# The W-governor

Jonathan L. Mitchell<sup>1</sup> Spencer Hill<sup>1,2</sup>

UCLA <sup>2</sup>Caltech

#### The Motivation

- Hadley cell expansion in global warming (e.g., Lu et al. '07, Vallis et al. '15)
- Scalings of Hadley cell width and strength with rotation rate don't obey axisymmetric theory
  - Held & Hou '80:  $\varphi_{\text{max}} \sim \Omega^{-1}$   $\psi_{\text{max}} \sim \Omega^{-3}$



Walker & Schneider '06

## The (Dry Dynamics) Problem

- Models tend toward eddy-driven Hadley cell strengths, i.e., small Ro on poleward flank (Walker & Schneider '06)
- WTG conditions in the tropics implies a balance between radiative and advective heating (provided convection is isolated to the ITCZ; Sobel et al. '01, but see caveats in Singh & Kuang '16)
- Radiative cooling is not strongly sensitive to planetary parameters

#### Column-Integrated Radiative Fluxes Don't Depend On Rotation Rate



#### Assumption #1: Ro $\ll$ 1 Eddy-Regulated Hadley Cell Strength

• Walker & Schneider '06



# Assumption #2: The $\omega$ -governor Vertical Velocities Governed By Radiative Cooling

- This is not at all new...
  - Schneider & Lindzen '76, Held & Hou '80, Singh & Kuang '16, many others
  - Used in tropical studies with weak temperature gradients (Sobel et al '01)

$$\bar{\omega}\frac{\partial\theta}{\partial p} = \overline{Q_R}$$

• If static stability and radiative cooling are fixed

### $\bar{\omega} \sim {\rm constant}$

Combine Assumptions: Hadley Cell Width Adjusts To Accommodate Eddy-Driven Mass Flux

 # I: Eddy momentum flux convergence requires a certain mass flux to balance momentum (small Ro)

$$f\bar{v} \sim -s \rightarrow \Psi_{\max} \sim \frac{S}{f}$$

- #2: Average updraft velocity is externally fixed ( $\omega$ -governor)
  - Key concept: With fixed vertical velocity, the Hadley cell must widen to flux more mass...

$$\Psi \sim \frac{\omega}{g} a \Delta y \propto y_h$$

• Result: Width & strength scale as the eddy fluxes, S/f

#### Testing Assumption #1: Singh-Kuang Plot

• Held-Suarez simulations for  $\Omega^* \sim \{10^{-2}:10^1\}$  have Ro  $\leq 0.5$ 



#### Testing Assumption #2: Vertical Velocities

• Held-Suarez simulations for  $\Omega^* \sim \{10^{-2}:10^1\}$  have  $\omega$ ~constant



## Combine Assumptions: Hadley Cell Width Adjusts To Accommodate Eddy-Driven Mass Flux

• # I: Eddy momentum flux convergence requires a certain mass flux to balance mentum (small Ro)

$$f\bar{v} \sim -s \rightarrow \Psi_{\max} \sim \frac{S}{f}$$

- #2: Average updraft velocity is externally fixed (ω-governor)
  Key concept: With fixed velocity, the Hadley cell must widen to
  - flux more mass...

$$\Psi \sim \frac{\omega}{g} a \Delta y \propto \phi_h$$

Result: Width & strength scale as the eddy fluxes, S/f

#### Eddy Momentum Flux Convergence, Mass Flux, And Winds Hadley cell gets weaker and wider with rotation rate slow rotation



#### Eddy Momentum Flux Convergence, Mass Flux, And Winds

#### slow rotation



### Width And Strength Have The Same Scaling, Set By Eddy Momentum Flux Convergence



Note: S/f is an input (not a closed theory)

#### What About A Different Forcing Scheme?

#### • "Caltech model": Schneider '04

- ITCZ-like forcing in the deep tropics, with convective adjustment
- Uniform Newtonian cooling elsewhere; idealized boundary layer
   Walker & Schneider '06



#### Width And Strength Have Same Scaling, But Neither Closely Follow The Eddy Fluxes



#### Width And Strength Have Same Scaling, But Neither Closely Follow The Eddy Fluxes



### Caltech Model Results: Singh-Kuang Plot

• Ro is not always small, varies to compensate changing S/f:



#### Slab Aquaplanet Model (Frierson, O'Gorman Schneider)

Width & strength scale together, but again don't follow eddies



#### Slab Aquaplanet Model (Frierson, O'Gorman Schneider)

• Ro-number compensation again evident...



## The Earth's Hadley Cell Is In An Eddy-Dominated Regime What does this imply for global warming...?

### Sea Ice Reduction Causes Weaker Eddies Which May Counteract Hadley Cell Expansion



## Summary

- Mean vertical velocity of the Hadley cell updraft shows little sensitivity to rotation rate, regardless of model forcing.
  - Radiative-advective thermal balance approximately holds.
  - Radiative cooling is insensitive to rotation rate.
  - "The ω-governor"
- In the small-Ro regime, eddy momentum flux convergences drive the mass flux of the Hadley cell.
- Taken together, the Hadley cell can only increase mass flux by increasing its width.
- Result: Width and strength have the same scaling, which is determined by the eddy momentum flux convergence.
- Sea-ice decline weakens eddies, which may counteract Hadley cell expansion