Part II

In one year, the LHC provides $\sim 10^{14} p p$ collisions

An observation of ~ 10 events could be a discovery of new physics.

Searching for a needlle in a haystack?

- typical needle: $5 \mathrm{~mm}^{3}$
- typical haystack: $50 \mathrm{~m}^{3}$
needle $:$ haystack $=1: 10^{10}$

Looking for new physics at the LHC is like looking for a needle in thousands of haystacks ... meaning probability!!

The Concept of Probability

Many processes in nature have uncertain outcomes.

- A random process is a process that can be reproduced, to some extent, within some given boundary and initial conditions, but whose outcome is uncertain.

F For example, quantum mechanics phenomena have intrinsic randomness.

- Probability is a measurement of how favored one of the possible outcomes of such a random process is compared with any of the other possible outcomes.

The Meaning of Probability: 2 approaches

- Frequentist probability is defined as the fraction of the number of occurrences of an event of interest over the total number of possible events in a repeatable experiment, in the limit of very large number of experiments.
- Bayesian probability measures someone's degree of belief that a statement, and it makes use of an extension of the Bayes theorem: the probability of an event A given the condition that the event B has occurred is given by:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)} .
$$

The conditional probability is equal to the area of the intersection divided by the area if B

A Word on Simulation

∇ What a (computer) simulation does:
\checkmark Applies mathematical methods to the analysis of complex, realworld problems

- Predicts what might happen depending on various actions/scenarios
∇ Use simulations when
Doing the actual experiments is not possible
The cost in money, time, or danger of the actual experiment is prohibitive (e.g. nuclear reactors)
- The system does not exist yet (e.g. an airplane)
∇ Various alternatives are examined (e.g. hurricane predictions)

An example for illustration

Correct dice
every number has probability 1/6

Manipulated dice

numbers $1 . .5$ probability $<1 / 6$ number 6 probability > 1/6

An example for illustration

Role the dice and record the number in a bar chart

Still nothing can be concluded

An example for illustration

For sure there is something wrong with the dice

An example for illustration

Evidence is rising ...

For sure there is something wrong with the dice

The more data you take the smaller your error gets (Gauss)

Monte Carlo Method

∇ A numerical simulation method which uses sequences of random numbers to solve complex problems
-MC assumes the system is described by
 probability density functions (PDF) which can be modeled with no need to write down equations

These PDF are sampled randomly, many simulations are performed and the result is the average over the number of observations

Practical example: estimating the value of π using the Monte Carlo method

Practical example: estimating the value of π using the Monte Carlo method

Q: How to estimate a value of π using the Monte Carlo method?

Practical example: estimating the value of π using the Monte Carlo method

Q: How to estimate a value of π using the Monte Carlo method?

A: Generate a large number of random points and see how many fall in the circle enclosed by the unit square.

Practical example: estimating the value of π using the Monte Carlo method

- A: Generate a large number of random points and see how many fall in the circle enclosed by the unit square

Build a circle of radius 0.5 , enclosed by a 1×1 square.
The area of the circle is: $\pi R^{2}=\pi / 4$
∇ The area of the square is 1.
∇ If we divide the area of the circle, by the area of the square we get: $\pi / 4$

Practical example: estimating the value of π using the Monte Carlo method

\checkmark Generate a large number of uniformly distributed random points and plot them on the graph. These points can be in any position within the square i.e. between $(0,0)$ and $(1,1)$.
\checkmark If they fall within the circle, they are coloured red, otherwise they are coloured blue.

Practical example: estimating the value of π using the Monte Carlo method

V We keep track of the total number of points, and the number of points that are inside the circle.
∇ If we divide the number of points within the circle, Ninner, by the total number of points, Ntotal, we should get a value that is an approximation of the ratio of the areas we calculated above, $\pi / 4$

$$
\pi \approx 4 \frac{N_{\text {inner }}}{N_{\text {total }}}
$$

\checkmark With a small number of points, the estimation is not very accurate, but with thousands of points, we get closer to the actual value

Practical example: estimating the value of π using the Monte Carlo method

∇ Play here:
https://academo.org/demos/estimating-pi-monte-carlo/

