möbius
group on R) and γ : R× → G hyperbolic (dilations of R), the order is
non-trivial iff U is a positive energy representation, i.e., −idU(x) ≥ 0 for
some 0 6= x ∈ g. Then

Vγ ∼= { proper open intervals I in S1}, I ′ = interior of complement of I

(conformal compactification of R, as in CFT). Generated by pairs of
monotone dilation geodesics.

(b) G = P(2)+
∼= R1,1 o SO(1, 1), γ given by Lorentz boosts in SO(1, 1).

For positive energy representations Vγ ∼= R2 can be identified with the set
of right wedges in R1,1, i.e., all translates of the standard right wedge
WR = {x0 > |x1|}.
Vγ is “flat”. It is generated by two intersecting monotone dilation
geodesics from V to W1 and from W2 to V satisfying
JW1JW2 = JV JW2JW1JV (Wiesbrock condition).
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Conformal compactifications of Jordan algebras

Let g be a Lie algebra and h ∈ g with (ad h)3 = ad h. Then ad h defines a
3-grading

g = g−1 ⊕ g0 ⊕ g1 with h ∈ z(h) for h := g0.

Further τ := eπi ad h is an involution and we consider a graded Lie group
G = G1 o {1, τ}, H := G τ and

γ : R× → Z (H) ⊆ H ⊆ G , γ(−1) = τ, γ(et) = exp(th).

Exs: We have this structures for the conformal group of
• Minkowski space R1,d−1: R× ⊆ H = R× SO1,d−1(R) ⊆ G = SO2,d(R).

• Jordan algebra Symn(R): R× ⊆ H = GLn(R) ⊆ G = Sp2n(R).

• Jordan algebra Hermn(C): R× ⊆ H = GLn(C) ⊆ G = Un,n(C).

• simple euclidean Jordan algebras ⇒ hermitian Lie groups of tube type.

Simple Jordan alg’s: R1,d−1, Hermd(K),K = R,C,H; Herm3(O).
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Let G be the conformal group of a simple eucl. Jordan alg. and γ as above.

Def: We call an antiunitary representation (U,H) of G a positive energy
representation if there exists 0 6= x ∈ g with −idU(x) ≥ 0.

Theorem (Identification Theorem)

Vγ ∼= G/H is a symmetric space and for any non-trivial positive energy
representation (U,H) of G, the BGL map induces an order embedding

(G/H,≤) ↪→ Stand(H),

where the order on G/H is G-invariant and given by

gH ≤ eH ⇐⇒ g ∈ S := exp(C+) exp(C−)H,

where C± ⊆ g±1 are H-invariant closed convex cones (S is an Olshanski
semigroup in Koufany decomposition).

Note: This is only for a very special choice of γ, which is far from generic.
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Relations to QFT

The ordered space (G/H,≤) can be realized by subsets of the conformal
completion M = G/P, P := H exp(g−1) of g1 via gH 7→ g exp(C+)P. In
our context M = G/P plays the role of the space-time manifold and the
domains OgH = g exp(C+)P the role of the test domains.

In QFT actually the following case appears:

G = SO2,4(R), M = G/P ∼= S1 × S3 ⊇ R1,3

(conformal completion of Minkowski space) and the set
W := {g exp(C+)P : g ∈ G} is the set of conformal wedge domains.
Affine test domains in Minkowski space R1,3 are the future cone

V+ = {(x0, x) ∈ R1,d−1 : x0 > |x|}

and the standard right wedge

WR := {(x0, x) ∈ R1,d−1 : x1 > |x0|}.
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Open problems

Characterize monotone geodesics γ : R→ Stand(H): γ(t) = Ut/2V ,
JVUtJV = U−t . For dilation geodesics U this follows from the
Borchers–Wiesbrock Theorem. Tools to be relevant here come from
the theory of inner functions on complex half planes (see work of
Longo–Witten (2011) on boundary QFTs).

For an antiunitary representation (U,H) of G , γ ∈ Homgr(R×,G ),
and the corresponding standard subspace Vγ , determine when the
semigroup

Sγ := {g ∈ G1 : UgVγ ⊆ Vγ}
has interior points. This should lead to an identification of the
geometry of the ordered homogeneous spaces
Vγ = UG1Vγ ⊆ Stand(H).

Borchers–Wiesbrock problem: Construct nets of local observables
from finitely many modular groups and a single von Neumann algebra
M; this translates into finite configurations γ1, . . . , γn of dilation
geodesics and hence into antiunitary representation theory.
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Concluding remarks

Standard subspaces provide a context to study symmetries of systems
of von Neumann algebras (nets of local observables) in terms of
antiunitary reps of Lie groups

This was used by Buchholz–Lechner–Summers to construct non-free
QFTs on R4 by a deformation process (2011)

One expects natural analytic extensions of antiunitary representations
to play a role (combining complex semigroups and crown domains)

All this applies to infinite dimensional groups
(Virasoro, gauge groups ...)
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