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The mean curvature flow (MCF)

F0 :Mn ↪→
(
Mm, ḡ) ;(

M , g = F ∗0 ḡ
)
≡
(

F0M , ḡ∣∣F0M

)
and TM = TM⊕ NM.

MCF ofM≡ family of immersions F :M× [0,T ) −→ M s. t.{
∂
∂t F (x , t) = HF (x,t)

F (·,0) = F0(·)
(1)

MC vector H = traceg(A), where A is the second fundamental form

A : X(M)× X(M) −→ Γ (NM)
(X ,Y ) 7−→ A(X ,Y ) = (∇X Y )⊥
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The mean curvature flow (MCF)

F :M× [0,T ) −→ M, the m.c.f. can be expressed in coordinates as

∂Fα

∂t
= g ij ∂

2Fα

∂x i∂x j

(
δαβ −

∂Fβ

∂xk gkl ∂Fα

∂x l

)
≡ 4g(t),ḡF . (2)

Analytic view point : quasi linear second order system of parabolic equations

Short time existence is based on implicit function theorem

closed surface
Dirichlet boundary conditions
sufficiently smooth initial data
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≡ 4g(t),ḡF . (2)

Analytic view point : quasi linear second order system of parabolic equations

Short time existence is based on implicit function theorem

closed surface
Dirichlet boundary conditions
sufficiently smooth initial data
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/ 42



The mean curvature flow (MCF)

Assume M = Rn+1 (M is an hypersurface)

Proposition

The evolution equation (1) has a smooth solution on a maximal time interval
0 6 t < T <∞ and max

Mt
|A|2 becomes unbounded as t goes to T .

(
∂

∂t
−4

)
|A|2 = −2|∇A|2 + 2|A|4. (3)

Lemma

The function U(t) = max
Mt

∣∣A∣∣2 is Lipschitz continuous and satisfies

1
2(T − t)

6 U(t) 6
C0

2(T − t)
if ∃ C0 ∈ R+ (4)

type I singularity
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/ 42



The mean curvature flow (MCF)

Example

F0 : Sn −→ Rn+1 and F (x , t) = φ(t)F0(x).

φ′(t)F0(x) =
∂F (x , t)
∂t

= H = − n
φ(t)

F0(x) =⇒ φ′(t) = − n
φ(t)

(5)

which solves in φ(t) =
√

r2
0 − 2nt and the m.c.f can be written as

F (x , t) =
√

r2
0 − 2nt F0(x). T = r2

0
2n the singular time.

F0 : Sn−k × Rk −→ Rn+1 and F (x , t) = φ(t)F0(x).

φ′(t)F0(x) =
∂F (x , t)
∂t

= H = −n − k
φ(t)

F0(x) =⇒ φ′(t) = −n − k
φ(t)

(6)

which solves in φ(t) =
√

r2
0 − 2(n − k )t and the m.c.f can be written as

F (x , t) =
√

r2
0 − 2(n − k )t F0(x). T = r2

0
2(n−k ) the singular time.
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The mean curvature flow (MCF)

M ≡ Rn+1 andM =graphf of a smooth function f : Rn → R

F0 :M−→ M equivalently F0 ≡ id × f : Rn −→ M

F (x1, · · · , xn, t) =
(

x1, · · · , xn, f (x1, · · · , xn, t)
)

is a parametrization of (Mt )t

Denoting by ν = (−∇f ,1)√
1+|∇f |2

the unit upward normal,

〈
∂F
∂t

(x , t), ν
〉
ν = H (7)

m.c.f of the graph of f

∂f
∂t

= 4f − Hess(∇f ,∇f )(√
1 + |∇f |2

)2 (8)
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The mean curvature flow (MCF)

Higher codimension

For the graphical case, f : (M1,g1) −→ (M2,g2),
(M, ḡ) ≡

(
M1 ×M2,g1 ⊕ g2

)
, F ≡ id × f :M1 → M, M = graphf

∂fα

∂t
− g ij

(
∂2fα

∂x i∂x j + Γαβγ
∂f β

∂x j
∂f γ

∂x i + Γ l
ij
∂fα

∂x l

)
= 0, (9)

where g = g1 + f ∗g2
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The mean curvature flow (MCF)

Singularity occurs when |A| becomes unbounded. To continue the flow, one
uses the backward heat-kernel and the monotonicity formula

The backward heat kernel

ρx0,t0 (x , t) =
(

4π(t0 − t)
)− n

2
exp

(
−|x0 − x |2

4(t0 − t)

)
(10)

and the monotonicity formula says

d
dt

∫
ρx0,t0dµt 6 0,∀ t < t0 and lim

t→t0

∫
ρx0,t0dµt exists. (11)

(B. White) Each time ∃ β > 0 s.t.

lim
t→t0

∫
ρx0,t0dµt < 1 + β (12)

(x0, t0) is regular.
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The mean curvature flow (MCF)

Fix i : M ↪→ Rd and given F :M−→ M, then F = i ◦ F :M ↪→ Rd .
Pick a point x0 ∈ Rd and t0 ∈ R. Defined

Dλ : Rd × [0, t0) −→ Rd × [−λ2t0,0)
(x , t) 7−→

(
λ(x − x0), λ2(t − t0)

)

d
dt

F (x , t) = H = H + V where V = −
n∑

i=1

AM (ei ,ei ) (13)

d
dt

∫
Mt

ρx0,t0dµt 6 C −
∫
Mt

ρx0,t0

∣∣∣∣∣H +
F
⊥

2(t0 − t)
+

V
2

∣∣∣∣∣
2

dµt (14)
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Djidémè F. Houénou Retraction by MCF
DFG-AIMS Workshop Global Differential Geometry M’bour, Sénégal [.5cm] 23 May 2018 11
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The mean curvature flow (MCF)

Proposition (K-W. Lee & Y-I Lee)

Assume that kM1 > c1 and kM2 6 c2 for two constants c1 and c2 (kMi is a
sectional curvature ofMi ). Suppose either c1 > 0 and c2 6 0 or c1 > c2 > 0
then the following hold :

1 If
det
(
g1 + f ∗g2

)
ij

det gij
< 4, then the MCF ofM =graphf remains the graph of

a map and exists for all time.
2 Furthermore, if c1 > 0 then the MCF converges smoothly to the graph of

a constant map
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Hamiltonian property

Outline

1 The mean curvature flow (MCF)

2 Hamiltonian property

3 Application : homotopy type of Symp(CP1 × CP1)
Towards Hofer geometry
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/ 42



Hamiltonian property

Symplectic manifold

M is 2n-dimensionnal manifold

and
ω : X(M)× X(M) −→ C∞(M,R)

(X ,Y ) 7−→ ω(X ,Y )

is closed (dω = 0) and non-degenerated 2-form
(ω(X ,Y ) = 0,∀Y ∈ X(M)⇐⇒ X = 0 )
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Hamiltonian property

Hamiltonian function

Any smooth function G : (M, ω)× [0,1] −→ R such that
∫ 1

0

∫
M

G(s, x)ωn dt = 0

is called (normalized) Hamiltonian.

Associated time dependent vector field

G(s, x) ≡ Gs(x) =⇒ Xs s.t. iXsω = ω̃−1(dGs). (15)
LXsω = 0 i.e Xs is symplectic.

The family of diffeomorphisms {ϕG
s } generated by Xs is called Hamiltonian

isotopy of G.
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Hamiltonian property

A given diffeomorphism ϕ of (M, ω) is called hamiltonian if ∃ an
hamiltonian isotopy {ϕs}s∈[0,1] such that ϕ0 = id and ϕ1 = ϕ

Ham(M, ω) ≡ set of all hamiltonian diff. on M
Ham(M, ω) ⊆ Symp0(M, ω) ⊆ Symp(M, ω)

Under the composition of map
(

Ham(M, ω),◦
)

is a group Ham(M, ω) /
Symp(M, ω) ⊆ Diff(M, ω)

? Geometry
If π1(M) = 0 then Ham(M, ω)=Symp0(M, ω) identity connected component

? Physics
It represents the group of all admissible motion
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Hamiltonian property

Obstruction of symplecto. to be hamilto.

Flux homomorphism

F̃lux : S̃ymp0(M, ω) −→ H1(M,R)

ϕ̃ 7−→

[∫ 1

0
ϕ∗s (iXsω)ds

]

Characterization
The time one map of any symplectic isotopy with zero flux is a Hamiltonian
diffeomorphism.
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/ 42



Hamiltonian property

Obstruction of symplecto. to be hamilto.

Flux homomorphism

F̃lux : S̃ymp0(M, ω) −→ H1(M,R)

ϕ̃ 7−→

[∫ 1

0
ϕ∗s (iXsω)ds

]

Characterization
The time one map of any symplectic isotopy with zero flux is a Hamiltonian
diffeomorphism.
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Hamiltonian property

Let f ∈ Ham(M, ω) and {fs} ⊂ Symp0(M, ω) such that f1 = f .
The MCF of f gives rise to a 2-parameters family {fs,t} such that

(S1)



f1,0 = f

f0,t = idM, f1,t = ft for each t < t0

Flux{fs,t} =

[∫ 1

0
f ∗s,t (iXs,tω)ds

]
:= [Ft ]

∂
∂s fs,t = Xs,t

∂
∂t fs,t = Hs,t

∂
∂t Xs,t = ∂

∂s Hs,t − [Hs,t ,Xs,t ]
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Hamiltonian property

Lemma

The flux form Ft of the isotopy {fs,t}s satisfies :
∂

∂t
Ft = iHω + dKt where

Kt =
∫ 1

0
f ∗s,tω(Xs,t ,Hs,t )ds and ft is the time-one map of the isotopy {fs,t}06s61.

Since Xs,t and Hs,t are symplectic vector fields, we have

∂

∂t
Ft =

∫ 1

0

∂

∂t

(
f ∗s,t iXs,tω

)
ds

=
∫ 1

0

(
f ∗s,tLHs,t iXs,tω + f ∗s,t

∂

∂t
iXs,tω

)
ds

= iHω + d
∫ 1

0
f ∗s,tω(Xs,t ,Hs,t )ds. (16)
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Hamiltonian property

The Maslov class

After J.M Morvan, one characterizes the Maslov class of a Lagrangian
immersion in a (almost) Khaeler manifold as

[
iHω
]
∈ H1(M,R). (17)

Lemma

Let {fs}06s61 be a symplectic isotopy to f ∈ Symp(M, J, ω) of a Kaehler
manifold (M, J, ω). Assume that the m.c.f (Mt )t with initial dataM0=graphf ,
exists. Then the flux of {fs}s along the m.c.f deforms to the Maslov class of
M.
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Hamiltonian property

Theorem

Let (M, J, ω) be a compact connected Kaehler manifold and f ∈ Symp0(M, ω).
SupposeM = graphf has zero Maslov class. Assume that the m.c.f (Mt )t of
M exists. Then the flux of any symplectic isotopy to f is preserved along the
flow.

In particular if f ∈ Ham(M, J, ω) then ft ∈ Ham(M, J, ω) for each t, namely
there is a (time dependent) fonction χ : M × [0,1]→ R such that Ht = J∇χt .
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Application : homotopy type of Symp(CP1 × CP1)

Outline

1 The mean curvature flow (MCF)

2 Hamiltonian property

3 Application : homotopy type of Symp(CP1 × CP1)
Towards Hofer geometry
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Application : homotopy type of Symp(CP1 × CP1)

Dimension 2 :
Symp(M, ω) ∼ Diff +(M), thus Symp(S2, ω) ∼ SO(3)
Symp0(T 2, ω) ∼ T 2 extension of SL(2,Z)
Symp(Mg , ω) ∼ mappings class ofM

Dimension 4 :
Sympc(R4, ω0) is contractible
Symp(CP1 × CP1, σ ⊕ σ) ∼ Z2 extension of SO(3)× SO(3)
Symp(CP2, ωFS) ∼ PU(3)
Let µ > 1, Symp0(CP1 × CP1, µσ ⊕ σ) is path connected and its
fundamental group is equal to Z⊕ Z2 ⊕ Z2
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/ 42



Application : homotopy type of Symp(CP1 × CP1)

Dimension 2 :
Symp(M, ω) ∼ Diff +(M), thus Symp(S2, ω) ∼ SO(3)
Symp0(T 2, ω) ∼ T 2 extension of SL(2,Z)
Symp(Mg , ω) ∼ mappings class ofM

Dimension 4 :
Sympc(R4, ω0) is contractible
Symp(CP1 × CP1, σ ⊕ σ) ∼ Z2 extension of SO(3)× SO(3)
Symp(CP2, ωFS) ∼ PU(3)
Let µ > 1, Symp0(CP1 × CP1, µσ ⊕ σ) is path connected and its
fundamental group is equal to Z⊕ Z2 ⊕ Z2
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Application : homotopy type of Symp(CP1 × CP1)

Let (M, J,g, ω) be a Kaehler manifold and Λ ∈ R

Any f ∈ Diff(M) is called Λ-pinched if 1
Λ2 g 6 f ∗g 6 Λ2g

Theorem (M.-T. Wang and I. Mendos )

For each n ∈ N, there exists a constant Λ(n) > 1 such that if f : CPn −→ CPn

is a Λ-pinched symplecto. for some 0 < Λ < Λ(n), then
The m.c.f (Mt )t of the graph of f in CPn × CPn exists for all time t > 0
Mt is the graph of a symplecto. ft for each t > 0
(ft )t converges smoothly to a biholomorphic isometry of CPn as t goes to
infinity.
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Application : homotopy type of Symp(CP1 × CP1)

f : (M2n,g, J, ω) −→ (M̃2n, g̃, J̃, ω̃),
(
Mt
)

t the m.c.f ofM = graph f

Mt ↪→
(
M × M̃,g ⊕ g̃

)
π1 ↙↘ π2

M M̃.

and Ω = π∗1dvolM .
Choose the basis (ai )i

(
thus

(
E(ai )

)
i

)
on TxM

(
on Tf (x)M̃

)


ei = 1√
1+|dx f (ai )|2

(
ai ,dx f (ai )

)
= 1√

1+λ2
i

(
ai , λiE(ai )

)
e2n+i = J(

x,f (x)
)ei = 1√

1+λ2
i

(
Jxai ,−J̃f (x)E(ai )

)
= 1√

1+λ2
i

(
ai ,−λiE(ai )

)
.

where E = f∗
[

t f∗f∗
]− 1

2 and J = J 	 J̃
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Application : homotopy type of Symp(CP1 × CP1)

(
∂

∂t
−4

)
∗Ω = ∗Ω

[
Q(λi ,hijk ) +

∑
i,k

λ2
i

(1 + λ2
i )(1 + λ2

k )

(
Rikik − λ2

k R̃ikik

)]
(18)

where

Q(λi ,hijk ) =
∑
i,j,k

h2
ijk − 2

∑
k

∑
i<j

(−1)i+jλiλj (hi′ ik hj′ jk − hi′ jk hj′ ik ), (19)

i ′ = i + (−1)i+1, and Rikik = R(ai ,ak ,ai ,ak ), R̃ikik = R̃(ai ,ak ,ai ,ak )
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Application : homotopy type of Symp(CP1 × CP1)

Assume M = M̃, E(ai ) =
∑

l
bl

i al therefore

R̃
(

E(ai ),E(ak ),E(ai ),E(ak )
)

= bl
i b

m
k bn

i br
i R
(

al ,am,an,ar

)
(20)

Let us now take M = M̃ = CP1 × CP1.
E ≡ isometry, it can be represented by an element of SU(2,C) as follows

E =
(
α −β̄
β ᾱ

)
(21)

where α = α1 + ια2 and β = β1 + ιβ2 satisfy |α|2 + |β|2 = 1.
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Application : homotopy type of Symp(CP1 × CP1)

It follows the identification :
α1 −α2 −β1 −β2

α2 α1 β2 −β1

β1 −β2 α1 α2

β2 β1 −α2 α1

 ≡


b1
1 b2

1 b3
1 b4

1

b1
2 b2

2 b3
2 b4

2

b1
3 b2

3 b3
3 b4

3

b1
4 b2

4 b3
4 b4

4


which will help us to reduce the expression of R̃ikik .
For brevity, let us introduce the following notations

α · β = α1β1 + α2β2 , ᾱ · β = α1β1 − α2β2,

ια · β = α1β2 − α2β1 , and ια · β̄ = −α1β2 − α2β1

where · stands for the dot product on C view as vector space.
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Application : homotopy type of Symp(CP1 × CP1)

M =
(
CP1, J1

)
×
(
CP1, J2

)
and take a canonical orthonormal basis (c1, c2)(

resp. (c3, c4)
)

for the first factor
(
resp. the second factor

)
such that we

construct (ai )i as follows :

(S′)



a1 = xc1 + yc3

a2 =
(
J1 ⊕ J2

)
(a1) = xc2 + yc4

a3 = −yc1 + xc3

a4 =
(
J1 ⊕ J2

)
(a3) = −yc2 + xc4

where x and y are real numbers satisfying x2 + y2 = 1.
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Application : homotopy type of Symp(CP1 × CP1)

With respect to this basis, we obtain

R1212 = x4R(1)
1212 + y4R(2)

3434 = x4 + y4 = R3434

R1414 = x2y2
(

R(1)
1212 + R(2)

3434

)
= 2x2y2

= R2323 = R1234 = −R1423

R1214 = −x3yR(1)
1212 + xy3R(2)

3434 = −xy (x2 − y2)
= R2123 = −R3234 = −R4143

otherwise Rijkl = 0.
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Application : homotopy type of Symp(CP1 × CP1)

R̃1212 = R̃
(

E(a1),E(a2),E(a1),E(a2)
)

=
(
|α|4 + |β|4

)(
x4 + y4) + 4x2y2|α|2|β|2 + 8x2y2(ᾱ · β)2

+4(x3y − xy3)(ᾱ · β)(|α|2 − |β|2)

= R̃
(

E(a3),E(a4),E(a3),E(a4)
)

= R̃3434 (22)

R̃1313 = R̃
(

E(a1),E(a3),E(a1),E(a3)
)

= 2(ια · β)2(x2 − y2)2 + 8x2y2(α1α2 + β1β2)2

+8(x3y − xy3)(ια · β)(α1α2 + β1β2)

= R̃
(

E(a2),E(a4),E(a2),E(a4)
)

= R̃2424 (23)
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Application : homotopy type of Symp(CP1 × CP1)

R̃1414 = R̃
(

E(a1),E(a4),E(a1),E(a4)
)

= 2(α · β)2(x2 − y2)2 + 2x2y2
(

(α2
2 + β2

1 )−
(
α2

1 + β2
2
))2

+4(x3y − xy3)(α · β)
((
α2

2 + β2
1
)
−
(
α2

1 + β2
2
))

= R̃
(

E(a2),E(a3),E(a2),E(a3)
)

R̃2323. (24)
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Application : homotopy type of Symp(CP1 × CP1)

Lemma

∗Ω satisfies :(
∂

∂t
−4

)
∗ Ω = ∗Ω

{
Q(λi , hijk ) +

2
(
λ2

3
− λ2

1

)2(
1 + λ2

1

)2(
1 + λ2

3

)2

(
2x2y2
(

8(α · β)2 + 4(α1α2 − β1β2)2 − 1
)

+4xy (x2 − y2)(α · β)
(
α

2
1 + β2

2 − α
2
2 − β

2
1

)
+
(

1 − 2(α · β)2
))

+
2
(

1 − λ2
1
λ2

3

)2(
1 + λ2

1

)2(
1 + λ2

3

)2

(
2x2y2
(

4(ια · β)2 − 4
(
α1α2 + β1β2

)2
− 1
)

−8xy (x2 − y2)(ια · β)
(
α1α2 + β1β2

)
+
(

1 − 2(ια · β)2
))}

(25)

where Q(λi , hijk ) is the quadratic form given in (19), α, β are complexes such that |α|2 + |β|2 = 1 and x, y are reals satisfying x2 + y2 = 1.
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Application : homotopy type of Symp(CP1 × CP1)

Consider the function Θ(λ1, λ3) with the parameters x , y , α and β

Θ(λ1, λ3) = 2θ

(
λ2

3 − λ2
1

)2(
1 + λ2

1

)2(1 + λ2
3

)2 + 2κ

(
1− λ2

1λ
2
3

)2(
1 + λ2

1

)2(1 + λ2
3

)2 (26)

where

θ =
(

1− 2(α · β)2
)

+ 2x2y2
(

8(α · β)2 + 4(α1α2 − β1β2)2 − 1
)

+ 4xy (x2 − y2)(α · β)
(
α2

1 + β2
2 − α2

2 − β2
1
)

(27)

and

κ =
(

1− 2(ια · β)2
)

+ 2x2y2
(

4(ια · β)2 − 4
(
α1α2 + β1β2

)2 − 1
)

− 8xy (x2 − y2)(ια · β)
(
α1α2 + β1β2

)
. (28)

α, β are complexes such that |α|2 + |β|2 = 1 and x , y are reals satisfying
x2 + y2 = 1
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Application : homotopy type of Symp(CP1 × CP1)



Θ(1,1) = 0

∇ ·Θ(1,1) = 0

∂2

∂λ2
1
Θ(1,1) = θ + κ = ∂2

∂λ2
3
Θ(1,1)

∂2

∂λ1∂λ3
Θ(1,1) = −θ + κ

One easily check with Sylvester Criterion applied to the Hessain of Θ, that
θ + κ and θκ are positive. This implies that the Hessian of Θ is positive definite
at (λ1, λ3) = (1,1). Thus Θ has a local minimal at (1,1) this infers Θ(λ1, λ3) > 0
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Application : homotopy type of Symp(CP1 × CP1)
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Application : homotopy type of Symp(CP1 × CP1)

Proposition

There exists 1 / Λ̃ < 1
5

(
2
√

10 +
√

15
)

close to 1 such that if the inequality
(29) holds for some 1 < Λ̃1 < Λ̃

Λ̃1

2
(

1 + (Λ̃1)2
) 6 min

M0
∗Ω (29)

then min
Mt
∗Ω is non-decreasing in time. In particular,Mt is the graph of some

ft ∈ Symp(CP1 × CP1).
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Application : homotopy type of Symp(CP1 × CP1)

Corollary

There exists 1 / Λ̃ < 1
5

(
2
√

10 +
√

15
)

close to 1 such that, if the initial
symplectomorphism f is Λ̃′-pinched with

Λ̃′ =
[

1
2

(
Λ̃ +

1
Λ̃

)] 1
2

+

√
1
2

(
Λ̃ +

1
Λ̃

)
− 1

then each ft is Λ̃-pinched along the flow.
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Application : homotopy type of Symp(CP1 × CP1)

Theorem

Let f be a Λ-pinched symplecto. of CP1 × CP1 for some
1 < Λ < 1

5 (2
√

10 +
√

15) sufficiently closed to 1. Then f deforms through
symplecto. under the m.c.f ; the flow exists for all time and the sequence (ft )t
converges smoothly to a biholomorphic isometry of CP1 × CP1 as t goes to
infinity.

Remark
Since λi tend to 1 as t goes to infinity, for all i , the limit map f∞ is an
isometry.
Being symplectic is a closed property, so f∞ is symplectic.
Then at every p ∈ CP1 × CP1,

f∞∗ J = Jf∞∗ .

The same is true for the inverse of f∞, and thus the map f∞ is
biholomorphic.
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Application : homotopy type of Symp(CP1 × CP1) Towards Hofer geometry

Hofer defined the energy of an hamiltonian diffeo. ϕ as

E(ϕ) := inf
{
‖G‖ :=

∫ 1

0
(sup G − inf G) dt : ϕG

1 = ϕ
}

Lemma

The potential Gt of the time slice of the flow is given by :

Gt = G0 + Ut + Vt (30)

where Vt =
∫ t

0

∫ 1

0
f ∗s,τω(Xs,τ ,Hs,τ )dsdτ and Ut is such that dUt =

∫ t

0
f ∗τ iHτωdτ .
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Application : homotopy type of Symp(CP1 × CP1) Towards Hofer geometry

∂

∂t
Ft = f ∗t iHtω + d

∫ 1

0
f ∗s,tω

(
Xs,t ,Hs,t

)
. (31)

Integrating in time we got :

Ft = F0 +
∫ t

0
f ∗τ iHτωdτ + d

∫ t

0

∫ 1

0
f ∗s,τω(Xs,τ ,Hs,τ )dsdτ (32)

Maslov class = 0 =⇒ ∃Ut such that dUt =
∫ t

0
f ∗τ iHτωdτ . Therefore

Ft = dG0 + dUt + d
∫ t

0

∫ 1

0
f ∗s,τω(Xs,τ ,Hs,τ )dsdτ

Taking into account the fact that Ft = dGt , we recover the potential of the
isotopy

{
fs,t
}

06s61

Gt = G0 + Ut + Vt (33)

where Vt =
∫ t

0

∫ 1

0
f ∗s,τω(Xs,τ ,Hs,τ )dsdτ .
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