1. On the regularity of maximal operators

By José Ramón Madrid Padilla

Key words: Fractional maximal operator, Sobolev spaces, discrete maximal operators, bounded variation.

Abstract: In this talk we will discuss questions about the boundedness and continuity of classical and fractional maximal operators acting on Sobolev spaces and spaces of functions of bounded variation.

For $f \in L^1_{loc}(\mathbb{R}^d)$ and $0 \leq \beta < d$, we consider the centered fractional maximal function as

$$M_{\beta}f(x) = \sup_{r>0} \frac{1}{m(B_r(x))^{1-\frac{\beta}{d}}} \int_{B_r(x)} |f(y)| dy.$$
(1)

We could also consider the Non-centered fractional maximal function given by taking the supremum over all the balls that contain the point x instead of the balls centered at this point, we will denote this by \widetilde{M}_{β} . If $1 , <math>0 < \beta < d/p$ and $q = dp/(d - \beta p)$, then $M_{\beta} : L^p(\mathbb{R}^d) \to L^q(\mathbb{R}^d)$ is bounded. When p = 1one has a weak-type bound. Kinnunen and Saksman [Bull. London Math. Soc. 35 (2003), no. 4, 529–535] studied the regularity properties of such fractional maximal operators. One of the results they proved is that $M_{\beta}: W^{1,p}(\mathbb{R}^d) \to W^{1,q}(\mathbb{R}^d)$ is bounded for p, q, β, d as described above (the same holds for the Non-centered fractional maximal function). I have been interested in the case p = 1.

In a joint work with my Ph.D. advisor Emanuel Carneiro [1], we established new bounds for the derivative of the Non-centered fractional maximal function, both in the continuous and in the discrete settings. More precisely we proved that if f is a function of bounded variation then $M_{\beta}f$ is absolutly continuous and $\|DM_{\beta}f\|_{L^{q}(\mathbb{R})} \leq C(\beta)\|Df\|_{L^{1}(\mathbb{R})}$. Very recently in [3] we extended this result to higher dimension for radial functions. The analogous results for the centered one are open questions.

Moreover, in dimension 1, for $0 \leq \beta < 1$ recently in [2] and [4] it was proved that the map $f \mapsto D\widetilde{M}_{\beta}f$ is continuous from $W^{1,1}(\mathbb{R})$ to $L^q(\mathbb{R})$, here $q = 1/(1-\beta)$. Something similar should be true for the centered one, and probably, also over the space of functions of bounded variation $(BV(\mathbb{R}))$.

References:

References

- E. Carneiro and J. Madrid, Derivative Bounds for Fractional Maximal Functions, Transactions of the American Mathematical Society 369, No. 6 (2017), 4063–4092.
- [2] E. Carneiro, J. Madrid and L. Pierce, Endpoint Sobolev and BV Continuity for Maximal Operators, Journal of Functional Analysis, 273, No. 10 (2017), 3262–3294
- [3] H. Luiro and J. Madrid, The Variation of the Fractional Maximal Function of a Radial Function, Accepted to appear in International Mathematics Research Notices (2017).
- [4] J. Madrid, Endpoint Sobolev and BV Continuity for Maximal Operators II, Preprint Submitted.

Questions:

Question 1: Do we have that if $f \in W^{1,1}(\mathbb{R})$ then $M_{\beta}f$ is absolutly continuous (or at least weakly differentiable) and $\|DM_{\beta}f\|_{L^q(\mathbb{R})} \leq C(\beta)\|Df\|_{L^1(\mathbb{R})}$?

Question 2: Is the map $f \mapsto DMf$ is continuous from $W^{1,1}(\mathbb{R})$ to $L^1(\mathbb{R})$?

Question 3: Is the map $f \mapsto \widetilde{M}f$ continuous from $BV(\mathbb{R})$ to $BV(\mathbb{R})$?

Question 4: Could we get similar results for maximal operators of convolution type?

Question 5: Could we get something more general on weighted spaces?