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Universitat Politècnica de València

¡ The Universitat Politècnica de València (UPV) is a
Spanish public educational institution founded in
1968.

¡ Its academic community comprises 36.823 students,
almost 2.661 lecturers and researchers, and 1.422
administration and services professionals.

¡ The Vera Campus covers around 840.000 m2 and is
almost 2 km long. It is a pedestrian campus with over
123.000 m2 of green areas.

¡ UPV is composed of 10 schools, 3 faculties and 2
higher polytechnic schools.
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From “byte streams” to “messages”

¡The “old” vision of data 
communication was based 
on reliable byte 
streams, i.e., TCP

¡Nowadays messages 
interchange is becoming 
more common
£E.g., Twitter, Whatsapp, 

Instagram, Snapchat, 
Facebook,...

¡Actually is not that new…
£emails: SMTP+MIME, 
£FTP, 
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Ways to interchange “messages”
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Request/response approach 

¡ REST: Representational State Transfer
¡ Widely used; based on HTTP
¡ Lighter version: CoAP (Constrained Application Protocol)
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Pub/sub approach 

¡ Publish/Subscriber
o aka: producer/consumer 

¡ Various protocols:
o MQTT, AMQP, XMPP (was Jabber)

¡ Growing technique 
o E.g., https://cloud.google.com/iot/docs/how-tos/mqtt-bridge
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Pub/sub approach 

¡ Pub/Sub separate a client, who is sending a message about a 
specific topic, called publisher, from another client (or more 
clients), who is receiving the message, called subscriber. 

¡ There is a third component, called broker, which is known by 
both the publisher and subscriber, which filters all incoming 
messages and distributes them accordingly.
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An example
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Source: https://zoetrope.io/tech-blog/brief-practical-introduction-mqtt-protocol-and-its-application-iot

https://zoetrope.io/tech-blog/brief-practical-introduction-mqtt-protocol-and-its-application-iot
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Intro to MQTT

¡ Fundamental concepts
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Message  Queuing Telemetry Transport

¡ A lightweight publish-subscribe protocol that can run on 
embedded devices and mobile platforms è http://mqtt.org/
o Low power usage. 
o Binary compressed headers
o Maximum message size of 256MB

• not really designed for sending large amounts of data
• better at a high volume of low size messages. 

¡ Documentation sources:
o The MQTT community wiki:

• https://github.com/mqtt/mqtt.github.io/wiki
o A very good tutorial: 

• http://www.hivemq.com/mqtt-essentials/
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Some details about versions

¡ MQTT 3.1.1 is the current version of the protocol. 
o Standard document here:

• http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
o October 29th 2014: MQTT was officially  approved as OASIS Standard.

• https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt

¡ MQTT v5.0 is the successor of MQTT 3.1.1
o Current status: Committee Specification 02 (15 May 2018)

• http://docs.oasis-open.org/mqtt/mqtt/v5.0/cs02/mqtt-v5.0-cs02.html
o Not backward compatible; too many new things are introduced so 

existing implementations have to be revisited, for example:
• Enhancements for scalability and large scale systems in respect to setups 

with 1000s and millions of devices.
• Improved error reporting (Reason Code & Reason String)
• Performance improvements and improved support for small clients

o https://www.youtube.com/watch?time_continue=3&v=YIpesv_bJgU
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MQTT works on top of…

¡ mainly of TCP
o There is also the closely related MQTT for Sensor Networks (MQTT-SN) 

where TCP is replaced  by UDP à TCP stack is too complex for WSN

¡ websockets can be used, too!
o Websockets allows you to receive MQTT data directly into a web browser.

¡ Both, TCP & websockets can work on top of  “Transport Layer 
Security (TLS)” (and its predecessor, Secure Sockets Layer (SSL))
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Publish/subscribe interactions sequence
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Publisher SubscriberBROKER

connect

connect ACK

connect

connect ACK

subscribe (topic)

subscribe ACK

publish (topic, data)

publish (topic, data)
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Topics

¡ MQTT Topics are structured in a hierarchy similar to folders and files in a file 
system using the forward slash ( / ) as a delimiter.

¡ Allow to create a user friendly and self descriptive naming structures

¡ Topic names are:
o Case sensitive
o use UTF-8 strings.
o Must consist of at least one character to be valid.

¡ Except for the $SYS topic there is no default or standard topic structure.
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Topics wildcards

¡ Topic subscriptions can have wildcards. These enable nodes to 
subscribe to groups of topics that don’t exist yet, allowing greater 
flexibility in the network’s messaging structure.
o ‘+’ matches anything at a given tree level
o ‘#’ matches a whole sub-tree

¡ Examples: 
o Subscribing to topic house/# covers:

ü house/room1/main-light
ü house/room1/alarm
ü house/garage/main-light
ü house/main-door

o Subscribing to topic house/+/main-light covers: 
ü house/room1/main-light
ü house/room2/main-light
ü house/garage/main-light

o but doesn’t cover
ü house/room1/side-light
ü house/room2/side-light
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Quality of Service (QoS)

¡ Messages are published with a Quality of Service (QoS) level, which specifies 
delivery requirements. 

¡ A QoS 0 (“at most once”) message is fire-and-forget. 
o For example, a notification from a doorbell may only matter when 

immediately delivered. 
¡ With QoS 1 (“at least once”), the broker stores messages on disk and retries 

until clients have acknowledged their delivery. 
o (Possibly with duplicates.) It’s usually worth ensuring error messages are 

delivered, even with a delay. 
¡ QoS 2 (“exactly once”) messages have a second acknowledgement round-

trip, to ensure that non-idempotent messages can be delivered exactly 
once.
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Retained Messages!!!

¡ A retained message is a normal MQTT message with the 
retained flag set to true. The broker will store the last retained 
message and the corresponding QoS for that topic 
o Each client that subscribes to a topic pattern, which matches the topic of 

the retained message, will receive the message immediately after 
subscribing. 

o For each topic only one retained message will be stored by the broker.

¡ Retained messages can help newly subscribed clients to get a 
status update immediately after subscribing to a topic and 
don’t have to wait until a publishing clients send the next 
update.
o In other words a retained message on a topic is the last known good 

value, because it doesn’t have to be the last value, but it certainly is the 
last message with the retained flag set to true.
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Intro to MQTT

¡ Brokers and clients
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BROKER

Creating a broker
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Available MQTT brokers

¡ The most widely used are:
o http://mosquitto.org/

• man page: https://mosquitto.org/man/mosquitto-8.html

o http://www.hivemq.com/
• The standard trial version only supports 25 connections.

¡ And also:
o https://www.rabbitmq.com/mqtt.html
o http://activemq.apache.org/mqtt.html

¡ A quite complete list can be found here:
o https://github.com/mqtt/mqtt.github.io/wiki/servers
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Installing Mosquitto on a Raspberry Pi

¡ It takes only a few seconds to install a Mosquitto broker on a 
Raspberry. You need to execute the following steps:
sudo apt-get update
sudo apt-get install mosquitto mosquitto-clients

¡ Installation guidelines with websockets
https://gist.github.com/smoofit/dafa493aec8d41ea057370dbfde3f3fc

¡ Managing the broker:
o To start and stop its execution use:

sudo /etc/init.d/mosquitto start/stop

o Verbose mode:
sudo mosquitto –v

o To check if the broker is running you can use the command: 
sudo netstat -tanlp | grep 1883

• note: "-tanlp" stands for: tcp, all, numeric, listening, program
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Cloud based MQTT brokers: CloudMQTT
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Cloud based brokers: flespi
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Cloud based brokers: flespi
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Open brokers (“Sandboxes”)

¡ TCP based:
o https://iot.eclipse.org/getting-started/#sandboxes

• Hostname: iot.eclipse.org
o http://test.mosquitto.org/

• Hostname: test.mosquitto.org
o https://www.hivemq.com/mqtt-demo/

• Hostname: broker.hivemq.com
• http://www.mqtt-dashboard.com/

o Ports: 
• standard: 1883
• encrypted: 8883 (TLS v1.2, v1.1 or v1.0 with x509 certificates)

¡ Websockets based:
o broker.mqttdashboard.com port: 8000
o test.mosquitto.org port: 8080
o broker.hivemq.com port: 8000

¡ https://github.com/mqtt/mqtt.github.io/wiki/public_brokers
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BROKER

Creating clients

26
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Clients for testing

¡ The Mosquitto broker comes with a couple of useful commands
to quickly publish and subscribe to some topic. 

¡ Their basic syntax is the following. 
o mosquitto_sub -h HOSTNAME -t TOPIC
o mosquitto_pub -h HOSTNAME -t TOPIC -m MSG

¡ More information can be found:
o https://mosquitto.org/man/mosquitto_sub-1.html
o https://mosquitto.org/man/mosquitto_pub-1.html
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MQTT clients: iOS

28
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MQTT clients: Android
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MQTT websocket clients
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Intro to MQTT

¡ Time for some exercise: Lab 0
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Intro to MQTT

¡ More time for some demo/exercise: Lab 0.1
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Intro to MQTT

¡ Clients in Python
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MQTT clients: Python vs Micropython

¡ The MQTT available versions for Python and MicroPython are 
slightly different.

¡ MicroPython is intended for constrained environments, in 
particular, microcontrollers, which have orders of magnitude 
less performance and memory than "desktop" systems on 
which Python3

¡ Basically remember that, when using the LoPy you have to use 
the MicroPython version of MQTT

¡ In the following we will see information about both cases.
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Eclipse Paho Python

¡ Eclipse Paho Python (originally the mosquitto Python client)
o http://www.eclipse.org/paho/

¡ Documentation: https://pypi.org/project/paho-mqtt/
o or: http://www.eclipse.org/paho/clients/python/docs/

¡ Source: https://github.com/eclipse/paho.mqtt.python
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Paho MQTT Python client: general usage flow

The general usage flow is as follows:
¡ Create a client instance
¡ Connect to a broker using one of the connect*() functions
¡ Call one of the loop*() functions to maintain network traffic

flow with the broker
¡ Use subscribe() to subscribe to a topic and receive messages
¡ Use publish() to publish messages to the broker
¡ Use disconnect() to disconnect from the broker
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# File: sisub.py

import paho.mqtt.client as mqtt

THE_BROKER = "iot.eclipse.org"
THE_TOPIC = "$SYS/#"
CLIENT_ID = ""

# The callback for when the client receives a CONNACK response from the server.
def on_connect(client, userdata, flags, rc):

print("Connected to ", client._host, "port: ", client._port)
print("Flags: ", flags, "returned code: ", rc)
client.subscribe(THE_TOPIC, qos=0)

# The callback for when a message is received from the server.
def on_message(client, userdata, msg):

print("sisub: msg received with topic: {} and payload: {}".format(msg.topic, str(msg.payload)))

client = mqtt.Client(client_id=CLIENT_ID, 
clean_session=True, 
userdata=None, 
protocol=mqtt.MQTTv311, 
transport="tcp")

client.on_connect = on_connect
client.on_message = on_message

client.username_pw_set(None, password=None)
client.connect(THE_BROKER, port=1883, keepalive=60)

# Blocking call that processes network traffic, dispatches callbacks and handles reconnecting.
client.loop_forever()

Example 1: a simple subscriber

37

More on this later
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Connected to  iot.eclipse.org port:  1883
Flags:  {'session present': 0} returned code:  0
sisub: msg received with topic: $SYS/broker/version and payload: b'mosquitto version 1.4.15'
sisub: msg received with topic: $SYS/broker/timestamp and payload: b'2018-04-11 '
sisub: msg received with topic: $SYS/broker/clients/total and payload: b'162523'
sisub: msg received with topic: $SYS/broker/clients/active and payload: b'4103'
sisub: msg received with topic: $SYS/broker/clients/inactive and payload: b'158420'
sisub: msg received with topic: $SYS/broker/clients/maximum and payload: b'162524'
sisub: msg received with topic: $SYS/broker/clients/disconnected and payload: b'158420'
sisub: msg received with topic: $SYS/broker/clients/connected and payload: b'4103'
sisub: msg received with topic: $SYS/broker/clients/expired and payload: b'0'
sisub: msg received with topic: $SYS/broker/messages/received and payload: b'1171291305'
sisub: msg received with topic: $SYS/broker/messages/sent and payload: b'6271921352'
sisub: msg received with topic: $SYS/broker/messages/stored and payload: b'1380714’ …

…

Example 1: output
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Paho MQTT Python client: connect

¡ connect(host, port=1883, keepalive=60, bind_address=””)

¡ The broker acknowledgement will generate a callback
(on_connect).

¡ Return Codes:
o 0: Connection successful

o 1: Connection refused – incorrect protocol version

o 2: Connection refused – invalid client identifier

o 3: Connection refused – server unavailable
o 4: Connection refused – bad username or password

o 5: Connection refused – not authorised

o 6-255: Currently unused.
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Paho MQTT Python client: pub/sub

subscribe(topic, qos=0) 
o e.g., subscribe("my/topic", 2)
o E.g., subscribe([("my/topic", 0), ("another/topic", 2)])

o on_message(client, userdata, message) Called when a message has been
received on a topic that the client subscribes to.

publish(topic, payload=None, qos=0, retain=False)
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Paho MQTT Python client: Network loop

41

What are network loops for?
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Paho MQTT Python client: Network loop

loop_forever() 
¡ This is a blocking form of the network loop and will not return until 

the client calls disconnect(). It automatically handles reconnecting.

loop_start() / loop_stop() 

¡ These functions implement a threaded interface to the network loop. 
o Calling loop_start() once, before or after connect(), runs a thread in the 

background to call loop() automatically. This frees up the main thread for other 
work that may be blocking. 

o Call loop_stop() to stop the background thread. 

loop(timeout=1.0) 

¡ Call regularly to process network events. 
o This call waits in select() until the network socket is available for reading or 

writing, if appropriate, then handles the incoming/outgoing data. 
o This function blocks for up to timeout seconds.
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import sys
import time

import paho.mqtt.client as mqtt

THE_BROKER = "test.mosquitto.org"
THE_TOPIC = "$SYS/broker/load/bytes/#"

def on_connect(mqttc, obj, flags, rc):
print("Connected to ", mqttc._host, "port: ", mqttc._port)
mqttc.subscribe(THE_TOPIC, 0)

def on_message(mqttc, obj, msg):
global msg_counter
print(msg.topic+" "+str(msg.qos)+" "+str(msg.payload))
msg_counter+=1

def on_subscribe(mqttc, obj, mid, granted_qos):
print("Subscribed: ", mid, "granted QoS: ", granted_qos)

mqttc = mqtt.Client()
mqttc.on_message = on_message
mqttc.on_connect = on_connect
mqttc.on_subscribe = on_subscribe

mqttc.connect(THE_BROKER, keepalive=60)

msg_counter = 0
mqttc.loop_start()
while msg_counter < 10:

time.sleep(0.1)
mqttc.loop_stop()
print msg_counter

Example 2: subscriber with loop_start/loop_stop
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Example 3: very basic periodic producer

44

import random
import time

import paho.mqtt.client as mqtt

THE_BROKER = "test.mosquitto.org"
THE_TOPIC = "PMtest/rndvalue"
CLIENT_ID = ""

# The callback for when the client receives a CONNACK response 
from the server.
def on_connect(client, userdata, flags, rc):

print("Connected to ", client._host, "port: ", client._port)
print("Flags: ", flags, "returned code: ", rc)

# The callback for when a message is published.
def on_publish(client, userdata, mid):

print("sipub: msg published (mid={})".format(mid))

client = mqtt.Client(client_id=CLIENT_ID, 
clean_session=True, 

userdata=None, 
protocol=mqtt.MQTTv311, 

transport="tcp")

client.on_connect = on_connect

client.on_publish = on_publish

client.username_pw_set(None, password=None)
client.connect(THE_BROKER, port=1883, keepalive=60)

client.loop_start()

while True:

msg_to_be_sent = random.randint(0, 100)

client.publish(THE_TOPIC, 
payload=msg_to_be_sent, 

qos=0, 
retain=False)

time.sleep(5)

client.loop_stop()
Generates a new data every 5 secs
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Example 3: output

45

Output obtained with a 
modified version of Example1.
Which parts of that code 
had to be modified?

Python 3.6.1 (default, Dec 2015, 13:05:11)
[GCC 4.8.2] on linux
sipub: msg published (mid=1)
Connected to  test.mosquitto.org port:  1883
Flags:  {'session present': 0} returned code:  0
sipub: msg published (mid=2)
sipub: msg published (mid=3)
sipub: msg published (mid=4)
sipub: msg published (mid=5)
sipub: msg published (mid=6)
sipub: msg published (mid=7)

Python 3.6.1 (default, Dec 2015, 13:05:11)
[GCC 4.8.2] on linux
Connected to  test.mosquitto.org port:  1883
Flags:  {'session present': 0} returned code:  0
sisub: msg received with topic: PMtest/rndvalue and payload: b'11'
sisub: msg received with topic: PMtest/rndvalue and payload: b'14'
sisub: msg received with topic: PMtest/rndvalue and payload: b'31'
sisub: msg received with topic: PMtest/rndvalue and payload: b'27'
sisub: msg received with topic: PMtest/rndvalue and payload: b'60'
sisub: msg received with topic: PMtest/rndvalue and payload: b'70'
sisub: msg received with topic: PMtest/rndvalue and payload: b'60'
sisub: msg received with topic: PMtest/rndvalue and payload: b'66'
sisub: msg received with topic: PMtest/rndvalue and payload: b'45'
sisub: msg received with topic: PMtest/rndvalue and payload: b'56'
sisub: msg received with topic: PMtest/rndvalue and payload: b'37’
…

Producer output
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Example 4: Pub/Sub with JSON

46

…

mqttc.loop_start()

while True:

# Getting the data

the_time = time.strftime("%H:%M:%S")
the_value = random.randint(1,100)
the_msg={'Sensor': 1, 'C_F': 'C', 

'Value': the_value, 'Time': the_time}

the_msg_str = json.dumps(the_msg)

mqttc.publish(THE_TOPIC, the_msg_str)

time.sleep(5)

mqttc.loop_stop()

…

# The callback for when a PUBLISH message is received 
from the server.
def on_message(client, userdata, msg):

print(msg.topic+" "+str(msg.payload))

themsg = json.loads(str(msg.payload))

print("Sensor "+str(themsg['Sensor'])+" got value "+
str(themsg['Value'])+" "+themsg['C_F']+
" at time "+str(themsg['Time']))

…

Producer
Consumer

paho-code:pietro$ python example4-cons.py
Connected with result code 0
PMtest/jsonvalue {"Time": "12:19:30", "Sensor": 1, "Value": 33, "C_F": "C"}
Sensor 1 got value 33 C at time 12:19:30
PMtest/jsonvalue {"Time": "12:19:35", "Sensor": 1, "Value": 11, "C_F": "C"}
Sensor 1 got value 11 C at time 12:19:35
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MQTT with MicroPython

¡ Import the library
from mqtt import MQTTClient

¡ Creating a client:
MQTTclient(client_id, server, port=0, user=None, password=None, 

keepalive=0,  ssl=False, ssl_params={})
e.g., client = MQTTClient("dev_id", "10.1.1.101", 1883)

¡ The various calls:
• connect(clean_session=True):
• publish(topic, msg, retain=False, qos=0):
• subscribe(topic, qos=0):
• set_callback(self, f):

¡ wait_msg():
o Wait for a single incoming MQTT message and process it. Subscribed messages are 

delivered to a callback previously set by .set_callback() method. Other (internal) MQTT 
messages processed internally.

¡ check_msg():
o Checks whether a pending message from server is available. If not, returns 

immediately with None. Otherwise, does the same processing as wait_msg.
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MicroPython: a simple publisher

48

# file: mp_sipub.py

from mqtt import MQTTClient
import pycom
import sys

import time

import ufun

wifi_ssid = 'THE_NAME_OF_THE_AP'

wifi_passwd = ''

THE_BROKER = "iot.eclipse.org"
THE_TOPIC = "test/SRM2018"
CLIENT_ID = ""

def settimeout(duration):

pass

def get_data_from_sensor(sensor_id="RAND"):

if sensor_id == "RAND":
return ufun.random_in_range()

### if __name__ == "__main__":

ufun.connect_to_wifi(wifi_ssid, wifi_passwd)

client = MQTTClient(CLIENT_ID, THE_BROKER, 1883)

print ("Connecting to broker: " + THE_BROKER)

try:
client.connect()

except OSError:
print ("Cannot connect to broker: " + THE_BROKER)
sys.exit()  

print ("Connected to broker: " + THE_BROKER)

print('Sending messages...')
while True:

# creating the data

the_data = get_data_from_sensor()
# publishing the data

client.publish(THE_TOPIC, str(the_data))
print("Published message with value: {}".format(the_data))
time.sleep(1)
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MicroPython: a simple subscriber
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# file: mp_sisub.py

from mqtt import MQTTClient
import pycom
import sys

import time

import ufun

wifi_ssid = 'THE_NAME_OF_THE_AP'

wifi_passwd = ''

THE_BROKER = "iot.eclipse.org"
THE_TOPIC = "test/SRM2018"
CLIENT_ID = ""

def settimeout(duration):

pass

def on_message(topic, msg):

print("Received msg: ", str(msg), 
"with topic: ", str(topic))

### if __name__ == "__main__":

ufun.connect_to_wifi(wifi_ssid, wifi_passwd)

client = MQTTClient(CLIENT_ID, THE_BROKER, 1883)
client.set_callback(on_message)

print ("Connecting to broker: " + THE_BROKER)
try:

client.connect()
except OSError:

print ("Cannot connect to broker: " + THE_BROKER) 

sys.exit()
print ("Connected to broker: " + THE_BROKER)

client.subscribe(THE_TOPIC)

print('Waiting messages...')
while 1:

client.check_msg()
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Intro to MQTT

¡ Some final details
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MQTT Keep alive

¡ The keep alive functionality assures that the connection is still 
open and both broker and client are connected to one another.

¡ The client specifies a time interval in seconds and 
communicates it to the broker during the establishment of the 
connection. 
o The interval is the longest possible period of time which broker and client 

can endure without sending a message.
o If the broker doesn’t receive a PINGREQ or any other packet from a 

particular client, it will close the connection and send out the last will and 
testament message (if the client had specified one).

¡ Good to Know
o The MQTT client is responsible of setting the right keep alive value. 
o The maximum keep alive is 18h 12min 15 sec.
o If the keep alive interval is set to 0, the keep alive mechanism is 

deactivated.
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http://www.hivemq.com/mqtt-essentials-part-9-last-will-and-testament/
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“Will” message

¡ When clients connect, they can specify an optional “will” 
message, to be delivered if they are unexpectedly disconnected 
from the network. 
o (In the absence of other activity, a 2-byte ping message is sent to clients 

at a configurable interval.) 

¡ This “last will and testament” can be used to notify other parts 
of the system that a node has gone down.
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Persistent session

¡ A persistent session saves all information relevant for the client on the 
broker. The session is identified by the clientId provided by the client 
on connection establishment

¡ So what will be stored in the session?
o Existence of a session, even if there are no subscriptions

o All subscriptions

o All messages in a Quality of Service (QoS) 1 or 2 flow, which are not confirmed by the 
client

o All new QoS 1 or 2 messages, which the client missed while it was offline

o All received QoS 2 messages, which are not yet confirmed to the client

o That means even if the client is offline all the above will be stored by the broker and 
are available right after the client reconnects.

¡ Persistent session on the client side
o Similar to the broker, each MQTT client must store a persistent session too. So when 

a client requests the server to hold session data, it also has the responsibility to hold 
some information by itself:

o All messages in a QoS 1 or 2 flow, which are not confirmed by the broker

o All received QoS 2 messages, which are not yet confirmed to the broker
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Topics best practices

¡ First of all:
o Don’t use a leading forward slash
o Don’t use spaces in a topic
o Use only ASCII characters, avoid non printable characters

¡ Then, try to..
o Keep the topic short and concise
o Use specific topics, instead of general ones
o Don’t forget extensibility

¡ Finally, be careful and don’t subscribe to #
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A few words on security

¡ MQTT has the option for Transport Layer Security 
(TLS) encryption.

¡ MQTT also provides username/password 
authentication with the broker. 
o Note that the password is transmitted in clear text. Thus, be sure to use 

TLS encryption if you are using authentication.
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A few words on security
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Smart homes can be easily hacked via
unsecured MQTT servers

https://www.helpnetsecurity.com/2018/08/20/unsecured-mqtt-servers/
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MQTT vs REST

¡ Can they really be compared?!?!?
o MQTT was created basically as a lightweight messaging protocol for 

lightweight communication between devices and computer systems 
o REST stands on the shoulders of the almighty HTTP

¡ So it’s better to understand their weak and strong points and 
build a system taking the best of both worlds… if required
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REST advantages

¡ It is always independent of the type of platform or languages
o The only thing is that it is indispensable that the responses to the requests 

should always take place in the language used for the information 
exchange, normally XML or JSON.

¡ It is stateless è This allows for scalability, by adding additional 
server nodes behind a load balancer
o No state can be stored on servers: “keep the application state on the 

client.”
o All messages exchanged between client and server have all the context 

needed to know what to do with the message.
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REST disadvantages

¡ Today’s real world embedded devices for IoT usually lacks the 
ability to handle high-level protocols like HTTP and they may 
be served better by lightweight binary protocols. 

¡ It is PULL based. This poses a problem when services depend 
on being up to date with data they don’t own and manage. 
o Being up to date requires polling, which quickly add up in a system with 

enough interconnected services.

o Pull style can produce heavy unnecessary workloads and bandwidth 
consumption due to for example a request/response polling-based 
monitoring & control systems

¡ It is based on one-to-one interactions
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Advantages of MQTT

¡ Push based: no need to continuously look for updates

¡ It has built-in function useful for reliable behavior in an 
unreliable or intermittently connected wireless environments. 

1. “last will & testament” so all apps know immediately if a client 
disconnects ungracefully, 

2. “retained message” so any user re-connecting immediately gets the very 
latest information, etc.

¡ Useful for one-to-many, many-to-many applications

¡ Small memory footprint protocol, with reduced use of battery
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Energy usage: some number
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cost of ‘maintaining’ that connection (in % Battery / Hour):amount of power taken to establish the initial connection to the server:

3G – 240s Keep Alive – % Battery Used Creating and Maintaining a Connection

you’d save ~4.1% battery per day just
by using MQTT over HTTPS to 
maintain an open stable connection.

http://stephendnicholas.com/posts/power-profiling-mqtt-vs-https
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MQTT disadvantages

¡ If the broker fails…

¡ Does not define a standard client API, so application developers 
have to select the best fit.

¡ Does not include many features that are common in Enterprise 
Messaging Systems like:
o expiration, timestamp, priority, custom message headers, …

¡ Does not have a point-to-point (aka queues) messaging pattern
o Point to Point or One to One means that there can be more than one 

consumer listening on a queue but only one of them will be get the 
message

¡ Maximum message size 256MB 
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