
Introduction to Kafka

Instructor: Ekpe Okorafor
1. Big Data Academy - Accenture

2. Computer Science - African University of Science &
Technology

Agenda

• Introduction - Messaging Basics

• Kafka – Architecture

• Kafka – Partitioning & Topics

• Summary

2

Agenda

• Introduction - Messaging Basics

• Kafka – Architecture

• Kafka – Partitioning & Topics

• Summary

3

Introduction

4

When used in the right way and for the right use case, Kafka has unique
attributes that make it a highly attractive option for data integration.

• Data Integration is the combination of technical and business processes
used to combine data from disparate sources into meaningful and
valuable information.

• A complete data integration solution encompasses discovery, cleansing,
monitoring, transforming and delivery of data from a variety of sources

• Messaging is a key data integration strategy employed in many
distributed environments such as the cloud.

• Messaging supports asynchronous operations, enabling you to decouple
a process that consumes a service from the process that implements the
service.

Data
Integration

Data Sources
(Producers)

Data Consumers
(Subscribers)

Messaging Architectures: What is
Messaging?
• Application-to-application communication

• Supports asynchronous operations.

• Message:
– A message is a self-contained package of data and network routing headers.

• Broker:
– Intermediary program that translates messages from the formal messaging

protocol of the publisher to the formal messaging protocol of the receiver.

5

Broker SubscriberProducer

Steps to Messaging

• Messaging connects multiple applications in an exchange of data.

• Messaging uses an encapsulated asynchronous approach to exchange
data through a network.

• A traditional messaging system has two models of abstraction:

• Queue – a message channel where a single message is received exactly by
one consumer in a point-to-point message-queue pattern. If there are no
consumers available, the message is retained until a consumer processes the
message.

• Topic - a message feed that implements the publish-subscribe pattern and
broadcasts messages to consumers that subscribe to that topic.

• A single message is transmitted in five steps:
• Create
• Send
• Deliver
• Receive
• Process

6

Messaging Basics

7

1. Create

Message Source

Message Storage

Sending Application Receiving Application

Channel2. Send

3. Deliver

4. Receive

5. Process

Message Destination

Message with Data

Data

Steps to Send a Message

Reference: Enterprise Integration Patterns - Gregor Hohpe and Bobby Woolf

Agenda

• Introduction - Messaging Basics

• Kafka – Architecture

• Kafka – Partitioning & Topics

• Summary

8

Messaging Architectures: Messaging
Models

9

1. Point to Point
2. Publish and Subscribe

Kafka is an example of publish-and-subscribe messaging model

Kafka Overview

10

• Kafka is a unique distributed publish-subscribe messaging system written
in the Scala language with multi-language support and runs on the Java
Virtual Machine (JVM).

• Kafka relies on another service named Zookeeper – a distributed
coordination system – to function.

• Kafka has high-throughput and is built to scale-out in a distributed model
on multiple servers.

• Kafka persists messages on disk and can be used for batched
consumption as well as real time applications.

Key Terminology

• Kafka maintains feeds of messages in categories
called topics.

• Processes that publish messages to a Kafka topic are
called producers.

• Processes that subscribe to topics and process the
feed of published messages are called consumers.

• Kafka is run as a cluster comprised of one or more
servers each of which is called a broker.

• Communication between all components is done via a
high performance simple binary API over TCP protocol

11

Kafka Architecture

12

Consumer

Consumer

Broker

Producer

Producer

Zookeeper

Broker

Broker

Broker

Kafka Cluster

Agenda

• Introduction - Messaging Basics

• Kafka – Architecture

• Kafka – Partitioning & Topics

• Summary

13

Understanding Kafka

14

• Kafka is based on the simple storage-abstraction concept called a log, an
append-only totally-ordered sequence of records ordered by time.

• Records are appended to the end of the record and reads proceed from
left to right in the log (or topic).

• Each entry is assigned a unique sequential log-entry number (an offset).

• The log entry number is a convenient property that correlates to the
notion of a “timestamp” entry but is decoupled from any clock due to the
distributed nature of Kafka.

Kafka Key Design Concepts

• A log is synonymous to a file or table where the records are
appended and sorted by the concept of time.

• Conceptually, the log is a natural data-structure for handling
data-flow between systems.

• Kafka is designed for centralizing an organization’s data into an
enterprise log (message bus) for real-time subscription by other
subscribers or application consumers.

15

Kafka Conceptual Design

• Each logical data source can be modeled as a log corresponding to a
topic or data feed in Kafka.

• Each subscribing consuming application should read as quickly as it can
from each topic, persist the record it reads into it’s own data store and
advances the offset to the next message entry to be read.

• Subscribers can be any type of data system or middleware system like a
cache, Hadoop, a streaming system like Spark or Storm, a search
system, a web services provisioning system, a data warehouse, etc.

• In Kafka, partitioning is a concept applied to the log/topic in other to
allow horizontal scaling.

16

Kafka Logical Design

• Each partition is a totally ordered log within a topic, and there is
no global ordering between partitions.

• Assignment of messages to specific partitions is controlled by
the publisher and may be assigned based on a unique
identification key or messages can be allowed to be randomly
assigned to partitions.

• Partitioning allows throughput to scale linearly with the Kafka
cluster size.

17

Kafka Topics

• Kafka topics should have a small number of consumer groups assigned
with each one representing a “logical subscriber”.

• Kafka topic consumption can be scaled by increasing the number of
consumer subscriber instances within the same group which will
automatically load-balance message consumption.

• Kafka has a notion of partitioning within a topic to provide the notion of
parallel consumption

• Partitions in a topic are assigned to the consumers within a consumer
group.

• There can be no more consumer instances within a consumer group
than partitions within a topic.

• If the total order in which messages are published is important in the
consumption, then a single partition for the topic is the solution which
will mean only one consumer process in the consumer group.

18

Kafka Topic Partitions

19

• A topic consists of partitions.

• Partition: ordered + immutable sequence of
messages that is continually appended to

Kafka Topic Partitions

20

• #partitions of a topic is configurable

• #partitions determines max consumer (group) parallelism

– Cf. parallelism of Storm’s KafkaSpout via builder.setSpout(,,N)

– Consumer group A, with 2 consumers, reads from a 4-partition
topic

– Consumer group B, with 4 consumers, reads from the same topic

Kafka Consumer Groups

21

• Kafka assigns the partitions in a topic to the consumer instances in a
consumer group to provide ordering guarantees and load balancing over
a pool of consumer process. Note that there can be no more consumer
instances per group than total partition count.

Kafka Environment Properties

• Ensure you have access to downloading libraries from the web.

• Have at least 15 GB of free hard disk space on your local machine.

• Have at least 8GB (preferably 16GB) of RAM on your local machine.

• Have a JRE of version 1.7 and above installed on the local machine.

• Download and install Eclipse Mars (or the current release) on your local
machine.

• Download and install VMware player for Windows on the local machine

• Download and install Git from the URL https://git-scm.com/

• Download and install Maven https://maven.apache.org/download.cgi

• Download the latest stable version of Gradle http://gradle.org/gradle-
download/

• Download Scala (use the Scala version compatible with the Kafka
download Scala version – in this document Scala version 2.10 is utilized)

• Make sure all the necessary command paths for Git, Maven, Gradle, etc
are in the Windows Environment and Path.

22

Kafka Environment Setup

• The Kafka environment can be set up on a local machine in
Windows, Linux or in a virtual environment on the local machine.

• Go to the Kafka Download URL:
https://kafka.apache.org/downloads.html

• The current Kafka download site has current release and previous
release versions of Kafka with there corresponding Scala version
binary downloads.

• The download releases have a suffix of *.tgz which means the
binaries are gzipd compiled as Linux tar balls.

• To get the Windows binaries, the source code needs to be
downloaded and compiled on Windows.

23

https://kafka.apache.org/downloads.html

Agenda

• Introduction - Messaging Basics

• Kafka – Architecture

• Kafka – Partitioning & Topics

• Summary

24

Summary

• When used in the right way and for the right use case,
Kafka has unique attributes that make it a highly
attractive option for data integration.

• Kafka is a unique distributed publish-subscribe
messaging system written in the Scala language with
multi-language support and runs on the Java Virtual
Machine (JVM).

25

26

