
Why we will use microPython
Rapid prototyping with microPython devices

Marco Zennaro, ICTP
January 21, 2019

Why micropython?

python

1

python

2

python ecosystem

3

micropython

MicroPython is a lean and fast implementation of the Python 3
programming language that is optimised to run on a microcontroller.
MicroPython was successfully funded via a Kickstarter campaign and the
software is now available to the public under the MIT open source license.

It ensures that the memory size/microcontroller performance is optimised
and fit for purpose for the application it serves. Many sensor reading and
reporting applications do not require a PC based processor as this would
make the total application over priced and under-efficient.

Credit pycom.io 4

micropython options

5

pyboard

The MicroPython pyboard is a compact electronic circuit board that runs
MicroPython on the bare metal, giving you a low-level Python operating
system that can be used to control all kinds of electronic projects.

MicroPython is packed full of advanced features such as an interactive
prompt, arbitrary precision integers, closures, list comprehension,
generators, exception handling and more. Yet it is compact enough to fit
and run within just 256k of code space and 16k of RAM.

MicroPython aims to be as compatible with normal Python as possible to
allow you to transfer code with ease from the desktop to a
microcontroller or embedded system.

Credit micropython.org 6

pyboard

7

pyboard

8

pyboard

9

pyboard

10

pyboard

11

ESP8266: low cost

12

ESP8266: characteristics

• 802.11 b/g/n
• Built-in TCP / IP protocol stack
• Built-in PLL, voltage regulator and power management components
• 802.11b mode + 19.5dBm output power
• Built-in temperature sensor
• off leakage current is less than 10uA
• Built-in low-power 32-bit CPU: can double as an application

processor
• SDIO 2.0, SPI, UART
• standby power consumption of less than 1.0mW

13

BBC Micro:bit

14

BBC Micro:bit

The Micro Bit is an ARM-based embedded system designed by the BBC
for use in computer education in the UK.

The board has an ARM Cortex-M0 processor, accelerometer and
magnetometer sensors, Bluetooth and USB connectivity, a display
consisting of 25 LEDs, two programmable buttons, and can be powered
by either USB or an external battery pack. The device inputs and
outputs are through five ring connectors that are part of the 23-pin edge
connector.

15

Digi

16

Trinket

17

Feather 32u4 RFM95

18

Grand Central M4 Express

19

M5stack

20

pycom: WiPy

21

pycom: WiPy

• Espressif ESP32 chipset
• Dual processor + WiFi radio system on chip
• consuming 25uA
• 2 x UART, 2 x sPI, I2C, I2S, micro SD card
• Analog channels: 8×12 bit ADCs
• Hash/Encryption: SHA, MD5, DES, AES
• Bluetooth
• Memory, RAM: 512KB, External flash: 4MB
• Hardware floating point acceleration

22

pycom: LoPy4

23

pycom: LoPy4

• Espressif ESP32 chipset
• Quadruple network MicroPython enabled development board (LoRa,

Sigfox, WiFi, Bluetooth)
• RAM: 4MB (vs 512KB)
• External flash: 8MB (vs 4MB)

24

pycom: Expansion Board

25

pycom: PySense

26

pycom: PySense

• Ambient light sensor
• Barometric pressure sensor
• Humidity sensor
• 3 axis 12-bit accelerometer
• Temperature sensor
• USB port with serial access
• LiPo battery charger
• MicroSD card compatibility
• Ultra low power operation (1uA in deep sleep)

27

pycom: PyTrack

28

pycom: PyTrack

• GNSS + Glonass GPS
• 3 axis 12-bit accelerometer
• USB port with serial access
• LiPo battery charger
• MicroSD ard compatibility
• Ultra low power operation (1uA in deep sleep)

29

Our Lab equipment

• Pycom LoPy4
• PySense
• microUSB cable

30

Plan of the week

overall plan

31

plan for today

32

plan for the week

During the lab sessions we will cover:

1. Pycom workflow
2. Hello World for IoT: LED switching
3. Saving data to internal flash
4. Reading sensors using the PySense
5. Using LoRaWAN
6. Using MQTT

You will have simple code snippets and will develop more complex code
as exercise.

33

workflow: Atom

Please install Atom from

www.atom.io
34

www.atom.io

workflow: install the pymakr package

Preferences -> Settings -> Install -> search Pymakr

35

workflow: connect board via USB

Make sure the LED and the microUSB are on the same side!
36

workflow: connect!

37

workflow: REPL

38

REPL console

REPL stands for Read Print Eval Loop. Simply put, it takes user
inputs, evaluates them and returns the result to the user.

You have a complete python console!

Try to enter 2+2 and press Enter.

Now enter:

print(”Hi! I am a python shell!”)

39

executing code

There are three ways to execute code on a Pycom device:

1. Via the REPL shell. Useful for single commands and for testing.
2. Using the Run button. Code in the Atom editor will be executed,

but will not be stored in the device. If you reboot, the code will not
be executed again.

3. Synching the device with the Project folder in Atom. In this way,
the code is stored in the Pycom device and will be executed again if
you reboot the device.

40

workflow: Run

41

workflow: add Project folder

42

workflow: ONE Project folder

It is easier if you only have one Project folder. Make sure you
Remove any other Project folders and keep only the one you want
to use.

43

workflow: Project folder

The Project folder should contain all the files to be synched with the
device.

You should always have two files: boot.py (executed at boot time) and
main.py (containing the main code).

The folder can also include libraries and other python source code.

44

workflow: example of Project folder

45

workflow: upload Project

46

workflow: boot.py

The boot.py file should always start with following code, so we can run
our Python scripts over Serial or Telnet.

from machine import UART
import os
ua r t = UART(0 , 115200)
os . dupterm (ua r t)

47

workflow: summary

48

LED

LED

In this example, we will create and deploy the proverbial 1st app, “Hello,
world!” to a Pycom device.

The LoPy module has one LED (big, white LED on the same side as the
microUSB).

49

code: LED

Check the LED folder and sync the two files to your active project folder.

Exercises:

1) Try to send an SOS message using the LED. The SOS is
line-line-line-dot-dot-dot-line-line-line in morse code, where a line is three
times longer than a dot.

2) Try to change the color of the LED gradually (from yellow to red, for
example).

50

Writing data on Flash memory

Flash

In this example, we will learn how to:

1. access and operate the device file system;
2. create and write a file in the /flash folder;

51

Folder structure

Connect to a Lopy via the Atom console and import the basic operating
system module (os): import os.

Once imported:

to know you current working directory: os.getcwd() (most probably the
/flash folder);

to list folders and files in your current working directory: os.listdir();

to create a new folder/directory named ”log”: os.mkdir('log');

52

Writing and reading

In the simplest case, to create and write a new file:

os . l i s t d i r (’ / f l a s h ’)

c r e a t e /open , w r i t e , c l o s e a f i l e
f = open (’ l o g /my\ _ f i r s t \ _ f i l e . l o g ’ , ’w ’)
f . w r i t e (’ Te s t i ng ␣ w r i t e ␣ o p e r a t i o n s ␣ i n ␣a␣ f i l e . ’)
f . c l o s e ()

open , read , c l o s e an e x i s t i n g f i l e
f = open (’ l o g /my\ _ f i r s t \ _ f i l e . l o g ’ , ’ r ’)
f . r e a d a l l ()
f . c l o s e ()

53

workflow: download file from flash

54

workflow: download file from flash

55

exercise: flash

Write a code that creates a file named ”log.csv” in /flash/log/.

In this file you will:

write ”start”, write a string for ten times, write ”finish” and repeat this
for five times.

56

PySense

PySense high-level modules

In this lab, we will provide a series of examples:

- accelerometer in src/pysense/acceloremeter

- measuring ambient light in src/pysense/ambient-light

- measuring temperature and atmospheric pressure in
src/pysense/temp-bar

- measuring temperature and humidity in src/pysense/temp-hum

Pycom provides a library abstracting the implementation details of sensor
chips. This library is already included in labs source code under the lib
folder of each example.

57

Exercises

• Change the color of the LED based on accelerometer measurements
(green, orange, red if the values of acceleration are small, medium or
large)

• Find where is the temperature sensor and where is the light sensor
• Log the measurements of temperature every 10 seconds and the

measurements of humidity every 30 seconds into the /flash/log
folder (while LED blinking green)

58

ICTP-IAEA Grove shield

Grove sensors

www.seeedstudio.com/category/Sensor-for-Grove-c-24.html

59

www.seeedstudio.com/category/Sensor-for-Grove-c-24.html

Grove sensors

60

ICTP-IAEA Grove shield

61

ICTP-IAEA Grove shield

62

ICTP-IAEA Grove shield

J4: I2C
J2: I2C
J1: radiation sensor
J3: I2C
J5: analog
J6: analog
J7: digital
J8: digital

63

ICTP-IAEA Grove shield

J4: Sda on Pin11, Scl on Pin12
J2: Sda on Pin11, Scl on Pin12
J1: Pin17
J3: Sda on Pin11, Scl on Pin12
J5: P16 on Pin18
J6: P15 on Pin17
J7: P12 on Pin14
J8: P11 on Pin13

64

ICTP-IAEA Grove shield

65

Grove - OLED Display 0.96”: I2C sensor

https://www.seeedstudio.com/Grove-OLED-Display-0.96%
26quot%3B-p-781.html

66

https://www.seeedstudio.com/Grove-OLED-Display-0.96%26quot%3B-p-781.html
https://www.seeedstudio.com/Grove-OLED-Display-0.96%26quot%3B-p-781.html

Grove - Sunlight Sensor: I2C sensor

https:
//www.seeedstudio.com/Grove-Sunlight-Sensor-p-2530.html

67

https://www.seeedstudio.com/Grove-Sunlight-Sensor-p-2530.html
https://www.seeedstudio.com/Grove-Sunlight-Sensor-p-2530.html

Grove - Moisture Sensor: Analog sensor

https:
//www.seeedstudio.com/Grove-Moisture-Sensor-p-955.html

68

https://www.seeedstudio.com/Grove-Moisture-Sensor-p-955.html
https://www.seeedstudio.com/Grove-Moisture-Sensor-p-955.html

Grove - T and H Sensor DHT11: Digital sensor

https://www.seeedstudio.com/Grove-Temperature-%26amp%
3B-Humidity-Sensor-%EF%BC%88DHT11%EF%BC%89-p-745.html

69

https://www.seeedstudio.com/Grove-Temperature-%26amp%3B-Humidity-Sensor-%EF%BC%88DHT11%EF%BC%89-p-745.html
https://www.seeedstudio.com/Grove-Temperature-%26amp%3B-Humidity-Sensor-%EF%BC%88DHT11%EF%BC%89-p-745.html

Grove Buzzer: Digital Sensor

https://www.seeedstudio.com/Grove-Buzzer-p-768.html

70

https://www.seeedstudio.com/Grove-Buzzer-p-768.html

Grove Button: Digital sensor

https://www.seeedstudio.com/Grove-Button-p-766.html

71

https://www.seeedstudio.com/Grove-Button-p-766.html

Exercises

• Check all the examples (in /grove_board)
• Show temperature and humidity on the display for 5 seconds, then

light for 5 seconds, then temperature and humidity again, and so on.
• Design a sensor node for agriculture. Measure temperature,

humidity, light and soil moisture. Save the data and time in the
internal flash memory. Test your device outdoors!

72

	Why micropython?
	Plan of the week
	LED
	Writing data on Flash memory
	PySense
	ICTP-IAEA Grove shield

