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Holonomy

Let (M,g) be a Riemannian manifold, dim M = m, with
Levi-Civita connection ∇.

Fix p ∈ M. For each loop γ : [a,b]→ M at p, parallel translation
with respect to ∇ defines an automorphism of the tangent
space at p,

Πγ : TpM → TpM

The holonomy group is the group of all these parallel
translations

Holp(M,g) =
({

Πγ

∣∣ γ loop at p
}
, ◦, id

)
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}
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)
⊂ Aut(TpM,gp) ∼= O(m)



Holonomy—an example

Consider parallel translation
along a spherical triangle
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A vector is rotated by an
angle equal to the spherical
area of the triangle
(Gauß-Bonnet theorem)



Holonomy—an example

Consider parallel translation
along a spherical triangle

A vector is rotated by an
angle equal to the spherical
area of the triangle
(Gauß-Bonnet theorem)

Hol(S2,grnd) ∼= SO(2)



Holonomy—Kähler manifolds

Let (M,g, J) be a Kähler manifold, dim M = 2n, so J is a
parallel complex structure on the tangent bundle TM
In particular, (M, J) is a complex manifold

Examples: complex projective space,
smooth complex projective varieties

Parallel translation commutes with J, hence

Holp(M,g) ⊂ Aut(TpM,gp, Jp) ∼= U(n) ⊂ SO(2n)

Hodge decomposition of de Rham cohomology on (M,g, J)

Ω`(M;C) =
⊕

p+q=`

Ωp,q(M)

H`
dR(M;C) =

⊕
p+q=`

Hp,q(M)
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Holonomy—Calabi-Yau manifolds

Let (M,g, J) be a Kähler manifold, dimC M = n
Then (M,g, J) is called Calabi-Yau manifold
if M has a parallel complex volume form Ω ∈ Ωn,0(M)

Holp(M,g) ⊂ Aut(TpM,gp, Jp,Ωp) ∼= SU(n) ⊂ U(n)

Calabi-Yau manifolds are Ricci flat, ric = 0

Theorem (Yau)

A compact Kähler manifold admits a Calabi-Yau metric
if and only if c1(TM) = 0.

Methods in / Motivation for Calabi-Yau geometry:
Geometric Analysis and Algebraic Geometry
Mathematical Physics (String Theory / Conformal Field Theory)
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Holonomy—Representation theory

Let PSO denote the manifold of oriented orthonormal bases
of TM. Then SO(n) acts on PSO by change of bases, and

M ∼= PSO/SO(n) and TM ∼= PSO ×SO(n) Rn

If (M,g) has holonomy G, there is a submanifold PG ⊂ PSO with

M ∼= PG/G and TM ∼= PG ×G Rn

Differential forms on M live in the bundle

Λ•T ∗M ∼= PSO ×SO(n) Λ•Rn ∼= PG ×G Λ•Rn

If Λ•Rn is a direct sum of G-invariant subspaces,
then Λ•T ∗M is a direct sum of parallel subbundles

Example. Hodge decomposition on Kähler manifolds
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Holonomy—Parallel spinors

If the holonomy group G is connected and simply connected,
then (M,g) is a spin manifold with spinor bundle

SM = PG ×G SRn with SRn ∼= R2[ n
2 ]

If the G-invariant subspace (SRn)G ⊂ SRn has dimension N
then (M,g) admits an N-dimensional space of parallel spinors

If (M,g) admit a parallel spinor σ 6= 0, so N ≥ 1, then ric = 0

Example. Let (M,g) be a Calabi-Yau manifold. Then

SM ∼= Λ0,•T ∗M

The forms 1 ∈ Ω0,0(M) and Ω̄ ∈ Ω0,n(M) are parallel spinors
and ric = 0
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Holonomy—Berger’s list

Theorem (Berger)

Let (M,g) be a complete, simply connected Riemannian
manifold and neither a product nor a symmetric space

Then these are the only possibilities for its holonomy

Hol(M,g) dim ric Structure N Name

SO(n) n 0 general case
U(k) 2k J 0 Kähler

SU(k) 2k 0 J,Ω 2 Calabi-Yau
Sp(`) · Sp(1) 4` const 〈I, J,K 〉 0 Quat. Kähler

Sp(`) 4` 0 I, J,K ,Ω `+ 1 hyper Kähler
G2 7 0 ϕ ∈ Ω3 1 exceptional

Spin(7) 8 0 ψ ∈ Ω4 1 exceptional
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G2-Geometry—Some motivation

Why consider G2-manifolds?

Mathematical motivation

I Only special holonomy group for odd dimensions
I Only G2 and Spin(7) holonomy have no direct relation to

algebraic geometry

Hence, new methods are needed

Physical motivation

I In string theory, spacetime takes the form R3,1 × V ,
where V is a Calabi-Yau manifold

I In M-theory, spacetime takes the form R3,1 ×M,
where M is a G2-manifold

I Possible relations to other physical theories

Hence, many fruitful interactions possible
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G2-Geometry—The group G2

Recall the Cayley-Dickson construction

R ⊂ C

The quaternions H are not commutative
The octonions O are neither commutative nor associative

The octonions split as O ∼= R⊕ ImO with ImO ∼= R7

The octonion multiplication induces a product and a norm

u × v = Im(u · v) and ‖u‖ =
√
−u2 for u, v ∈ ImO

The group G2 is defined as

G2 = Aut(O) = Aut(ImO,×, ‖ · ‖)
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G2-geometry—The 3-form ϕ

Assume Hol(M,g) ⊂ G2. Then “×” induces a parallel product
on TM and a parallel 3-form ϕ ∈ Ω3(M) with

ϕ(u, v ,w) = 〈u × v ,w〉

Note that
ϕ ∧ ιuϕ ∧ ιvϕ = −6〈u, v〉d volg (*)

Conversely, call an arbitrary ϕ ∈ Ω3(M) positive if there exists a
Riemannian metric gϕ on M such that (*) holds
Being positive is a point-wise, open condition on Λ3T ∗M
Each positive 3-form ϕ defines a G2-structure on M

If ϕ above is closed and coclosed with respect to gϕ,
then ϕ is parallel, also called torsion free, and Hol(M,g) ⊂ G2
Write (M,g) for (M, ϕ) if (M,g) has G2-holonomy
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G2-geometry—Representation theory

If M has a G2-structure, we have “Hodge decompositions”

Ω0(M) ∼= Ω7(M) ∼= Ω1(M)

Ω1(M) ∼= Ω6(M) ∼= Ω7(M)

Ω2(M) ∼= Ω5(M) ∼= Ω7(M)⊕ Ω14(M)

Ω3(M) ∼= Ω4(M) ∼= Ω1(M)⊕ Ω7(M) ⊕ Ω27(M)

If Hol(M,g) ⊂ G2 we have similar decompositions of H•dR(M)
If Hol(M,g) = G2 then Hk

7 (M) = 0 for 1 ≤ k ≤ 6 and

H3(M) ∼= 〈ϕ〉 ⊕ H3
27(M) and H4(M) ∼= 〈∗ϕ〉 ⊕ H4

27(M)

G2-manifolds are spin, and the spinor bundle decomposes

SM ∼= TM ⊕ R

There exists a distinguished parallel spinor σ 6= 0, and ric = 0
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G2-geometry—Obstructions

Let p1(TM) ∈ H4(M;R) denote the first Pontryagin class

Let ϕ ∈ Ω3(M) be positive and closed. There exists a bilinear
form on H2(M;R) given for closed forms α, β ∈ Ω2(M) by

B([α], [β]) = ([α] ^ [β] ^ [ϕ])[M] =

∫
M
α ∧ β ∧ ϕ

If M is compact and Hol(M, ϕ) ⊂ G2 then

I M is oriented and spin and dim H3(M;R) ≥ 1
I Hol(M,g) = G2 ⇐⇒ #π1(M) <∞ (Cheeger-Gromoll)
I Hol(M,g) = G2 ⇐⇒ B is negative definite
I If Hol(M,g) = G2 then

(
p1(TM) ^ [ϕ]

)
[M] < 0

These are all known obstructions against holonomy G2
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G2-geometry—The moduli space

Let M be a compact oriented 7-manifold and define

X =
{
ϕ ∈ Ω3(M)

∣∣ ϕ is positive and torsion free
}

Let D ⊂ Diff(M) be the connected component of idM . Then

M = X/D

is called the G2-moduli space of M

Theorem (Joyce)

The G2-moduli space is a manifold, and the map

M−→ H3(M;R) with [ϕ] 7−→ [ϕ]

is a local diffeomorphism

Not much is known about the global structure ofM
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G2-geometry—Constructions I

Constructions of (M,g) with Hol(M,g) = G2

I Bryant ’87: first non-complete examples
I Bryant and Salamon ’89: first complete examples
I Joyce ’96: first compact examples

Joyce’s construction: let a “rich enough” finite subgroup Γ ⊂ G2
act on flat T 7 with “sufficiently many” fixpoints,
preserving a parallel positive 3-form ϕ ∈ Ω3(T 7)
The stabilisers of fixpoints p ∈ T 7 are isomorphic to subgroups
of SU(2) or SU(3)
By gluing in suitable noncompact Calabi-Yau manifolds in place
of the singularities, Joyce constructs a desingularisation

M −→ T 7/Γ

The gluing metric on M is close to one with holonomy G2
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G2-geometry—Constructions II

I Kovalev ’03, Corti-Haskins-Nordström-Pacini ’15:
Twisted connected sums

Let V+, V− be asymptotically cylindrical Calabi-Yau manifolds
The ends are asymptotic to Σ± × S1 × R, Σ± are K3 surfaces
Glue to V− × S1 to V+ × S1, flipping the circles
The gluing metric on M is close to one with holonomy G2
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G2-geometry—Some open questions

Let us summarise first

I Only a few obstructions against G2-holonomy are known

I Only a few examples are known—only ∼ 107 families
I Known compact examples represent points close to the

boundary of the moduli space—the G2-metric is close to
one with smaller “local” holonomy groups SU(2) or SU(3)

Important open problems / questions

I Find more invariants for / obstructions against G2-metrics
I Construct G2-metrics in the interior of the moduli space
I How can families of G2-metrics become singular?

How far can one deform a given G2-metric?
I Construct G2-metrics with prescribed singularities

Singularities represent matter and forces in M-theory
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The ν-invariant—Spinors and G2-structures

Recall: every G2-structure leads
to a distinguished nowhere vanishing spinor σ
It is parallel if and only if Hol(M,g) ⊂ G2

Conversely, if (M,g) is an oriented, spin 7-manifold, then it has
nowhere vanishing spinor fields because

rkSM = 8 > 7 = dim M

Let 0 6= σ ∈ SR7, then{
g ∈ Spin(7)

∣∣ g · σ = σ
} ∼= G2

A nowhere vanishing spinor σ determines a G2-structure

Idea. Use nowhere vanishing spinors
to describe and distinguish G2-structures
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The ν-invariant—Comparing G2-structures

Let σ0, σ1 be two nowhere vanishing spinors
Extend to a spinor σ̄ ∈ Γ(S+(M × [0,1]))
A generic σ̄ will have nondegenerate isolated zeros because

rkS+(M × [0,1]) = 8 = dim(M × [0,1])

Orient S+(M × [0,1]) and count with signs

∆ν(M;σ0, σ1) = 2 ·#σ̄−1(0) = 2 ·
∑

p∈σ̄−1(0)

sign(dpσ̄)

Theorem (Crowley-Nordström)

Let F : M → M be a spin diffeomorphism, then

∆ν(M;σ,F ∗σ) ∈ 48Z

Can we write ∆ν(M;σ0, σ1) = ν(M, σ0)− ν(M, σ1) ∈ Z/48?
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The ν-invariant—Cobordism definition

Idea. If M is spin, then M is the spin coboundary of some
compact 8-manifold W (because Ω7

Spin = 0)
Extend σ to σ̄ ∈ Γ(S+W ), count σ̄−1(0)

The result depends on W—not well-defined for (M, σ)!

Definition (Crowley-Nordström)

Assume that M = ∂W with W spin, compact. Define

ν(M, σ) = χ(W )− 3 sign(W )− 2#σ̄−1(0) mod 48

I χ(W )—Euler characteristic of W
I sign(W )—signature of W

Theorem (Crowley-Nordström)

∆ν(M;σ0, σ1) = ν(M, σ0)− ν(M, σ1) ∈ Z/48
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Assume that M = ∂W with W compact, then

sign(W ) =
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W
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I sign—signature
I L(∇)—Hirzebruch L-form in Ω•(W )

I BM—odd signature operator ∗d ± d∗ on Ωev(M)

I η—Atiyah-Patodi-Singer η-invariant



The ν-invariant—Index theory

Problem. Given M, how to determine W with M = ∂W?
Instead employ index theorems to define ν(M, σ) on M itself

Theorem (Atiyah-Patodi-Singer)

Assume that M = ∂W with W compact, spin, then

ind(DW ) =

∫
W

Â(∇)− η + h
2

(DM)

I DW , DM—spin Dirac operators on Γ(S±W ) and Γ(SM)

I ind—Fredholm index
I Â(∇)—Atiyah Â-form in Ω•(W )

I η—Atiyah-Patodi-Singer η-invariant
I h = dim ker



The ν-invariant—Index theory

Problem. Given M, how to determine W with M = ∂W?
Instead employ index theorems to define ν(M, σ) on M itself

Theorem (Gauß-Bonnet-Chern)

Assume that M = ∂W with W compact, then

χ(W ) =

∫
W

e(∇)

I χ—Euler characteristic
I e(∇)—Euler form in Ω•(W )



The ν-invariant—Index theory

Problem. Given M, how to determine W with M = ∂W?
Instead employ index theorems to define ν(M, σ) on M itself

Theorem (Matthai-Quillen)

Assume that M = ∂W with W compact, spin, then

#σ̄−1(0) =

∫
W

e
(
∇S+W )− ∫

M
σ∗ψ

(
∇SM)

I e
(
∇S+W )—Euler form of the spinor bundle

I ψ
(
∇SM ,gSM)—Mathai-Quillen form in Ω•(SM)



The ν-invariant—Analytic description

Magic formula

2e
(
∇S+W ) = e(∇) + 48Â(∇)[8] − 3L(∇)[8] ∈ Ω8(W )

Theorem (Crowley-G-Nordström)

ν(M, σ) = 2
∫

M
σ∗ψ

(
∇SM ,gSM)− 24(η + h)(DM) + 3η(BM) ∈ Z/48

I ψ
(
∇SM ,gSM)—Mathai-Quillen form in Ω•(SM)

I DM—spin Dirac operator on Γ(SM)

I BM—odd signature operator ∗d ± d∗ on Ωev(M)

I h—dimension of the kernel
I η—Atiyah-Patodi-Singer η-invariant

η(A) =

( ∑
λ∈spec(A)

signλ |λ|t
)∣∣∣

t=0
=

∫ ∞
0

tr
(

A e−tA2
) dt√

πt
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The ν-invariant—The extended ν-invariant

In the case of G2-holonomy, things simplify

I σ is parallel, so σ∗ψ
(
∇SM ,gSM) = 0

I ker DM = 〈σ〉, so h(DM) = 1
I η(DM) ∈ R is smooth on the G2-moduli spaceM

Definition (Crowley-G-Nordström)

Let (M,g) be a compact manifold with Hol(M,g) ∼= G2

ν̄(M,g) = 3η(BM)− 24η(DM) ∈ Z

I ν(M, σ) = ν̄(M,g)− 24 mod 48
I ν̄(M,g) is locally constant onM
I ν̄(M,g) = 0 if M admits an orientation reversing isometry
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The ν-invariant—First examples

What about the known examples by Joyce and Kovalev?

I ν̄(M,g) = 0 for all twisted connected sums

I ν̄(M,g) = 0 for some of Joyce’s examples
Some are twisted connected sums
Some have orientation reversing isometries

Question. Is ν̄(M,g) = 0 whenever Hol(M,g) = G2?

I If yes, then ν̄(M,g) 6= 0 or ν(M, σ) 6= 24 is a new
obstruction against G2-holonomy

I If no, then ν̄(M,g) is a non-trivial new invariant

Answer. We will construct examples with ν̄(M,g) 6= 0
Using ν̄(M,g), we will show that for some particular M,
the G2-moduli spaceM has several connected components
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Extra twisted connected sums—Construction

Recall twisted connected sums

V−

V+

×
S1
−,int

×
S1

+,int

Σ− Σ+

×
S1
−,ext

×
S1

+,ext

Gluing of tori at angle ϑ = π
2

S1
−,int

S1
−,ext

S1
+,ext

S1
+,int

ϑ
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Extra twisted connected sums
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×
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×
S1

+,int

Σ− Σ+

×
S1
−,ext
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+,ext

Γ−

Γ+

Assume that Γ± ∼= Z/k± acts both on V± and on S1
±,ext

The induced action on ∂V± has to fix Σ± pointwise
The actions on S1

±,int and S1
±,ext have to be free
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Extra twisted connected sums—Construction

Extra twisted connected sums

V−

V+

×
S1
−,int

×
S1

+,int

Σ− Σ+

×
S1
−,ext

×
S1

+,ext

Γ−

Γ+

Assume that Γ± ∼= Z/k± acts both on V± and on S1
±,ext

The induced action on ∂V± has to fix Σ± pointwise
The actions on S1

±,int and S1
±,ext have to be free

Then (S1
±,int × S1

±,ext)/Γ± is again a flat 2-torus
If both the tori and the K3 surfaces are isometric,
we can glue M± = (V± × S1

±,ext)/Γ± at various angles ϑ



Extra twisted connected sums—Construction

Extra twisted connected sums

V−

V+

×
S1
−,int

×
S1

+,int

Σ− Σ+

×
S1
−,ext

×
S1

+,ext

Γ−

Γ+

Modified gluing of tori at angle ϑ = 3
4π

S1
−,int

Γ− ∼= Z/2

S1
−,ext

S1
+,ext

S1
+,int

Γ+
∼= {0}

ϑ



Extra twisted connected sums—Construction

Extra twisted connected sums

V−

V+

×
S1
−,int

×
S1

+,int

Σ− Σ+

×
S1
−,ext

×
S1

+,ext

Γ−

Γ+

Modified gluing of tori at angle ϑ = 2
3π

S1
−,int

Γ− ∼= Z/2

S1
−,ext

S1
+,ext

S1
+,int

Γ+
∼= Z/2

ϑ



Extra twisted connected sums—Construction

Extra twisted connected sums

V−

V+

×
S1
−,int

×
S1

+,int

Σ− Σ+

×
S1
−,ext

×
S1

+,ext

Γ−

Γ+

Modified gluing of tori at angle ϑ = arc cos
( 1√

6

)

S1
−,int

Γ− ∼= Z/3

S1
−,ext

S1
+,ext

S1
+,int

Γ+
∼= Z/4

ϑ



Extra twisted connected sums—The gluing formula

Compute the extended ν-invariant on M = M+ ∪X M−

Theorem (Bunke, Kirk-Lesch)

For suitable boundary conditions L±,

η(DM) = ηAPS(DM+ ; L+) + ηAPS(DM− ; L−) + mker(DX )(L+,L−)

η(BM) = ηAPS(BM+ ; L+) + ηAPS(BM− ; L−) + mH3(X)(L+,L−)

Theorem (Crowley-G-Nordström)

Let (M,g) be an extra twisted connected sum with gluing
angle ϑ and ρ = π − 2ϑ, then there exists N ∈ Z such that

3mH3(X)(L+,L−)− 24mker(DX )(L+,L−) = −72
ρ

π
− 3N sign ρ
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Compute the extended ν-invariant on M = M+ ∪X M−

Theorem (Bunke, Kirk-Lesch)
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angle ϑ and ρ = π − 2ϑ, then there exists N ∈ Z such that

3mH3(X)(L+,L−)− 24mker(DX )(L+,L−) = −72
ρ

π
− 3N sign ρ

One computes N from the maps H2(V±)→ H2(Σ+) ∼= H2(Σ−)



Extra twisted connected sums—The gluing formula

Compute the extended ν-invariant on M = M+ ∪X M−

Theorem (Bunke, Kirk-Lesch)

For suitable boundary conditions L±,

η(DM) = ηAPS(DM+ ; L+) + ηAPS(DM− ; L−) + mker(DX )(L+,L−)

η(BM) = ηAPS(BM+ ; L+) + ηAPS(BM− ; L−) + mH3(X)(L+,L−)

Theorem (Crowley-G-Nordström)

Let (M,g) be an extra twisted connected sum with gluing
angle ϑ and ρ = π − 2ϑ, then there exists N ∈ Z such that

3mH3(X)(L+,L−)− 24mker(DX )(L+,L−) = −72
ρ

π
− 3N sign ρ

Note that ρπ can be irrational, e.g., for ϑ = arc cos
( 1√

6

)



Extra twisted connected sums—First results

Theorem (Crowley-G-Nordström)

If Γ± ∼= {0} or Z/2 then

ηAPS(DV±×S1 ; L±) = ηAPS(BV±×S1 ; L±) = 0

From the gluing formula, we derive the value of ν̄

Corollary

If Γ± ∼= {0} or Z/2 then

ν̄(M,g) = −72
ρ

π
− 3N sign ρ
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Theorem (Crowley-G-Nordström)

If Γ± ∼= {0} or Z/2 then
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Extra twisted connected sums—Examples I

Example (Crowley-G-Nordström)

There exists a spin 7-manifold M with

H1(M) ∼= H2(M) ∼= 0 , H4(M) ∼= Z97 , div p1(TM) = 4

admitting three different G2-holonomy metrics g1, g2, g3 with

ν̄(M,g1) = 0 , ν̄(M,g2) = 36 , ν̄(M,g3) = −36 .

Hence, the G2-moduli space of M is disconnected

The metric g1 comes from a rectangular twisted connected sum
The metrics g2, g3 come from extra twisted connected sums
with Γ+

∼= Z/2, Γ− ∼= {0} and with gluing angles π
4
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Example (Crowley-G-Nordström)

There exists a spin 7-manifold M with
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Extra twisted connected sums—Examples II

Example (Crowley-G-Nordström)

There exists a spin 7-manifold M with

H1(M) ∼= H2(M) ∼= 0 , H4(M) ∼= Z109 , div p1(TM) = 4

admitting three different G2-holonomy metrics g1, g2, g3 with

ν̄(M,g1) = 0 , ν̄(M,g2) = 48 , ν̄(M,g3) = −48 .

In particular ν(M, σ1) = ν(M, σ2) = ν(M, σ3) = 0, and one can
show that the underlying G2-structures are homotopic.

Hence, one G2-structure can give rise to several connected
components of the G2-moduli space
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Extra twisted connected sums—G2-Bordism

Let (M,g) be an extra twisted connected sum with Γ± ∼= Z/k±
where k+, k− ∈ {1,2} and with ϑ ∈

{
±π

6 ,±
π
4 ,±

π
3 ,

π
2

}
In this case, 3 divides ν̄(M,g) = −72 ρπ − 3N sign ρ

Note that Ω7
G2
∼= Z/3

One can show that M is G2-nullbordant if and only if 3 | ν(M, σ)
Hence there exists a compact W with a G2-structure such
that ∂W = M if and only if 3 | ν(M, σ)

Question. Is 3 | ν(M, σ) an obstruction against G2-holonomy?
Is the G2-bordism class of (M, σ) an obstruction?

Answer. No, there are examples with 3 - ν(M, σ).

Note. Recall that if k+ ≥ 3 or k− ≥ 3, then there are gluing
angles ϑ such that ρπ /∈ Q
Because ν̄(M,g) ∈ Z, expect more contributions to ν̄(M,g)
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Extra twisted connected sums—Adiabatic limits

Let M± = V± × S1
±,ext, rescale S1

±,ext by ε > 0 to get M±,ε
The limit ε→ 0 is called adiabatic limit

Theorem (Bismut-Cheeger, Dai, G-Nordström)

Let γ ∈ Γ± be the generator that acts by 2π
k± on S1

±,ext

Let V±,j be the set of isolated fixpoints of γ j on V±
Let eiαj,1(p), eiαj,2(p), eiαj,3(p) be the eigenvalues of γ j on TpV±

ν̄(M±) = lim
ε→0

(
3η(BM±,ε

,L±)− 24η(DM±,ε
,L±)

)
=

3
k±

k±−1∑
j=1

cot
πj
k±

∑
p∈V±,j

cos αj,1(p)
2 cos αj,2(p)

2 cos αj,3(p)
2 − 1

sin αj,1(p)
2 sin αj,2(p)

2 sin αj,3(p)
2

∈ Q

There are examples with k± ≥ 3 where ν̄(M±) 6= 0
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Extra twisted connected sums—Variational formula

The η-invariants of M±,ε depend on ε

Theorem (Bismut-Cheeger, Dai-Freed)

The variational formula for the η-invariant of a Dirac type
operator a manifold with boundary consists of

I the integral of a Chern-Simons form over the interior
I the degree-1-component of an η-form on the boundary

The interior contribution vanishes because M±,ε is a product

The boundary contribution comes from the η-form η̃(A)
of the family of tori (S1

±,int × εS1
±,ext)/Γ± for ε ∈ (0,1)

Integrate over ε to get the missing last contribution to ν̄(M,g)
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Extra twisted connected sums—Matching the tori

Idea. Represent adiabatic limits as rays in the hyperbolic plane

Lattices Λ− ⊂ Λ ⊃ Λ+ in C

0

is−

1
ϑ

Conformal change of basis

0

is+

q+ips+

k+

1

n+ims+

k+ε++is+

k+ ϑ
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Extra twisted connected sums—Modular functions

The logarithm of the Dedekind η-function is given by

L(τ) =
πiτ
12
−
∞∑

n=1

∑
d |n

d−1 e2πinτ

Theorem (G-Nordström-Zagier)

There exists a constant ck±,ε± ∈ Q such that

3η(BM± ; L±)− 24η(DM± ; L±)

= ν̄(M±) +
144
π

(
iL
(s±i + ε±

k±

)
− iL

(s±i − ε±
k±

)
+ ck±,ε±

)

Compute the variational term using the functional equations

L(τ + 1) =
πi
12

+ L(τ) and L
(
−1
τ

)
=

1
2

log
τ

i
+ L(τ)
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Extra twisted connected sums—Hyperbolic geometry

The exterior differential of the η-form η̃(A) is

d η̃(A) = − 1
4π

dAhyp

Integrate 288η̃(A) over a contour in H of the form

ρ ε++is+
k+

The bottom arcs do not contribute for symmetry reasons
Compute the variational term using Gauß-Bonnet
The corner angle cancels the irrational contribution from −72 ρπ
There are additional contributions from the cusps
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Extra twisted connected sums—Results and questions

Example. The example with cosϑ = 1√
6

has ν̄(M,g) = −65
In particular, 3 - ν̄(M,g), so it is not G2-nullbordant

Conjecture

All values in Z/48 occur as ν-invariants of G2-holonomy metrics

Questions

I How many different G2-metrics exist on one 7-manifold?
I Are different G2-metrics on a fixed 7-manifold G2-bordant?

Construct more examples

I Find more asymptotically cylindrical Calabi-Yau manifolds
I Understand their moduli space, make the K3 surfaces

match
I Consider other constructions
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Thanks for your attention!


