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Introduction 1

♣ One of the most important concept in differential geometry is the notion of
curvature.

♣ But the curvature is in general quite difficult to study.

♣ A problem in differential geometry is to relate algebraic properties of the
curvature to the underlining geometric information.

♣ Due to the fact that the curvature tensor is so difficult to handle, the
investigation usually focuses on different objects associated to the curvature.

Abdoul Salam DIALLO Affine Szabó manifolds 1 / 44
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Introduction 3

♣ Let R be the Riemann curvature tensor of a pseudo-Riemannian (M, g) of
signature (p, q).

♣ The Szabó operator 1 S is the self-adjoint linear map which is defined by

g(S(x)y , z) = ∇R(y , x , x , z ; x). (1)

It plays an important role in the study of totally isotropic manifolds.

♣ One says that (M, g) is Szabó if the eigenvalues of S(x) are constant on the
pseudo-spheres of unit timelike and spacelike vectors :

S±(M, g) = {x ∈ TM : g(x , x) = ±1}. (2)

1. Szabó write the original paper concerning the spectral properties of the this operator in the
Riemannian setting

Abdoul Salam DIALLO Affine Szabó manifolds 2 / 44
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Introduction 4

♣ Szabó 2 used techniques from algebraic topology to show in the Riemannian
setting that any such metric is locally symmetric.

♣ Szabó used this observation to give a simple proof that any 2 point
homogeneous spaces is either flat or is a rank one symmetric space.

♣ Gilkey and Stravrov extended his result to show that any Szabó Lorentzian
manifold has constant sectional curvature.

♣ If p ≥ 2 ad if q ≥ 2, there exist Szabó pseudo-Riemannian manifolds which
are neither locally symmetric, nor locally homogeneous, nor pointwise totally
isotropic.

♣ This motives the study of the Szabó operator in the higher signature setting.

2. Z. I. Szabó, A short topological proof for the symmetry of 2 point homogeneous spaces,
Invent. Math., 106 (1991), 61-64.
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Outline

Outline 8

1 Preliminaries
2 Affine Szabó manifolds
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Preliminaries
Affine Szabó manifolds
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Affine connection 11

Let M be a differentiable manifold of class C∞. We shall denote by F(M) the set
of all differentiable function and by X(M) the set of all smooth vector fields on M.

Definition

An affine connection ∇ on M is a mapping X(M)× X(M)→ X(M) defined by

(X ,Y ) ∈ X(M)2 7→ ∇XY (3)

satisfying the following conditions :

♣ ∇X1+X2Y = ∇X1Y +∇X2Y ;

♣ ∇X (Y1 + Y2) = ∇XY1 +∇XY2 ;

♣ ∇fXY = f∇XY ;

♣ ∇X (fY ) = (Xf )Y + f∇XY

where X1,X2,Y1,Y2 ∈ X(M) and f ∈ F(M).
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Affine connection 12

♣ The affine connections is a classical topic in differential geometry. It was
initially developped to solve pure geometrical problems.

♣ It provides an extremely important tool to study geometrical structures on
manifolds and, as such, has been applied with great sources in many different
setting.
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Affine connection 13

Let us consider a coordinate system (x1, x2, · · · , xn) in a neighborhood U of a
point p in M.

♣ In U , the connection is given by

∇ ∂

∂xi

∂

∂x j
=

n∑
k=1

Γk
ij

∂

∂xk
(4)

where the system of functions Γk
ij(i , j , k = 1, · · · , n) are called the Christoffel

symbols for the affine connection relative to the local coordinate system.
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Torsion tensor 14

Given affine connection ∇ on M.

Definition
The torsion tensor field T is defined by

T (X ,Y ) = ∇XY −∇YX − [X ,Y ]; (5)

it is a tensor of type (1, 2).

♣ It satisfy the following property : T (X ,Y ) = −T (Y ,X ).

♣ The components of the torsion tensor T in local coordinates are

T k
ij = Γk

ij − Γk
ji . (6)

♣ If T = 0, we say that ∇ has zero torsion or ∇ is torsion free.
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Curvature tensor 15

Given torsion free affine connection ∇ on M.

Definition
The curvature tensor field R is defined by

R(X ,Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X ,Y ]Z ; (7)

it is a tensor of type (1, 3).

♣ The components of the curvature tensor R in local coordinates are

R
( ∂

∂xk
,
∂

∂x l

) ∂

∂x j
=
∑
i

R i
jkl

∂

∂x l
. (8)

♣ If T = 0 and R = 0, we say that ∇ is a flat affine connection.

♣ If T = 0 and ∇R = 0, we say that ∇ is a locally symmetric affine
connection.
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Curvature tensor 16

The curvature tensor field R has the following properties :

♣ R(X ,Y )Z + R(Y ,X )Z = 0 ;

♣ R(X ,Y )Z + R(Y ,Z )X + R(Z ,X )Y = 0 ; (first Bianch identity)

♣ (∇XR)(Y ,Z ) + (∇YR)(Z ,X ) + (∇ZR)(X ,Y ) = 0 (second Bianchi identity).
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Affine Szabó 2-manifolds
Affine Szabó 3-manifolds
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Given curvature tensor R on M.

Definition
The Ricci tensor field Ric is defined by

Ric(Y ,Z ) = trace{X 7→ R(X ,Y )Z}; (9)

it is a tensor of type (0, 2).

♣ The components of the Ricc tensor R in local coordinates are

Ricjk = Ric
( ∂

∂x j
,
∂

∂xk

)
=
∑
i

R i
jkl . (10)

♣ If T = 0 and Ric = 0, we say that ∇ is a Ricci flat affine connection.

♣ If T = 0 and ∇Ric = 0, we say that ∇ is a cyclic parallel affine
connection.
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Affine Szabó 2-manifolds
Affine Szabó 3-manifolds
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Remark 18

♣ In Riemannian geometry, the Levi-Civita connection of a Riemannian metric
has symmetric Ricci tensor, that is,

Ric(X ,Y ) = Ric(Y ,X ).

♣ This property is not true for an arbitrary torsion free affine connection. In
fact, the property is closely related to the concept of parallel volume element.
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Affine Szabó manifolds

Affine Szabó 2-manifolds
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Aim 19

The curvature is a central concepts in differetial geometry. But the curvature is
difficult to investigate. We can use the curvature to define several associated
operators :

♣ the affine Jacobi operator ;

♣ the affine Szabó operator ;

♣ the affine skew-symmetric operator ; ect...

which are defined in terms of the curvature and its covariane derivative ; and we
discuss the spectral properties of these operators.
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Affine Szabó 3-manifolds

Applications
Conclusion

Affine manifolds
Riemann extensions

Affine Szabó operator 20

Given curvature tensor R on M.

Definition

The affine Szabó operator S∇ is defined by

S∇(X )Y := (∇XR)(Y ,X )X (11)

where X ,Y ∈ TpM.

The covariant derivative of R is defined as

(∇XR)(Y ,X )X = ∇XR(Y ,X )X − R(∇XY ,X )X

−R(Y ,∇XX )X − R(Y ,X )∇XX . (12)

The affine Szabó operator satisfies

♣ S∇(X )X = 0 ;

♣ S∇(αX )(·) = α3S∇(X )(·) for α ∈ R∗.
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Riemann extension 21

For any affine connection ∇ on M, there exist a technique called Riemann
extension, which relates affine and pseudo-Riemannian geometries. This technique
is very powerful in constructing new examples of pseudo-Riemannian metrics.

Definition
The Riemann extension g∇ is the pseudo-Riemannian metric on T ∗M of neutral
signature (n, n) defined in the locally induced coordinates (xi , . . . , xi ′) on
π−1(U) ⊂ T ∗M, by

g∇ =

(
−2xk′Γk

ij δji
δji 0

)
. (13)

with respect to {∂1, . . . , ∂n, ∂1′ , . . . , ∂n′} (i , j , k = 1, . . . , n; k ′ = k + n), where Γk
ij

are the Christoffel symbols of the torsion free affine connection ∇ with respect to
(U, xi ) on M.
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Twisted Riemann extension 22

The twisted Riemann extension which is a generalization of Riemann extension.

Definition

Let φ be a symmetric (0, 2)-tensor field on M. The twisted Riemann extension is
the neutral signature metric on T ∗M given by

g∇ =

(
φij(x)− 2xk′Γk

ij δji
δji 0

)
. (14)

with respect to {∂1, . . . , ∂n, ∂1′ , . . . , ∂n′} (i , j , k = 1, . . . , n; k ′ = k + n), where Γk
ij

are the Christoffel symbols of the torsion free affine connection ∇ with respect to
(U, xi ) on M.
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Remark 23

Some properties of the affine connection ∇ can be investigated by means of the
corresponding properties of the Riemann extension g∇. For instance :

♣ (M,∇) is locally symmetric if and only if (TM , g∇) is locally symmetric.

♣ (M,∇) is projectively flat if and only if (TM , g∇) is locally conformally flat.
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Definition

Let (M,∇) be a smooth affine manifold and p ∈ M.

1 (M,∇) is called affine Szabó at p ∈ M if the affine Szabó operator S∇(X )
has the same characteristic polynomial for every X ∈ TpM.

2 (M,∇) is called pointwise affine Szabó if the eingenvalues of the affine
Szabó operator S∇(X ) dot not depend on X ∈ TpM for every point p ∈ M
(the eigenvalues may vary from point to point).

3 (M,∇) is called affine Szabó if (M,∇) is affine Szabó at each p ∈ M.
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Affine Szabó 3-manifolds

Applications
Conclusion

Definition 25

Definition

Let (M,∇) be a smooth affine manifold and p ∈ M.
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Theorem

Let (M,∇) be an n-dimensional affine manifold and p ∈ M. Then (M,∇) is affine
Szabó at p ∈ M iff the characteristic polynomial of the affine Szabó operator
S∇(X ) is

Pλ[S∇(X )] = λn (15)

for every X ∈ TpM.
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♣ If the characteristic polynomial of the affine Szabó operator at p is given by
Pλ(S∇(X )) = λn, then the affine manifold (M,∇) is obviously affine Szabó.

♣ Assume that (M,∇) is affine Szabó,
then for X ∈ TpM, the characteristic polynomial of the affine Szabó operator
S∇(X ) is given by

Pλ[S∇(X )] = λn − σ1λ
n−1 + σ2λ

n−2 − · · ·+ (−1)nσn. (16)

Then for βX ∈ TpM with β ∈ R∗, the characteristic polynomial of the affine
Szabó operator S∇(βX ) is given by

Pλ[S∇(βX )] = λn − σ1β
3λn−1 + σ2λ

n−2 − · · ·+ (−1)nβ3nσn. (17)

Hence, since (M,∇) is affine Szabó, that is Pλ[S∇(X )] = Pλ[S∇(βX )], it
follows that

σ1 = · · · = σn = 0

which complete the proof.
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Corollary

If (M,∇) is affine Szabó at p ∈ M, then

♣ 0 is the only eigenvalue of the affine Szabó operator ;

♣ the trace of the affine Szabó operator vanishes, that means the Ricci tensor
of ∇ is cyclic parallel.
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Aim 30

Classification of 2-dimensional affine Szabó manifolds.
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Theorem 2 31

Theorem

Let (M,∇) be a two-dimensional smooth affine manifold. Then (M,∇) is affine
Szabó at p ∈ M iff the Ricci tensor of (M,∇) is cyclic parallel at p ∈ M.
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♣ Step 1. The components of the curvature tensor R are given by

R(∂1, ∂2)∂1 = a∂1 + b∂2 (18)

and
R(∂1, ∂2)∂2 = c∂1 + d∂2, (19)

where a, b, c and d are given by

a = ∂1f
1

12 − ∂2f
1

11 + f 1
12f

2
12 − f 2

11f
1

22,

b = ∂1f
2

12 − ∂2f
2

11 + f 2
11f

1
12 + f 2

12f
2

12 − f 1
11f

2
12 − f 2

11f
2

22,

c = ∂1f
1

22 − ∂2f
1

12 + f 1
11f

1
22 + f 1

12f
2

22 − f 1
12f

1
12 − f 2

12f
1

22,

d = ∂1f
2

22 − ∂2f
2

12 + f 2
11f

1
22 − f 1

12f
2

12.
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Affine Szabó manifolds

Affine Szabó 2-manifolds
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♣ Step 2. Let X = αi∂i , i = 1, 2 be a vector on M, then the affine Szabó
operator is given by

(∇XR)(∂1,X )X = A∂1 + B∂2 (20)

and
(∇XR)(∂2,X )X = C∂1 + D∂2 (21)

where A,B,C and D are given by
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♣

A = α2
1α2

[
∂1a− a(f 1

11 + f 2
12) + bf 1

12 − cf 2
11

]
+ α3

2

[
∂2c − 2cf 2

22 + (d − a)f 1
22

]
+ α1α

2
2

[
∂2a + ∂1c − a(f 1

12 + f 2
22) + (d − a)f 1

12 + bf 1
22 − 3cf 2

12

]
;

B = α2
1α2

[
∂1b − 2bf 1

11 − (d − a)f 2
11

]
+ α3

2

[
∂2d − bf 1

22 + cf 2
12 − d(f 1

12 + f 2
22)
]

+ α1α
2
2

[
∂2b + ∂1d − 3bf 1

12 + cf 2
11 − (d − a)f 2

12 − d(f 1
11 + f 2

12)
]
;

C = α3
1

[
− ∂1a + a(f 1

11 + f 2
12)− bf 1

12

]
+ α1α

2
2

[
− ∂2c + 2cf 2

22 − (d − a)f 1
22

]
+ α2

1α2

[
− ∂2a− ∂1c + a(f 1

12 + f 2
22)− bf 1

22 + 3cf 2
12 − (d − a)f 1

12

]
;

D = α3
1[−∂1b + 2bf 1

11 + (d − a)f 2
11] + α1α

2
2[−∂2d + bf 1

22 − cf 2
12 + d(f 1

12 + f 2
22)]

+ α2
1α2

[
− ∂2b − ∂1d + 3bf 1

12 − cf 2
11 + d(f 1

11 + f 2
12) + (d − a)f 2

12

]
.
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Affine Szabó manifolds

Affine Szabó 2-manifolds
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♣ Step 3. The matrix associated to S∇(X ) with respect to the basis {∂1, ∂2} is
given by

(S∇(X )) =

(
A B
C D

)
. (22)

Its characteristic polynomial is given by

Pλ[S∇(X )] = λ2 − λ(A + D) + (AD − BC ). (23)
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Proof of Theorem 2 36

♣ Step 4. Since (M,∇) is affine Szabó, by Theorem 1, 0 is the only eigenvalue

of the affine Szabó operator S∇(X ).

Therefore,
det(S∇(X )) = AD − BC = 0

and
trace(S∇(X )) = A + D = 0.

The latter implies that

∂2c − 2cf 2
22 + (d − a)f 1

22 = 0,

− ∂1b + 2bf 1
11 + (d − a)f 2

11 = 0,

∂1a− ∂2b − ∂1d + 4bf 1
12 − 2cf 2

11 + (d − a)(f 1
11 + 2f 2

12) = 0,

∂2a + ∂1c − ∂2d + 2bf 1
22 − 4cf 2

12 + (d − a)(2f 1
12 + f 2

22) = 0.
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Examples 37

Example

Consider on R2 the torsion free affine connection ∇ defined by

∇∂1∂1 = (x1 − x2)∂1 and ∇∂2∂2 = (x1 + x2 + 1)∂2. (24)

After, a straightforward calculation, it is easy to check that (R2,∇) is an affine
Szabó manifold.

Example

Let consider on R2 the torsion free affine connection ∇ defined by

∇∂1∂2 = x2∂1 and ∇∂2∂2 = x1x
2
2∂1. (25)

After, a straightforward calculation, it is easy to check that (R2,∇) is an affine
Szabó manifold.
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Example

Consider on R2 the torsion free affine connection ∇ defined by

∇∂1∂1 = (x1 − x2)∂1 and ∇∂2∂2 = (x1 + x2 + 1)∂2. (24)

After, a straightforward calculation, it is easy to check that (R2,∇) is an affine
Szabó manifold.

Example

Let consider on R2 the torsion free affine connection ∇ defined by

∇∂1∂2 = x2∂1 and ∇∂2∂2 = x1x
2
2∂1. (25)

After, a straightforward calculation, it is easy to check that (R2,∇) is an affine
Szabó manifold.
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Affine 3-manifolds 39

Let M be a 3-dimensional smooth manifold and ∇ bea torsion free
affine connection. We have

∇∂1∂1 = f 1
11∂1 + f 2

11∂2 + f 3
11∂3,

∇∂1∂2 = f 1
12∂1 + f 2

12∂2 + f 3
12∂3,

∇∂1∂3 = f 1
13∂1 + f 2

13∂2 + f 3
13∂3,

∇∂2∂2 = f 1
22∂1 + f 2

22∂2 + f 3
22∂3,

∇∂2∂3 = f 1
23∂1 + f 2

23∂2 + f 3
23∂3,

∇∂3∂3 = f 1
33∂1 + f 2

33∂2 + f 3
33∂3,

where f kij = f kij (x1, x2, x3) are the Christoffel symbols.
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Theorem 3 (Diallo and Massamba) 40

Theorem
Let M be a 3-dimensional smooth manifold and ∇ be a torsion free affine
connection given by

∇∂i∂k =
1

xi
∂k ; ∇∂j∂k =

1

xj
∂k ; ∇∂i∂j =

xk
xixj

∂k ;

with i 6= j 6= k; i , j , k = 1, 2, 3 and xi 6= 0, xj 6= 0, xk 6= 0. Then (M,∇) is affine
Szabó.
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Preliminaries
Affine Szabó manifolds
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Example

The following torsion free affine connections on R3 given by :

1 ∇∂1∂2 = 1
x2
∂1, ∇∂1∂3 = 1

x3
∂1, ∇∂2∂3 = x1

x2x3
∂1 ;

2 ∇∂1∂2 = 1
x1
∂2, ∇∂1∂3 = x2

x1x3
∂2, ∇∂2∂3 = 1

x3
∂2 ;

3 ∇∂1∂2 = x3

x1x2
∂3, ∇∂1∂3 = 1

x1
∂3, ∇∂2∂3 = 1

x2
∂3,

are affine Szabó.
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Example

The following torsion free affine connections on R3 given by :

1 ∇∂1∂2 = 1
x2
∂1, ∇∂1∂3 = 1

x3
∂1, ∇∂2∂3 = x1

x2x3
∂1 ;

2 ∇∂1∂2 = 1
x1
∂2, ∇∂1∂3 = x2

x1x3
∂2, ∇∂2∂3 = 1

x3
∂2 ;

3 ∇∂1∂2 = x3

x1x2
∂3, ∇∂1∂3 = 1

x1
∂3, ∇∂2∂3 = 1

x2
∂3,

are affine Szabó.
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Example

The following torsion free affine connections on R3 given by :

1 ∇∂1∂2 = 1
x2
∂1, ∇∂1∂3 = 1

x3
∂1, ∇∂2∂3 = x1

x2x3
∂1 ;

2 ∇∂1∂2 = 1
x1
∂2, ∇∂1∂3 = x2

x1x3
∂2, ∇∂2∂3 = 1

x3
∂2 ;

3 ∇∂1∂2 = x3

x1x2
∂3, ∇∂1∂3 = 1

x1
∂3, ∇∂2∂3 = 1

x2
∂3,

are affine Szabó.
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Affine Szabó 3-manifolds

Applications
Conclusion

Theorem 4 44

Theorem

Let M and ∇ be the torsion free affine connection, whose nonzero coefficients of
the connection are given by

∇∂1∂1 = f1(x1, x2, x3)∂1

∇∂1∂2 = f2(x1, x2, x3)∂1

∇∂1∂3 = f3(x1, x2, x3)∂1

Then (M,∇) is affine Szabó if and only if the Ricci tensor of (M,∇) is cyclic
parallel.
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Example

The following affine connections on R3 whose non-zero Christoffel symbols are
given by :

1 ∇∂1∂1 = 0, ∇∂1∂2 = −x3∂1, ∇∂1∂3 = x2∂1 ;

2 ∇∂1∂1 = x1∂1, ∇∂1∂2 = 2x3∂1, ∇∂1∂3 = −2x2∂1 ;

are affine Szabó.

Abdoul Salam DIALLO Affine Szabó manifolds 34 / 44
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Example

The following affine connections on R3 whose non-zero Christoffel symbols are
given by :

1 ∇∂1∂1 = 0, ∇∂1∂2 = −x3∂1, ∇∂1∂3 = x2∂1 ;

2 ∇∂1∂1 = x1∂1, ∇∂1∂2 = 2x3∂1, ∇∂1∂3 = −2x2∂1 ;

are affine Szabó.
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Theorem

Let M and ∇ be the torsion free affine connection given by

∇∂1∂1 = f1(x1, x2, x3)∂2, ∇∂2∂2 = f2(x1, x2, x3)∂3, ∇∂3∂3 = f3(x1, x2, x3)∂1.

Then (M,∇) is affine Szabó if at least one of the following conditions holds :

1 f1 = 0, f2 = u(x2) and f3 = v(x2) + t(x3).

2 f2 = 0, f3 = t(x3) and f1 = f (x1) + g(x3).

3 f3 = 0, f1 = f (x1) and f2 = h(x1) + u(x2).

Or at least one of the following conditons holds :

1 f1 = 0, f2 = f (x1) + g(x2) and f3 = 0.

2 f2 = 0, f3 = v(x2) + t(x3) and f1 = 0.

3 f3 = 0, f1 = f (x1) + g(x3) and f2 = 0.
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Example

The following torsion free affine connections on R3 whose non-zero Christoffel
symbols are given by :

1 ∇∂1∂1 = 0, ∇∂2∂2 = x2∂3, ∇∂3∂3 = (x2 + x2
3 )∂1 ;

2 ∇∂1∂1 = x2
1∂2, ∇∂2∂2 = (x1 + x2)∂3, ∇∂3∂3 = 0 ;

are affine Szabó.
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Example

The following torsion free affine connections on R3 whose non-zero Christoffel
symbols are given by :

1 ∇∂1∂1 = 0, ∇∂2∂2 = x2∂3, ∇∂3∂3 = (x2 + x2
3 )∂1 ;

2 ∇∂1∂1 = x2
1∂2, ∇∂2∂2 = (x1 + x2)∂3, ∇∂3∂3 = 0 ;

are affine Szabó.
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Affine Szabó 3-manifolds

Applications
Conclusion

Theorem 6 50

Theorem

Define a torsion free connection on Rm by setting

∇∂i∂j =
∑

k>max(i,j)

Γ k
ij (x1, x2, · · · , xk−1)∂k for Γ k

ij = Γ k
ji .

Then (Rm,∇) is affine Szabó.
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Theorem A. S. Diallo, S. Longwap and F. Massamba, On
three dimensional affine Szabó manifolds, Balkan Journal
of Geometry and its Applications, 22, (2017) (2), 21-36. 51

Theorem

Let (M,∇) be a smooth torsion-free affine manifold. Then the following
statements are equivalent :

1 (M,∇) is affine Szabó.

2 The Riemann extension (T ∗M, g∇) of (M,∇) is a pseudo-Riemannian Szabó
manifold.
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Example

As an example, we have the following. The Riemann extension of the affine Szabó
connection on R3 defined by

∇∂1∂1 = x1∂1, ∇∂1∂2 = 2x3∂1, ∇∂1∂3 = −2x2∂1, (26)

is the pseudo-Riemannian metric of signature (3, 3) given by

g∇ = 2dx1 ⊗ dx4 + 2dx2 ⊗ dx5 + 2dx3 ⊗ dx6

− 2x1x4dx1 ⊗ dx1 − 4x3x4dx1 ⊗ dx2 + 4x2x4dx1 ⊗ dx3. (27)

After, a straightforward calculation, it easy to see that this metric is Szabó.
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Theorem A. S. Diallo, S. Longwap and F. Massamba, On
twisted Riemannian extensions associated with Szabó
metrics, Hacettepe Journal of Mathematics and Statistics,
46, (2017) (4), 593-601. 53

Theorem

Let (T ∗M, g(,φ)) be the cotangent bundle of an affine manifold (M,∇) equipped
with the twisted Riemannian extension. Then (T ∗M, g(,φ)) is a
pseudo-Riemannian Szabé manifold if and only (M, ) is affine Szabé for any
symmetric (0, 2)-tensor field φ.
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Example

As an example we have the following. The twisted Riemannian extensions of the
following affine Szabó

∇∂1∂1 = u1u3∂2, ∇∂2∂2 = 0, ∇∂3∂3 = (u1 + u3)∂2 (28)

is given by

g = 2du1 ⊗ du4 + 2du2 ⊗ du5 + 2du3 ⊗ du6 + 2φ12du1 ⊗ du2

+ 2φ13du1 ⊗ du3 + 2φ23du2 ⊗ du3 + (φ11 − 2u1u3u5)du1 ⊗ du1

+ φ22du2 ⊗ du2 + [φ33 − 2(u1 + u3)u5]du3 ⊗ du3, (29)

where (u1, u2, · · · , u6) are coordinates in R6.
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Affine Szabó 2-manifolds
Affine Szabó 3-manifolds
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Conclusion 55

♣ From Theorem 1, the cyclic parallel of the Ricci tensor is a necessary
conditon for an affine manifold to be affine Szabó manifold.

♣ In dimension 2, the cyclic parallel of the Ricci tensor is a sufficient conditon
for an affine manifold to be Szabó.

♣ In dimension 3, there are affine manifolds which satisfy the cyclic parallel
Ricci tensor but are not Szabó.

♣ In dimension 3, the classification seems to be very challenging. Partial results
exists.
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♣ From Theorem 1, the cyclic parallel of the Ricci tensor is a necessary
conditon for an affine manifold to be affine Szabó manifold.

♣ In dimension 2, the cyclic parallel of the Ricci tensor is a sufficient conditon
for an affine manifold to be Szabó.

♣ In dimension 3, there are affine manifolds which satisfy the cyclic parallel
Ricci tensor but are not Szabó.

♣ In dimension 3, the classification seems to be very challenging. Partial results
exists.

Abdoul Salam DIALLO Affine Szabó manifolds 42 / 44



Preliminaries
Affine Szabó manifolds
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♣ From Theorem 1, the cyclic parallel of the Ricci tensor is a necessary
conditon for an affine manifold to be affine Szabó manifold.

♣ In dimension 2, the cyclic parallel of the Ricci tensor is a sufficient conditon
for an affine manifold to be Szabó.

♣ In dimension 3, there are affine manifolds which satisfy the cyclic parallel
Ricci tensor but are not Szabó.

♣ In dimension 3, the classification seems to be very challenging. Partial results
exists.
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♣ From Theorem 1, the cyclic parallel of the Ricci tensor is a necessary
conditon for an affine manifold to be affine Szabó manifold.

♣ In dimension 2, the cyclic parallel of the Ricci tensor is a sufficient conditon
for an affine manifold to be Szabó.

♣ In dimension 3, there are affine manifolds which satisfy the cyclic parallel
Ricci tensor but are not Szabó.

♣ In dimension 3, the classification seems to be very challenging. Partial results
exists.
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Preliminaries
Affine Szabó manifolds
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Thanks for your attention ! ! !
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