

Climate Data Science Outlook and Trends

The CODATA-RDA Research Data Science Advanced Workshops - Climate Data Sciences Trieste 21 August 2018

Graziano Giuliani - ICTP ESP

The Mission

Climate Research

- Documenting the past, historical and paleo earth climates
- Observing actual system
 status
- Modeling future status
- Ecosystem, health and economic drivers and impacts

Climate Data Numbers

- By the end of 2017, the operational Sentinel-1, 2 and 3 satellites alone will continuously collect a volume of 20 Terabytes per day.
- The CMIP data archives have grown from the 50TB of the the CMIP3 project to the 2.5PB of the CMIP5 project. The same trend is expected for CMIP6 to reach ~100PB of disk storage space.

IPCC GCM Model

Acronyms

- The World Climate Research Program : WCRP
- Working Group on Climate Modeling : WGCM
- WGCM Infrastructure Panel : WIP
- The Program for Climate Model Diagnostics and Intercomparison : PCMDI
- Coupled Model Intercomparison Projects : CMIP

Requirements for a global data infrastructure in support of CMIP6 Geosci. Model Dev. Discuss. https://doi.org/10.5194/gmd-2018-52

WIP CMIP6 guidelines

- The global computational and data infrastructure needs to be formally examined as an integrated element.
- Focus shifting to Impact Studies
- Scientific reproducibility and durability and provenance of data
- Systematic and routine evaluation of Earth System Models (ESMs)
- Mechanisms to identify costs and benefits in developing new models, performing CMIP simulations, and disseminating the model output
- Experimental specifications as machine-readable experiment design on all of the controlled vocabularies
- Review the management of information about users to simplify communications with them

Climate Center Service Structure

IPCC Model data repositories

Earth System Grid Federation

- National Sites
- Impact Portals
- Climate Service Companies
 PAY SERVICES

Data Management

- Replication and Versioning
- Use of Persistent Identifiers Insert / Update Citation
- Data Reference Vocabularies
- Data Request Structure and Process
- Data Quality Assurance
- Data Citation and Long-term Archiving
- File Names and Global Attributes
- Licensing and Access Control
- Errata service

Stockhause, M and Lautenschlager, M 2017 CMIP6 Data Citation of Evolving Data. Data Science Journal, DOI: https://doi.org/10.5334/dsj-2017-030

Data Format

- Climate Model Output Rewriter CMOR3
 - Each file contains a single primary output variable (along with coordinate/grid variables, attributes and other metadata) from a single model and a single simulation
 - Variable number of time slices (samples) can be stored in a single file
 - Metadata written are defined MIP-specific tables of information
 - Unit of measure checking through UDUNITS library

Data Analysis Workflow

- Data Collection
- Data Pre-Processing
- Scientific work
- Result check

(STAGING) (ADAPTATION) (PROCESSING) (VERIFICATION)

Publication and peer review process

Timings

An Assessment of Data Transfer Performance for Large-Scale Climate Data Analysis and Recommendations for the Data Infrastructure for CMIP6 - Dart, Wehner, Prabhat

- STAGING 3 months
- ADAPTATION 3 weeks
- PROCESSING 2 days
- VERIFICATION 10 minutes

STAGING (Data Transfer) is the bottleneck for data analysis

Data Analytic Storage Systems

- Traditional :
 - Move data from Storage to Compute
 - Computation
 - Move results to Storage
- Emerging :
 - DASS
 - Move Analytics to storage/compute nodes
 - Results kept on storage/compute nodes
 - ESGF OGC WPS Interfaces
 - Climate analytics through Web
 Processing Services

Reinvent the wheel?

- A data cube (or datacube) is a multi-dimensional ("n-D") array of values. Typically, the term datacube is applied in contexts where these arrays are massively larger than the hosting computer's main memory; examples include multi-Terabyte/Petabyte data warehouses and time series of image data.
- Google Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial datasets with planetary-scale analysis capabilities and makes it available for scientists, researchers, and developers to detect changes, map trends, and quantify differences on the Earth's surface.

WIP remark

"In the future, datasets and software with provenance information will be first-class entities of scientific publication, alongside the traditional peer-reviewed article [...] Data analytics at large scale is increasingly moving toward machine learning and other directly data-driven methods of analysis, which will also be dependent on data with provenance tracking."

Hands-on Lab

Python tools for CMIP5 data processing and plotting

Open a terminal and type:

cd /scratch/\$USER

wget http://clima-dods.ictp.it/Workshops/CODATA_2018/codata_2018_climate_data.ipynb

