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o The mean curvature flow (MCF)
© Hamiltonian property

0 Application : homotopy type of Symp(CP' x CP")
@ Towards Hofer geometry
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The mean curvature flow (MCF)

Fo: M" < (M™.g) ;
(M, g=Fa) = (Fom, %M)
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Fo: M" < (M™.g) ;
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The mean curvature flow (MCF)

Fo: M" < (M™.g) ;
(M. 9=F39) = (FoM., g,,) and TM = TM & NM.

MCF of M = family of immersions F : M x[0,T) — M s. t.

{ 2F(x,0) = Hrpp
F(-,0) = Fo()

MC vector H = tracey(A), where Ais the second fundamental form

A: X(M)xXM) — TI'(NM)
(X, Y) — AX,Y) = (VxY)*
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The mean curvature flow (MCF)

F: M x[0,T) — M, the m.c.f. can be expressed in coordinates as
(O

IF - O2F« OFP | OF«
( wf — o > = Agin.gF- 2)

5t =9 5xa5 axk9 oxi
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The mean curvature flow (MCF)

F: M x[0,T) — M, the m.c.f. can be expressed in coordinates as
(O

= Ag([)ng. (2)

OF° 0PF° OFF . 0F*
g af — -9
ot oxioxi axk® oxl

Analytic view point : quasi linear second order system of parabolic equations
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The mean curvature flow (MCF)

F: M x[0,T) — M, the m.c.f. can be expressed in coordinates as

gF* _ , 8°F° ( OFF  OF° >

ot =9 oxioxi ~oxk 9 T ) = Patnaf (2)

Analytic view point : quasi linear second order system of parabolic equations

Short time existence is based on implicit function theorem

@ closed surface
@ Dirichlet boundary conditions
@ sufficiently smooth initial data
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The mean curvature flow (MCF)

Assume M = R™' (M is an hypersurface)

Proposition

The evolution equation (1) has a smooth solution on a maximal time interval
0<t<T<o0and max |A|? becomes unbounded as t goes to T.
t
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The mean curvature flow (MCF)

Assume M = R™' (M is an hypersurface)

Proposition

The evolution equation (1) has a smooth solution on a maximal time interval
0<t<T<o0and max |A|? becomes unbounded as t goes to T.
t

(681‘ — A) |A? = —2|VA]2 +2|A]*.

Lemma

The function U(t) = max |A|2 is Lipschitz continuous and satisfies
t

1
m < U(1)
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The mean curvature flow (MCF)

Assume M = R™' (M is an hypersurface)

Proposition

The evolution equation (1) has a smooth solution on a maximal time interval
0<t<T<o0and max |A|? becomes unbounded as t goes to T.
t

(681‘ — A) |A? = —2|VA]2 +2|A]*.

Lemma

The function U(t) = max |A|2 is Lipschitz continuous and satisfies
t

2T 1 < T if 3Cy eR, (4)

type | singularity
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The mean curvature flow (MCF)

@ Fy:S" — R™! and F(x, t) = ¢(t)Fo(x).

SOF) = 0 e B R = =

which solves in ¢(t) = y/rZ — 2nt and the m.c.f can be written as

F(x,t) = /12 — 2nt Fo(x).
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The mean curvature flow (MCF)

@ Fy:S" — R™! and F(x, t) = ¢(t)Fo(x).

SOF) = 0 e B R = =

which solves in ¢(t) = y/rZ — 2nt and the m.c.f can be written as
r2 0 o
F(x,t) = \/M Fo(x). T = 2 the singular time.
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The mean curvature flow (MCF)

@ Fy:S" — R™! and F(x, t) = ¢(t)Fo(x).

SOF) = 0 e B R = =

which solves in ¢(t) = y/rZ — 2nt and the m.c.f can be written as

F(x,t) = \/M Fo(x). T = g the singular time.
@ Fp:S" K xR — R™ and F(x, t) = ¢(t) Fo(x).

, _OF(x,t) __n—k , __n—k
¢'(H)Fo(x) = ot - H = 50 Fo(x) = ¢'(t) = o (6)
which solves in ¢(t) = /2 — 2(n — k)t and the m.c.f can be written as
F(x,t) = /12 —2(n— k)t Fo(x).
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The mean curvature flow (MCF)

@ Fy:S" — R™! and F(x, t) = ¢(t)Fo(x).

oF(x,1) n g _ N
5 - H= —mFo(X) = ¢'(f) = ~ a0 (5)

which solves in ¢(t) = y/rZ — 2nt and the m.c.f can be written as

F(x,t) = \/M Fo(x). T = g the singular time.

@ Fp:S" K xR — R™ and F(x, t) = ¢(t) Fo(x).

¢ (t)Fo(x) =

OF(x,t) n—k , n—k
DFa(x — T =H=—— Fy(xX) = t)=— 6
¢ (Fo(x) = = o W= 00=-"0 )
which solves in ¢(t) = y/rz2 — 2(n — k)t and the m.c.f can be written as
F(x,t) = /12 —2(n— k)t Fo(x). T= 2(n 7 the singular time.
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The mean curvature flow (MCF)

M = R™" and M =graphf of a smooth function 7 : R” — R

Fo: M — M equivalently Fop=id x f:R" — M
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The mean curvature flow (MCF)

M = R™" and M =graphf of a smooth function 7 : R” — R
Fo: M — M equivalently Fop=id x f:R" — M

F(x',--- . x"t) = (x‘, co XM, XD, t)) is a parametrization of (M;);

i _ (=Vi1) i
Denoting by v = JRISTE the unit upward normal,
oF
(Grx )y =H )

Djidémeé F. Houénou Retraction by MCF



The mean curvature flow (MCF)

M = R™" and M =graphf of a smooth function 7 : R” — R

Fo: M — M equivalently Fop=id x f:R" — M

F(x',--- . x"t) = (x‘, co XM, XD, t)) is a parametrization of (M;);
: _ (=Vi1) .
Denoting by v = JRISTE the unit upward normal,
oF
(Grx )y =H 7

m.c.f of the graph of f

of A Hess(Vf, V)

o (VievE)
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The mean curvature flow (MCF)
Higher codimension

For the graphical case, f : (M1, 91) — (Ma, @o),
(M,g) = (M1 x Mz, g1 @gg), F=idxf: My —- M, M =gl’aphf
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The mean curvature flow (MCF)
Higher codimension

For the graphical case, f : (M1, 91) — (Ma, @o),
(M,Q)E (M1 x Mz, g1 @gg), F=idxf: My — M, M=gl’aphf

ofe Ly P o or o
ot~ 9 \oxioxi T P axiax T axT ) T

where g = g1 + f*go
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The mean curvature flow (MCF)

Singularity occurs when |A| becomes unbounded. To continue the flow, one
uses the backward heat-kernel and the monotonicity formula
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The mean curvature flow (MCF)

Singularity occurs when |A| becomes unbounded. To continue the flow, one
uses the backward heat-kernel and the monotonicity formula

The backward heat kernel

_n — 2
Doty (X, 1) = (47r(t0 — t)) * exp (M)

and the monotonicity formula says

d

gt / Pxoty At < 0,V T < fh and exists. (11)J
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The mean curvature flow (MCF)

Singularity occurs when |A| becomes unbounded. To continue the flow, one
uses the backward heat-kernel and the monotonicity formula

The backward heat kernel

_ -3 |xo — x|?
pXo,to(X7 t) = (47T(t0 — t)) eXp <4(t0—t) (10)
and the monotonicity formula says
d .
a pxo’todpt 0,vt<fpand exists. (11)

(B. White) Each time 3 8 > 0 s.t.

im [ podue <1+

(X0, to) is regular.
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The mean curvature flow (MCF)

Fixi: M — R? and given F : M — M,then F=io F : M — RO,
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The mean curvature flow (MCF)

Fix i : M — R? and given F : M — M, then F=jo F : M — RY.
Pick a point xo € R and t, € R. Defined

Dy: RYx[0,t)) — RY x [—A2{y, 0)
8 ()\(x—xo),)\z(t—to))

d - n
GFxf=H=H+V where V= —> " Aule, &) (13)

i=1
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The mean curvature flow (MCF)

Fix i : M — R? and given F : M — M, then F=jo F : M — RY.
Pick a point xo € R and t, € R. Defined
Dy: RYx[0,t)) — RY x [—A2{y, 0)
et = (Mx—x0), A2t = 1)

d - n
Fxt=H=H+V where V==>" Ay(e,e) (13)

i=1

2
e (14)

F

v
Hy — .2
Yokt 2

d
E/ ng,tode < C_/ pXo,[o
M, M;
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The mean curvature flow (MCF)

Proposition (K-W. Lee & Y-l Lee)

Assume that knq, > ¢1 and knq, < €2 for two constants ¢q and ¢, (kn, is @
sectional curvature of M;). Suppose eitherc, > 0andc. <0orci > ¢ >0
then the following hold :

det (g1 + f*gg)i].

det gj
a map and exists for all time.

© Furthermore, if ¢, > 0 then the MCF converges smoothly to the graph of
a constant map

< 4, then the MCF of M =graphf remains the graph of

Djidémeé F. Houénou Retraction by MCF



Hamiltonian property

Outline

© Hamiltonian property
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Hamiltonian property

Symplectic manifold

@ M is 2n-dimensionnal manifold
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Hamiltonian property

Symplectic manifold

@ M is 2n-dimensionnal manifold

@ and
w: XM)xXM) — C>*(M,R)
(X,Y) — w(X,Y)

is closed (dw = 0) and non-degenerated 2-form
(wX,Y)=0,VY e X(M) <= X=0)
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Hamiltonian property

Hamiltonian function

;
Any smooth function G : (M, w) x [0,1] — R such that/ / G(s,x)w" dt =0
0 Jm

is called (normalized) Hamiltonian.
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Hamiltonian property

Hamiltonian function

;
Any smooth function G : (M, w) x [0,1] — R such that/ / G(s,x)w" dt =0
0 Jm

is called (normalized) Hamiltonian.

Associated time dependent vector field

G(s, x) = Gs(x) = X; s.t. ix.w =0~ (dGg). (15)
Lx.w=0 i.,e Xs issymplectic.

The family of diffeomorphisms {»¢} generated by X; is called Hamiltonian
isotopy of G.
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Hamiltonian property

@ A given diffeomorphism ¢ of (M, w) is called hamiltonian if 3 an
hamiltonian isotopy {ys}scpo,1] such that ¢o = id and ¢1 = ¢
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Hamiltonian property

@ A given diffeomorphism ¢ of (M, w) is called hamiltonian if 3 an
hamiltonian isotopy {ys}scpo,1] such that ¢o = id and ¢1 = ¢

@ Ham(M, w) = set of all hamiltonian diff. on M
Ham(M, w) € Sympo(M,w) C Symp(M, w)

@ Under the composition of map (Ham(M, w),o) is a group Ham(M, w) <«
Symp(M, w) C Diff(M, w)
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Hamiltonian property

@ A given diffeomorphism ¢ of (M, w) is called hamiltonian if 3 an
hamiltonian isotopy {ys}scpo,1] such that ¢o = id and ¢1 = ¢

@ Ham(M, w) = set of all hamiltonian diff. on M
Ham(M,w) C Sympo(M,w) € Symp(M, w)

@ Under the composition of map (Ham(M, w),o) is a group Ham(M, w) <«
Symp(M, w) C Diff(M, w)

x Geometry
If 71(M) = 0 then Ham(M, w)=Sympy (M, w) identity connected component
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Hamiltonian property

@ A given diffeomorphism ¢ of (M, w) is called hamiltonian if 3 an
hamiltonian isotopy {ys}scpo,1] such that ¢o = id and ¢1 = ¢

@ Ham(M, w) = set of all hamiltonian diff. on M
Ham(M,w) C Sympo(M,w) € Symp(M, w)

@ Under the composition of map (Ham(M, w),o) is a group Ham(M, w) <«
Symp(M, w) C Diff(M, w)

x Geometry
If 71(M) = 0 then Ham(M, w)=Sympy (M, w) identity connected component

* Physics
It represents the group of all admissible motion
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Hamiltonian property

Obstruction of symplecto. to be hamilto.

Flux homomorphism
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Hamiltonian property

Obstruction of symplecto. to be hamilto.

Flux homomorphism

—~——

Flux : Sympy(M,w) — H'(M,R)

1
5 - [ /0 cp;(ixsw)dS]

Characterization

The time one map of any symplectic isotopy with zero flux is a Hamiltonian
diffeomorphism.

| \

N,

Djidéme F. Houénou Retraction by MCF



Hamiltonian property

Let f € Ham(M,w) and {fs} C Symp,(M,w) such that f; = f.
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Hamiltonian property

Let f € Ham(M,w) and {fs} C Symp,(M,w) such that f; = f.
The MCF of f gives rise to a 2-parameters family {fs;} such that

fi0 = f
fo,t = ida, fit ="t foreach t < fp
Flux{fs:} = l/ ¢(ix, w) ] = [FA]
(S1)
%f = Xst
athf = Hs:
ﬁxs,t = as [Hs t X, t]

Djidémeé F. Houénou Retraction by MCF



Hamiltonian property

Lemma

The flux form F; of the isotopy {fst}s satisfies : %]—} = iyw + dK; where

1
K: = / fs 1w (Xs.t, Hs t)ds and f; is the time-one map of the isotopy {fs t}o<s<1-
0
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Hamiltonian property

Lemma

|

The flux form F; of the isotopy {fst}s satisfies : a—]—‘t iyw + dK; where

K: = / fs 1w (Xs.t, Hs t)ds and f; is the time-one map of the isotopy {fs t}o<s<1-
0

Since Xs: and H;s; are symplectic vector fields, we have

%f’ B /01 gt(S"XS’ )ds

1
o )
/ (fS,ILHs,rIXs,tw + fS,[atIXs,tw> ds
0

1
et d / £ 10(Xs 1, Hs.1)dS.
0

Djidémeé F. Houénou Retraction by MCF



The Maslov class

After J.M Morvan, one characterizes the Maslov class of a Lagrangian
immersion in a (almost) Khaeler manifold as

[inw] € H' (M, R). (17)J
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Hamiltonian property

The Maslov class

After J.M Morvan, one characterizes the Maslov class of a Lagrangian
immersion in a (almost) Khaeler manifold as

[inw] € H' (M, R). (17)

V.

Lemma

Let {fs}o<s<1 be a symplectic isotopy to f € Symp(M, J,w) of a Kaehler
manifold (M, J, w). Assume that the m.c.f (M;); with initial data My=graphf,
exists. Then the flux of {fs}s along the m.c.f deforms to the Maslov class of
M.
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Hamiltonian property

Theorem

Let (M, J,w) be a compact connected Kaehler manifold and f € Symp,(M, w).
Suppose M = graphf has zero Maslov class. Assume that the m.c.f (M;); of
M exists. Then the flux of any symplectic isotopy to f is preserved along the
flow.
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Hamiltonian property

Theorem

Let (M, J,w) be a compact connected Kaehler manifold and f € Symp,(M, w).
Suppose M = graphf has zero Maslov class. Assume that the m.c.f (M;); of
M exists. Then the flux of any symplectic isotopy to f is preserved along the
flow.

In particular if f € Ham(M, J,w) then f; € Ham(M, J, w) for each t, namely
there is a (time dependent) fonction x : M x [0,1] — R such that H; = JV x;.

Djidémeé F. Houénou Retraction by MCF



Application : homotopy type of Symp(CP

Outline

0 Application : homotopy type of Symp(CP' x CP")
@ Towards Hofer geometry
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Application : homotopy type of Symp(CP" x wL‘P1)

@ Dimension 2 :
o Symp(M,w) ~ Diff*(M), thus Symp(S?,w) ~ SO(3)
o Sympy(T?,w) ~ T2 extension of SL(2,Z)
e Symp(My,w) ~ mappings class of M
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Application : homotopy type of Symp(CP" X wi‘.P1)

@ Dimension 2 :
o Symp(M,w) ~ Diff*(M), thus Symp(S?,w) ~ SO(3)
o Sympy(T?,w) ~ T2 extension of SL(2,Z)
e Symp(My,w) ~ mappings class of M
@ Dimension 4 :
Sympc(R*, wo) is contractible
Symp(CP' x CP', o @ o) ~ Zs extension of SO(3) x SO(3)
Symp(CP?, wrs) ~ PU(3)
Let u > 1, Symp,(CP' x CP', uo @ o) is path connected and its
fundamental group is equal to Z @ Z, & Z»
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Application : homotopy type of Symp(wL‘.P1 X wL‘P1)

Let (M, J, g,w) be a Kaehler manifold and A4 € R

Any f € Diff(M) is called A-pinched if #g < f*g < A%g J
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Application : homotopy type of Symp(‘EP1 X wL‘.P1)

Let (M, J, g,w) be a Kaehler manifold and A4 € R

Any f € Diff(M) is called A-pinched if #g < f*g < A%g J

Theorem (M.-T. Wang and I. Mendos )

For each n € N, there exists a constant A(n) > 1 such that if f : CP" — CP"
is a A-pinched symplecto. for some 0 < A < A(n), then

@ The m.c.f (My;); of the graph of f in CP™ x CP" exists for all time t > 0
@ M; is the graph of a symplecto. f; foreacht > 0

@ (f;); converges smoothly to a biholomorphic isometry of CP™ as t goes to
infinity.
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Application : homotopy type of Symp(wCP1 X (

fi (M, g,d,w) — (M?",§,J,&), (M), the m.c.fof M = graph f
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Application : homotopy type of Symp(wL‘.P1 X wL‘P1)

f: (M, g,J,w) — (MP",,0,&), (M), the m.c.f of M = graph f
M; = (Mx /\77,9@@)
T N\ T2
M M.

and 2 =y dvoly.

Djidéme F. Houénou Retraction by MCF



Application : homotopy type of Symp(wL‘.P1 X wi‘.P1)

fi (M, g,d,w) — (M?",§,J,&), (M), the m.c.fof M = graph f

M = (Mxl\N/I,g@g)
T N\ T2
M M.

and 2 =y dvoly.
Choose the basis (a)); (thus (E(a,-)),.) on TyM (on T,(X)M>

e = W (ai, dxf(ai))
= \/ﬁ (ai, NiE(a)))

€2n+i j(x,f(x)) T ﬁ(J@h Jf(X)E(a,))
- ﬁ(ai, /\,-E(a,-))

where E = f,[f.f.] 2 and 7 =J & J
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Application : homotopy type of Symp(CP" X w’:.P1)

(9] Q()\,’, h,’jk) +

A2 -
E % (Rux — N2R.
— (1 +)\,2)(1 +)\i)< ikik k /k/k)
where

>‘Ia I]k Z hljk 2 Z Z I+/>\ )\j i’ Ikhj 'jk — hl ]kh/ Ik)

ij,k k <)

i" =i+ (=1)*", and Rui = R(a;, ax. ai, a), Riik = R(ai, ax. aj, ax)

(18)
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Application : homotopy type of Symp(wCP1 X wL‘P1)

Assume M = I\7I, E(a)=>, b}a, therefore
]
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Application : homotopy type of Symp(CP" x wL‘P1)

Assume M = I\7I, E(a)=>, b}a, therefore
]

A(E(@). E(a, E(a), E(ay))

bibF bR () am ana ) (20)
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Application : homotopy type of Symp(wL‘.P1 X wi‘.P1)

Assume M = M E(a)) Zb’a, therefore

R(E(a). E(ad. E(a). E(a) = blbPb{bfR(aamana)  (20)

Let us now take M = M = CP'! x CP?.
E = isometry, it can be represented by an element of SU(2, C) as follows

E- (g ;f) (1)

where a = ay + tap and B = 31 + 13, satisfy |a|? + |8]? = 1.
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Application : homotopy type of Symp(wL‘.P1 X (

It follows the identification :

ar —ax —B1 P2 b} bf
az a1 P2 —f4 b} b5
Bi —fe a1 ax | b} b3
P B1 —o2 o [ {7

which will help us to reduce the expression of Ri.

Djidéme F. Houénou Retraction by MCF
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Application : homotopy type of Symp(CP" X w’:.P1)

It follows the identification :

ar —az =B —fB2 bj b b} bf
ap o Pa =Py b} b5 b3 b3
Br —Po o a2 | [b] b5 b3 bf
Bo B1 —az bl b b b;
which will help us to reduce the expression of Ri.
For brevity, let us introduce the following notations
a-B = apr+axfe, a-f=ai1f — azf,
- o= ayfle —azf, and Lo 3= —aqfl2 — azfB

where - stands for the dot product on C view as vector space.
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Application : homotopy type of Symp(CP" X wi‘.P1)

M = (CP',J;) x (CP', Jz) and take a canonical orthonormal basis (c1, cz)
(resp. (cs, c4)) for the first factor (resp. the second factor ) such that we
construct (a;); as follows :

a5 = XCi+Yycs

() a=(J1dh)(@) = XCo+ycs
as = —YCi+XC3

as=(Jy ®)(as) = —yco+XxCy

where x and y are real numbers satisfying x? + y? = 1.

Djidéme F. Houénou Retraction by MCF



Application : homotopy type of Symp(CP" x wL‘P1)

With respect to this basis, we obtain

Riziz = X*RiJyp +y* Ry = X" + " = Rasas
2)
Rista = X%y ( 1212 + R§434) x2y?
= Ro303 = Ri234 = —Ria23
1 2)
Ri21a = _X3yR$2)12 + xy3Ré434 = —xy(x* — y)

= Roi23 = —FR3234 = —Rs143

otherwise Rjy = 0.
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Application : homotopy type of Symp(wL‘.P1 X wL‘P1)

Ri212 =

Ri3i3

A(E(a). E(a), E(a), Ea))
(laf* +[81%) (x* + y*) + 4x2y¥|al?| B + 8xy2(a - B)°
+40Cy = xy®) (@ B)(|of* — |8%)

R(E(as), E(as), E(ao). E(a)) = Rosas (22)

R(E(a), E(a). E(a). E(as) )
= 2(a-p)? (X2 — y2)2 +8x2y2 (1 + B132)?
+8(x%y — xy®)(tor - B) (102 + B1B2)

= F?(E(ag),E(a4),E(a2),E(a4)) = Roqza (23)
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Application : homotopy type of Symp(wCP1 X wL‘P1)

R = R(E(a), E(a). E(a), Ea))
= 200 BP0 — 2P+ 2002 (1034 ) — (0F 4 53) )
+40y = x)(a - B)( (a3 + B3) — (oF + 53) )

- R(E(). E(a). E(@), E(a)) Rzsza. (24)
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homotopy type of Sy

Lemma

x(2 satisfies :

2
5 Z(AZ—AZ)
Al = «x2dan;,h; C 2522 ? ?
= = = i» hij) + ————— 5 | XV (8l BT +4agay — B1B2)" — 1

2 2
2 2
(1+>\1) (1+>\3)

w02 = (o 9 (o2 5% = oB - 62) + (1 - 2a- 5)2)>

2

2(1 = >\2>\2) a

— 8 (22, Boa 1

7 2 Yo\ 4a - BT — 4 agap+ B1B2) —
(1 + Af) (1 + Ag)

—8xy(® — ) - ﬁ)(a1a2 +;31;32) + (1 — 2a - 3)2)) } (25)

where Q(X;, hjjy) is the quadratic form given in (19), cx, 3 are complexes such that | cx 12+ |B|2 = 1andx, y are reals satisfying X2 + y2 = 1.




Application : homotopy type of Symp(wL‘.P1 X wL‘P1)

Consider the function ©(\1, A3) with the parameters x, y,« and 3

O\, Xs) = 20 (s = ) 5 + 25k ( _S%f s (26)
(1+22)°(1+23) (1+23)°(1+)3)
where
0 = (1-2(a-B?)+2x2(8(a- B2 +4(araz - B152)° 1)
+ 4y = y¥) (o B)(af + B3 — ad - 55) (27)
and
K = (1 _ % 5)2) +2x2)2 (4(La - B — 4(aron + B182)° — 1)
— 8xy(x® — y®)(ea - B) (a2 + B1a). (28)

«, 3 are complexes such that |«|? + |3|? = 1 and x, y are reals satisfying
x>+ y% =1
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Application : homotopy type of Symp(CP" x wL‘P1)

o(1,1) =0
vV-e(1,1) = 0

%9(1,1) - 9+H=aij§@(1,1)
2

7&?&39(1,1) = —0+k

Djidéme F. Houénou Retraction by MCF



Application : homotopy type of Symp(CP" X w’:.P1)

o(1,1) =0

v-e(1,1) =0

W@u 1) = 9+,<;_63A2@(1 1)
2

7&?&39(1,1) = —0+k

One easily check with Sylvester Criterion applied to the Hessain of ©, that
0 + x and 0« are positive. This implies that the Hessian of © is positive definite
at (A1, A3) = (1,1). Thus © has a local minimal at (1, 1) this infers ©(\1, A3) > 0
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Application : homotopy type of Symp(wL‘.P1 X wi‘.P1)

Proposition

There exists 1 < A < £(2v10 + v/15) close to 1 such that if the inequality
(29) holds for some 1 < Ay < A

M cminse (29)
2(1 + (A )2) Mo

then r?/i[n x{2 Is non-decreasing in time. In particular, M; is the graph of some
t
f; € Symp(CP! x CP").
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Application : homotopy type of Symp(wL‘.P1 X wi‘.P1)

Corollary

There exists 1 < A < 1(2v/10 + v/15) close to 1 such that, if the initial
symplectomorphism f is A’ -pinched with

1
2
A = B </I+:I>] + ;(/I+:i)1

then each f; is A-pinched along the flow.
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Application : homotopy type of Symp(wL‘.P1 X wL‘P1)

Theorem

Let f be a A-pinched symplecto. of CP' x CP' for some

1 < A < 1(2v/10 + V/15) sufficiently closed to 1. Then f deforms through
symplecto. under the m.c.f ; the flow exists for all time and the sequence (f;);
converges smoothly to a biholomorphic isometry of CP' x CP' as t goes to
infinity.
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Application : homotopy type of Symp(wL‘.P1 X w[‘.P1)

Theorem

Let f be a A-pinched symplecto. of CP' x CP' for some

1 < A < }(2V10 + v/15) sufficiently closed to 1. Then f deforms through
symplecto. under the m.c.f ; the flow exists for all time and the sequence (f;);
converges smoothly to a biholomorphic isometry of CP' x CP" as t goes to
infinity.

@ Since )\, tend to 1 as t goes to infinity, for all /, the limit map > is an
isometry.

@ Being symplectic is a closed property, so > is symplectic.
@ Then at every p € CP' x CP',

foJ = Ji%°.

The same is true for the inverse of °°, and thus the map > is
biholomorphic.
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Application : homotopy type of Symp(wL‘.P1 X C Towards Hofer geometry

Hofer defined the energy of an hamiltonian diffeo. ¢ as

1
E(p) =int |G :=/0 (sup G —inf G) ot : ¢ =)
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Application : homotopy type of Syl1lp(‘CF’1 X HL‘.P1) Towards Hofer geometry

Hofer defined the energy of an hamiltonian diffeo. ¢ as
1
E@y=qump=/(pr—mM3m:gﬁ=¢}
0

Lemma

The potential G; of the time slice of the flow is given by :

Gi=Go+ U+ Vy (30)

T

t 1 t
where V; = / / fe,w(Xsr, Hs -)dsdr and U; is such that dU; = / iy wdr.
0 JO 0
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Application : homotopy type of Symp(wL‘.P1 X wL‘P1) Towards Hofer geometry

) . !
o7t = i +d / £ w (Xs,ts Hs.z).- (31)
0

Integrating in time we got :

Fi=Fo+ / iy wdT + d/ / w(Xs, -, Hs 7)dsdT (32)
0
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Application : homotopy type of Symp(wL‘.P1 X wi‘.P1) Towards Hofer geometry

0 : !

= Ft = ffigw + d/ fo 1w (Xs,t, Hs,z).- (31)
ot 0 ? ’

Integrating in time we got :

Fi = ]—‘0+/ iy, wd'r+d/ / w(Xs,r, Hs,-)dsdT (32)
Maslov class = 0 = 3U; such that dU; = / f¥iy_wdr. Therefore

Fi =dGo + dU; + d/ / w(Xs,, Hs - )dsdr
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Application : homotopy type of Symp(wL‘.P1 X w’:.P1) Towards Hofer geometry

) . !
o7t = i +d / £ w (Xs,ts Hs.z).- (31)
0

Integrating in time we got :
Fi=Fo +/ iy wdr + d/ / w(Xs,-, Hs )dsdr (32)
Maslov class = 0 = 3U; such that dU; = / f¥iy_wdr. Therefore
Fi = dGp + dU; + d/ / w(Xs,r, Hs-)dsdT
Taking into account the fact that 7; = dG;, we recover the potential of the

isotopy {fs,t}0<s<1
Gi=Go+ U+ V; (33)

where V; =/ / w(Xs,, Hs )dsdr.
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