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Levi-Civita connection V.

Fix p € M. For each loop ~: [a, b] — M at p, parallel translation

with respect to V defines an automorphism of the tangent

space at p,
M,: ToM — T,M

The holonomy group is the group of all these parallel
translations

Hol,(M,g) = ({ N, | v loop at p }, o, id)
C Aut(TpM, gp) = O(m)
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Holonomy—an example

Consider parallel translation
along a spherical triangle

A vector is rotated by an
angle equal to the spherical
area of the triangle
(GauB-Bonnet theorem)

Hol(S2, g™) =~ SO(2)
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In particular, (M, J) is a complex manifold
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smooth complex projective varieties
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Holonomy—Kahler manifolds

Let (M, g, J) be a Kéhler manifold, dimM = 2n, so J is a
parallel complex structure on the tangent bundle TM
In particular, (M, J) is a complex manifold

Examples: complex projective space,
smooth complex projective varieties

Parallel translation commutes with J, hence

Holp(M, g) C Aut(TpM, gp, Jp) = U(n) C SO(2n)

Hodge decomposition of de Rham cohomology on (M, g, J)

Q'(M;C)= P PIM)
p+q=¢

Hr(M;C) = @ HPI(M)
p+q=¢
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Let (M, g,J) be a Kahler manifold, dim¢c M = n
Then (M, g, J) is called Calabi-Yau manifold
if M has a parallel complex volume form Q € Q™0(M)

HOIP(M’ g) C AUt( TPMa gpvJP7QP) = SU(n) - U(n)

Calabi-Yau manifolds are Ricci flat, ric = 0

Theorem (Yau)

A compact Kéhler manifold admits a Calabi-Yau metric
ifand only if ¢1(TM) = 0.

Methods in / Motivation for Calabi-Yau geometry:
Geometric Analysis and Algebraic Geometry
Mathematical Physics (String Theory / Conformal Field Theory)
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Let Pso denote the manifold of oriented orthonormal bases
of TM. Then SO(n) acts on Psp by change of bases, and

M = Pso/SO(n) and T™ = Pgo X s0(n) R"

If (M, g) has holonomy G, there is a submanifold Pg C Pgp with

M%'/Pc.;/G and ™ = Pg XGRH

Differential forms on M live in the bundle
/\. T*M = PSO XSO(n) /\.Rn = PG XG /\.Rn

If A*R" is a direct sum of G-invariant subspaces,
then A*T*M is a direct sum of parallel subbundles

Example. Hodge decomposition on Kahler manifolds
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Holonomy—~Parallel spinors

If the holonomy group G is connected and simply connected,
then (M, g) is a spin manifold with spinor bundle

SM = PgxgSR"  with SR" gel?]

If the G-invariant subspace (SR")¢ ¢ SR” has dimension N
then (M, g) admits an N-dimensional space of parallel spinors

If (M, g) admit a parallel spinor ¢ # 0, so N > 1, thenric =0
Example. Let (M, g) be a Calabi-Yau manifold. Then

SM =N\ T*M

The forms 1 € Q%%(M) and Q € Q%"(M) are parallel spinors
andric=0
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Go-Geometry—Some motivation

Why consider Go-manifolds?
Mathematical motivation

» Only special holonomy group for odd dimensions
» Only G, and Spin(7) holonomy have no direct relation to

algebraic geometry
Hence, new methods are needed
Physical motivation

» In string theory, spacetime takes the form R3! x V,
where V is a Calabi-Yau manifold

» In M-theory, spacetime takes the form R3! x M,
where M is a Go-manifold

» Possible relations to other physical theories

Hence, many fruitful interactions possible
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Recall the Cayley-Dickson construction
R ¢ C ¢ H c O

The quaternions H are not commutative
The octonions O are neither commutative nor associative

The octonions split as O = R @ Im O with ImOQ = R’
The octonion multiplication induces a product and a norm

uxv=Imu-v) and |u|=+v-u? foru,velmO

The group Go is defined as

Gz = Aut(0) = Aut(Im O, x, || -||)



Go-geometry—The 3-form ¢
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on TM and a parallel 3-form ¢ € Q3(M) with
o(u,v,w) = (uxv,w)

Note that
© A tup Ay = —6(u, v) dvolg
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Assume Hol(M, g) C Go. Then “x” induces a parallel product
on TM and a parallel 3-form ¢ € Q°(M) with

e(u,v,w) = (uxv,w)

Note that
© A tup Ay = —6(u, v) dvolg ")

Conversely, call an arbitrary ¢ € Q3(M) positive if there exists a
Riemannian metric g, on M such that (*) holds

Being positive is a point-wise, open condition on A3T*M

Each positive 3-form ¢ defines a G,-structure on M

If ¢ above is closed and coclosed with respect to g,

then ¢ is parallel, also called torsion free, and Hol(M, g) C Gz
Write (M, g) for (M, ¢) if (M, g) has G>-holonomy
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If M has a G,-structure, we have “Hodge decompositions”

Q0(M) = Q7 (M) = Q; (M)

Q'(M) = Q5(M) = Q7(M)

Q%(M) = Q5(M) = Q7(M) © Q14(M)

Q3(M) = Q4 (M) = (M) & Q7(M) ® Qz7(M)
If Hol(M, g) C G, we have similar decompositions of H3, (M)

M,g
If Hol(M, g) = G then H5(M) = 0 for 1 < k < 6 and

H3 (M) = (p) ® H(M)  and  H*(M) = (xp) & H3;(M)

Go-manifolds are spin, and the spinor bundle decomposes
SM=TM® R

There exists a distinguished parallel spinor o # 0, and ric =0
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Let p1(TM) € H*(M;R) denote the first Pontryagin class
Let ¢ € Q3(M) be positive and closed. There exists a bilinear
form on H?(M; R) given for closed forms «, 5 € Q?(M) by

B([a], [8]) = ([o] — [8] — [¢])[M] = /Ma ANBAg

If M is compact and Hol(M, ¢) C Gs then

v

M is oriented and spin and dim H3(M; R) > 1

Hol(M,9) = Go <= #m1(M) < oo (Cheeger-Gromoll)
Hol(M,g) = G <= B s negative definite

If Hol(M, g) = G. then (p1(TM) — [¢])[M] < O

v

v

v

These are all known obstructions against holonomy G,
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Go-geometry—The moduli space

Let M be a compact oriented 7-manifold and define
X = { e Q¥M) | ¢ is positive and torsion free }
Let D c Diff(M) be the connected component of idy,. Then
M=X/D

is called the G>-moduli space of M
Theorem (Joyce)
The G»-moduli space is a manifold, and the map

M — H¥3(M;R)  with  [¢] — [¢]
is a local diffeomorphism

Not much is known about the global structure of M
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Constructions of (M, g) with Hol(M, g) = G>

» Bryant '87: first non-complete examples
» Bryant and Salamon '89: first complete examples
» Joyce ’96: first compact examples

Joyce’s construction: let a “rich enough” finite subgroup I' C Go
act on flat T/ with “sufficiently many” fixpoints,

preserving a parallel positive 3-form ¢ € Q3(T7)

The stabilisers of fixpoints p € T’ are isomorphic to subgroups
of SU(2) or SU(3)

By gluing in suitable noncompact Calabi-Yau manifolds in place
of the singularities, Joyce constructs a desingularisation

M— T7/T

The gluing metric on M is close to one with holonomy G,
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SU(3) SU(3) —

Let V., V_ be asymptotically cylindrical Calabi-Yau manifolds
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» Kovalev '03, Corti-Haskins-Nordstrém-Pacini ’15:
Twisted connected sums

Let V., V_ be asymptotically cylindrical Calabi-Yau manifolds
The ends are asymptotic to ¥+ x S' x R, ¥ are K3 surfaces
Glueto V_ x S'to V, x S, flipping the circles

The gluing metric on M is close to one with holonomy G,
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Let us summarise first

» Only a few obstructions against Go-holonomy are known
» Only a few examples are known—only ~ 107 families

» Known compact examples represent points close to the
boundary of the moduli space—the G.-metric is close to
one with smaller “local” holonomy groups SU(2) or SU(3)
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Go-geometry—Some open questions

Let us summarise first

» Only a few obstructions against Go-holonomy are known
» Only a few examples are known—only ~ 107 families

» Known compact examples represent points close to the
boundary of the moduli space—the G.-metric is close to
one with smaller “local” holonomy groups SU(2) or SU(3)

Important open problems / questions

» Find more invariants for / obstructions against G,-metrics
» Construct Go-metrics in the interior of the moduli space
» How can families of Go-metrics become singular?

How far can one deform a given Go-metric?

» Construct Go-metrics with prescribed singularities
Singularities represent matter and forces in M-theory
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The v-invariant—Spinors and Go-structures

Recall: every G»-structure leads
to a distinguished nowhere vanishing spinor o
It is parallel if and only if Hol(M, g) C G2

Conversely, if (M, g) is an oriented, spin 7-manifold, then it has
nowhere vanishing spinor fields because

rkSM=8 > 7=dmM

Let 0 # o € SR’, then
{geSpin(7)|g-c=0} = G

A nowhere vanishing spinor o determines a Go-structure

Idea. Use nowhere vanishing spinors
to describe and distinguish Go-structures
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The v-invariant—Comparing Go-structures

Let og, o1 be two nowhere vanishing spinors
Extend to a spinor 5 € I'(ST(M x [0, 1]))
A generic ¢ will have nondegenerate isolated zeros because

tkST(Mx[0,1]) = 8 = dim(Mx[0,1])
Orient ST(M x [0, 1]) and count with signs

Av(M;oq,01) =2-#5 1(0)=2" Z sign(dpa)
pea=1(0)

Theorem (Crowley-Nordstrom)

Let F: M — M be a spin diffeomorphism, then

Av(M;o,F*c) € 48Z

Can we write Av(M; 0g,01) = v(M,0¢) —v(M,01) € Z/487
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The v-invariant—Cobordism definition

Idea. If M is spin, then M is the spin coboundary of some

compact 8-manifold W (because Qgpin =0)

Extend o to & € I'(S* W), count 5-1(0)
The result depends on W—not well-defined for (M, o)!

Definition (Crowley-Nordstrom)

Assume that M = oW with W spin, compact. Define
v(M, o) = x(W) — 3sign(W) — 245~ '(0) mod 48

» x(W)—Euler characteristic of W
» sign(W)—signature of W

Theorem (Crowley-Nordstrém)
Av(M; 09,01) =v(M,09) —v(M,0q) €7Z/48
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Instead employ index theorems to define v(M, o) on M itself

Theorem (Atiyah-Patodi-Singer)
Assume that M = OW with W compact, then

sign(W) = /W L(V) — n(Bu)

v
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L(V)—Hirzebruch L-form in Q*(W)
By—odd signature operator xd + d* on Q%'(M)
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The v-invariant—Index theory

Problem. Given M, how to determine W with M = oW?
Instead employ index theorems to define v(M, o) on M itself

Theorem (Atiyah-Patodi-Singer)
Assume that M = OW with W compact, spin, then

ind(Dw) = /W Aw) - 2 (ow)

Dy, Dy—spin Dirac operators on (ST W) and I'(SM)
ind—Fredholm index

A(V)—Atiyah A-form in Q°*(W)
n—~Atiyah-Patodi-Singer n-invariant

h =dimker

v

v

v

v

v



The v-invariant—Index theory

Problem. Given M, how to determine W with M = oW?
Instead employ index theorems to define v(M, o) on M itself

Theorem (GauB3-Bonnet-Chern)

Assume that M = OW with W compact, then

(W) = /W o(V)

» y—Euler characteristic
» e(V)—Euler form in Q*(W)



The v-invariant—Index theory

Problem. Given M, how to determine W with M = oW?
Instead employ index theorems to define v(M, o) on M itself

Theorem (Matthai-Quillen)
Assume that M = OW with W compact, spin, then

~—1 _ stwy _ [ g SM
#570) = [ ()~ [ ()

» e(VS™W)—Euler form of the spinor bundle
> 1h(VSM, gSM)—Mathai-Quillen form in Q*(SM)
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The v-invariant—Analytic description
Magic formula

2e(VSW) = e(V) + 48A(V)El — 3L(V)E € Q8(W)

Theorem (Crowley-G-Nordstrém)

v(M,o) =2 /Maw(vSM, gM) — 24(n + h)(Dw) + 3n(Bu) € 7.,/48

¥ (VSM, gSM)—Mathai-Quillen form in Q*(SM)
Dy—spin Dirac operator on I'(SM)

B)y—odd signature operator xd + d* on Q%'(M)
h—dimension of the kernel
n—~Atiyah-Patodi-Singer n-invariant

n(A)=< 5 Sign)\‘)\t>‘t_0:/oootr<AetAz)\;j%

Aespec(A)

vV vV vV v Y
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The v-invariant—The extended v-invariant

In the case of Go-holonomy, things simplify

> o is parallel, so oy (VSM, gSM) =0
» ker Dy = (o), so h(Dy) = 1
» 1n(Dum) € Ris smooth on the Gz-moduli space M

Definition (Crowley-G-Nordstrém)

Let (M, g) be a compact manifold with Hol(M, g) = Go

v(M,9) = 3n(Bu) —241(Dn) € Z

v
<

(M,o) =p(M,g) —24 mod 48
» (M, g) is locally constant on M
(M, g) = 0 if M admits an orientation reversing isometry
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The v-invariant—First examples

What about the known examples by Joyce and Kovalev?

» (M, g) = 0 for all twisted connected sums

» (M, g) = 0 for some of Joyce’s examples
Some are twisted connected sums
Some have orientation reversing isometries

Question. Is (M, g) = 0 whenever Hol(M, g) = G»?

» If yes, then (M, g) # 0 or v(M, o) # 24 is a new
obstruction against G>-holonomy

» If no, then 7(M, g) is a non-trivial new invariant

Answer. We will construct examples with (M, g) # 0
Using ©(M, g), we will show that for some particular M,
the Go-moduli space M has several connected components
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Extra twisted connected sums—Construction

Extra twisted connected sums

Assume that 'y = Z/k,. acts both on V. and on S1
The induced action on 9V has to fix X4 pointwise
The actions on S} and S} ,; have to be free
Then (81, x SL eXt)/ri is again a flat 2-torus

If both the tori and the K3 surfaces are isometric,
we can glue My = (Vo x Sl )/« at various angles v

,ext

ext
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Extra twisted connected sums

1
SJr,int-

.- — L;S1F+%Z/2

+,ext



Extra twisted connected sums—Construction

Extra twisted connected sums

! + int
r-=z/3 r+ ~7/4
81 S1

+,ext
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Theorem (Bunke, Kirk-Lesch)
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Compute the extended v-invariant on M = M, Uy M_
Theorem (Bunke, Kirk-Lesch)

For suitable boundary conditions L,

1(Dm) = naps(Dum.; L+) 4+ naps(Dm_; L-) + Mier(py) (L4, L)
1(Bm) = naps(Bm.; L+) + naps(Bu_; L-) + My xy(L+, L)

Theorem (Crowley-G-Nordstrém)

Let (M, g) be an extra twisted connected sum with gluing
angle ¥ and p = m — 219, then there exists N € 7Z such that

3Mipox)(Ls L) — 24Myer(py (L, L) = —72§ — 3N sign p

One computes N from the maps H?(V4) — H?(Z,) = H3(X_)



Extra twisted connected sums—The gluing formula

Compute the extended v-invariant on M = M, Uy M_
Theorem (Bunke, Kirk-Lesch)

For suitable boundary conditions L,

1(Dm) = naps(Dum.; L+) 4+ naps(Dm_; L-) + Mier(py) (L4, L)
1(Bm) = naps(Bm.; L+) + naps(Bu_; L-) + My xy(L+, L)

Theorem (Crowley-G-Nordstrém)

Let (M, g) be an extra twisted connected sum with gluing
angle ¥ and p = m — 219, then there exists N € 7Z such that

3Mipox)(Ls L) — 24Myer(py (L, L) = —72§ — 3N sign p

Note that £ can be irrational, e.g., for ¢ = arc cos(%)
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Extra twisted connected sums—First results

Theorem (Crowley-G-Nordstrém)

IfrL = {0} orZ/2 then

naps(Dy, xsti L+) = naps(By, xs1i L+) =0

From the gluing formula, we derive the value of
Corollary
IfrL = {0} orZ/2 then

(M, g) = —72% — 3N signp
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Example (Crowley-G-Nordstrém)

There exists a spin 7-manifold M with
H' (M) = H3(M)=0,  HYM)=2z%, divp(TM)=4
admitting three different Go-holonomy metrics g1, go, g3 with

D(Mvg‘l)zoa D(M792)2367 D(Mvg3):_36
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Example (Crowley-G-Nordstrém)
There exists a spin 7-manifold M with
H' (M) = H3(M)=0,  HYM)=2z%, divp(TM)=4
admitting three different Go-holonomy metrics g1, go, g3 with
v(M,g1) =0, v(M,go) =36, v(M,gs3) = —36.

Hence, the G>-moduli space of M is disconnected

The metric g1 comes from a rectangular twisted connected sum
The metrics g», g3 come from extra twisted connected sums
with 'y = 7/2, T = {0} and with gluing angles 7
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Example (Crowley-G-Nordstrém)

There exists a spin 7-manifold M with
H' (M)=H3 (M) =0, HM) =z divp(TM)=4
admitting three different Go-holonomy metrics g1, g, g3 with
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In particular v(M, 01) = v(M, 02) = v(M,03) = 0, and one can
show that the underlying Go-structures are homotopic.
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Example (Crowley-G-Nordstrém)

There exists a spin 7-manifold M with
H' (M) = H3(M) =0,  HYM)=z'%® divp(TM) =4
admitting three different Go-holonomy metrics g1, g, g3 with
#(M.g))=0. #(M.g)=48, (M.gs)=—48.

In particular v(M, 01) = v(M, 02) = v(M,03) = 0, and one can
show that the underlying Go-structures are homotopic.
Hence, one Go-structure can give rise to several connected
components of the G,-moduli space

The metric g; comes from a rectangular twisted connected sum
The metrics go, g3 come from extra twisted connected sums
with T = T_ = 7Z/2 and with gluing angles §
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Extra twisted connected sums—G,-Bordism

Let (M, g) be an extra twisted connected sum with 'y = Z/ky
where ki, k_ € {1,2} and with ¥ € {+%,+7 +3,7
In this case, 3 divides 7(M, g) = =722 — 3N sign p

Note that Qf, =7/3

One can show that M is Go-nullbordant if and only if 3 | (M, o)
Hence there exists a compact W with a G»-structure such

that OW = M if and only if 3 | v(M, o)

Question. Is 3 | »(M, ) an obstruction against G>-holonomy?
Is the Go-bordism class of (M, o) an obstruction?
Answer. No, there are examples with 3 { v(M, o).

Note. Recall that if kK, > 3 or k_ > 3, then there are gluing
angles ¥ such that 2 ¢ Q
Because 7(M, g) € Z, expect more contributions to 7(M, g)
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Extra twisted connected sums—Adiabatic limits
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Extra twisted connected sums—Adiabatic limits
Let M = Vi x S} . rescale S1 ., by ¢ > 0to get M. .
The limit e — 0 is called adiabatic limit
Theorem (Bismut-Cheeger, Dai, G-Nordstrém)

Let~ € 'L be the generator that acts by ,2(—1 on SLext
Let V. ; be the set of isolated fixpoints of v/ on V.
Let e/1(P), gi@j2(P), giois(P) pe the eigenvalues of v/ on T,V

D(Mi) = !i_r)T'(I)(Sn(BMi}E, Li) — 2477(DM:E,8’ Li))
B kiz_1 ot ™ cos af’;(p) cos "‘f’;(p) cos af'g(p) —1
ks = *pev., sin a”;(p) sin a”zz(p) sin a,-,az(p)
€eQ

There are examples with k. > 3 where 7(My) # 0
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Extra twisted connected sums—Variational formula

The n-invariants of M. . depend on

Theorem (Bismut-Cheeger, Dai-Freed)

The variational formula for the n-invariant of a Dirac type
operator a manifold with boundary consists of

» the integral of a Chern-Simons form over the interior
» the degree-1-component of an n-form on the boundary

The interior contribution vanishes because M. . is a product

The boundary contribution comes from the n-form 7(A)
of the family of tori (S, x €SL )/I'+ for e € (0,1)

Integrate over ¢ to get the missing last contribution to 7(M, g)
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Idea. Represent adiabatic limits as rays in the hyperbolic plane

Lattices \_ CAD AL IinC

is_

ips—_—m . ‘ n—iqs—_
k_ k_
e_—+is_ .

= 0o 1

Conformal change of basis
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E4++IS4 Ky
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Idea. Represent adiabatic limits as rays in the hyperbolic plane
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e_+is_ .
- 0 1 0
Conformal change of basis
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Extra twisted connected sums—Matching the tori

Idea. Represent adiabatic limits as rays in the hyperbolic plane

Lattices \_ CAD AL IinC Hyperbolic plane H = R + /R~

is_ . sy —0 . tis.
ips_—m L n—igs_ k_
k- . - k- s-—0
e_+is_ .

k- 0 1 e_q+n 0 c_pt+m
k_q k_p

Conformal change of basis Mébius transformation

iS4 s-—0
q+ip3+
kf n+ims.
E4++ISy ki
ky

e+m—n 0 e+p—q
kym kep




Extra twisted connected sums—Modular functions

The logarithm of the Dedekind n-function is given by

_7T’T sz g2minT

n=1 d|n

Theorem (G-Nordstrém-Zagier)

There exists a constant ¢k, ., € Q such that

SW(BMi; L:t) — 2477(DMi; Lj:)

— P(My) + % </L(si’kigi) - L(Si'k%) + Cki,si)



Extra twisted connected sums—Modular functions

The logarithm of the Dedekind 7-function is given by

_7T’T sz g2minT

n=1 d|n

Theorem (G-Nordstrém-Zagier)

There exists a constant ¢k, ., € Q such that

SW(BMi; L:t) - 2477(DMi; Lj:)

— P(My) + % </L(si’kigi) - L(Si'k%) + Cki,si)

Compute the variational term using the functional equations

L(r+1)= ﬁJrL( )  and L(—l) =%|OQ§+L(T)
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Extra twisted connected sums—Hyperbolic geometry

The exterior differential of the n-form 7(A) is
. 1
dij(A) = _EdAhyp

Integrate 2887j(A) over a contour in # of the form

s 50 Qe
/ . — 0

The bottom arcs do not contribute for symmetry reasons
Compute the variational term using Gauf3-Bonnet

The corner angle cancels the irrational contribution from —72£2
There are additional contributions from the cusps
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Extra twisted connected sums—Results and questions

Example. The example with cos ¥ = % has (M, g) = —65
In particular, 31 7(M, g), so it is not Go-nullbordant
Conjecture

All values in 7./48 occur as v-invariants of Go-holonomy metrics

Questions

» How many different Go-metrics exist on one 7-manifold?
» Are different G>-metrics on a fixed 7-manifold G»-bordant?

Construct more examples

» Find more asymptotically cylindrical Calabi-Yau manifolds

» Understand their moduli space, make the K3 surfaces
match

» Consider other constructions



Thanks for your attention!



