
Day 3 – Lab1:

Spark Streaming with Kafka Example

Introductions

In this example, we will write a Spark Streaming program that consumes messages from

Kafka.

We will reuse the whole setup from the previous lab, so this lab is best done as a

continuation of Kafka Streaming setup.

For Spark, we will use Scala. To build the program, you will need to download SBT, the

Scala Build Tool. This is an easy install! Follow the installation instructions from the

site http://www.scala-sbt.org/ and install it for your machine.

Spark Streaming Program

package com.scispike.kafka

import org.apache.kafka.common.serialization.{StringDeserializer, StringSerializer}
import org.apache.spark.SparkConf
import org.apache.spark.streaming.kafka010.ConsumerStrategies.Subscribe
import org.apache.spark.streaming.kafka010.LocationStrategies.PreferConsistent
import org.apache.spark.streaming.kafka010._
import org.apache.spark.streaming.{Duration, Seconds, StreamingContext}

import org.apache.log4j.{Level, Logger}

object SparkKafka {

 def main(args: Array[String]): Unit = {
 println("Spark Kafka Example - Word count from a Kafka stream")
 if (args.length < 3) {
 System.err.println(s"""
 |Usage: SparkKafka <brokers> <topics> <interval>
 | <brokers> is a list of one or more Kafka brokers:
broker1,broker2
 | <topics> is a list of one or more kafka topics to
consume from
 | <interval> interval duration (ms)
 |
 """.stripMargin)
 System.exit(1)

http://www.scala-sbt.org/

 }

 // Show only errors in console
 val rootLogger = Logger.getRootLogger()
 rootLogger.setLevel(Level.ERROR)

 // Consume command line parameters
 val Array(brokers, topics, interval) = args

 // Create Spark configuration
 val sparkConf = new SparkConf().setAppName("SparkKafka")

 // Create streaming context, with batch duration in ms
 val ssc = new StreamingContext(sparkConf, Duration(interval.toLong))
 ssc.checkpoint("./output")

 // Create a set of topics from a string
 val topicsSet = topics.split(",").toSet

 // Define Kafka parameters
 val kafkaParams = Map[String, Object](
 "bootstrap.servers" -> brokers,
 "key.deserializer" -> classOf[StringDeserializer],
 "value.deserializer" -> classOf[StringDeserializer],
 "group.id" -> "use_a_separate_group_id_for_each_stream",
 "auto.offset.reset" -> "latest",
 "enable.auto.commit" -> (false: java.lang.Boolean))

 // Create a Kafka stream
 val stream = KafkaUtils.createDirectStream[String, String](
 ssc, PreferConsistent, Subscribe[String, String](topicsSet,kafkaParams))

 // Get messages - lines of text from Kafka
 val lines = stream.map(consumerRecord => consumerRecord.value)

 // Split lines into words
 val words = lines.flatMap(_.split(" "))

 // Map every word to a tuple
 val wordMap = words.map(word => (word, 1))

 // Count occurrences of each word
 val wordCount = wordMap.reduceByKey(_ + _)

 //Print the word count
 wordCount.print()

 // Start stream processing
 ssc.start()
 ssc.awaitTermination()
 }

}

Building and Packaging the Spark Program

Go to the directory spark-kafka. You will see that it contains the file build.sbt. We will

use it to compile and build a jar file that we can deploy to Spark.

In that directory run the command in the terminal:

sbt assembly

The first time you run sbt, it may take a while, as SBT needs to download Scala in the

right version and all needed libraries.

The result is that the jar file is created in the directory target/scala-2.11/spark-

kafka.jar.

Deploying the Program to Dockerized Spark

We will move the file to the directory from where we will deploy to Spark:

mv target/scala-2.11/spark-kafka.jar ../docker/spark/

Go to the docker directory and run the deployment command.

If you don't have the docker cluster running already, you'll have to first run the docker-

compose up command.

Run the command to submit the jar to Spark. The directory app in the image is mapped

to directory spark on our machine, as set in the volumes parameter in the docker-

compose.yml file. We are also passing command line parameters for the broker, topic, and

interval:

docker-compose exec master spark-submit \
 --master spark://master:7077 \
 /app/spark-kafka.jar \
 kafka:9092 stream-input 2000

The program should be running and waiting for the input from the stream-input topic.

In terminal, you should see the output of Spark Streaming:

Time: 1497743366000 ms

Time: 1497743368000 ms

Soon, we will see some word counts!

In some instances, we have observed crashes of the Spark program on deployment. If

that happens, just re-run the previous command again. Sometimes, the dockerized

Spark does not start until we attempt to deploy to it. You can observe the console of the

docker compose and you will notice the logs for the start of the Spark master.

Running the Spark Streaming with Kafka

Run the producer as in the previous lab. Enter some text and observe the output.

In the producer terminal, run the producer and then enter a line of text:

$ docker-compose exec kafka /opt/kafka/bin/kafka-console-producer.sh --broker-list
kafka:9092 --topic stream-input
hello hello hi

In the Spark terminal, you will see the word counts for the interval:

Time: 1497746685000 ms

(hello,2)
(hi,1)

Done!

Congratulations - You've made it!

