Intro to MQTT

Pietro Manzoni

Universitat Politecnica de Valencia (UPV)
Valencia - SPAIN

pmanzoni@disca.upv.es D

http://bit.ly/ictp2019-mgtt

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

http://bit.ly/ictp2019-mqtt

2 UNIVERSITAT . . cin . ..
POLITECNICA Universitat Politecnica de Valencia
DE VALENCIA

O The Universitat Politécnica de Valéncia (UPV) is a
Spanish public educational institution founded in
1968.

O Its academic community comprises 36.823 students,

almost 2.661 lecturers and researchers, and 1.422
administration and services professionals.

O The Vera Campus covers around 840.000 m? and is
almost 2 km long. It is a pedestrian campus with over
123.000 m? of green areas.

O UPV is composed of 10 schools, 3 faculties and 2
higher polytechnic schools.

| .

!
g . | _
N R Tax
-

: ~ ‘ .
- "—--s.- P-\ ‘-—f
\‘ - — —— R 4*

e “<- <

o

. B

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

) From “byte streams” to "messages”

| —
GRC

O The “old” vision of data

Application Protocol Application Protocol
communication was based T g
onreliable byte S} Bt e 1
streams, i.e., TCP ; et " sppicsion |

O Nowadays messages Transmisson Corrl " pretacol (6P
interchange is becoming _— o f
more common o segment Fg ot [LSl

v |

o E . g > TWltte rl Wh atsa p pl Internet Protocol (IP) Internet Protocol (IP)

Instagram, Snapchat, l e
Facebook,... oLl || e o Detagram
O Actually is not that new...
g g9
O emails: SMTP+MIME,

%/
o FT P’ Client In Transit

IP Datagram

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

(%) Push Pull Ways to interchange “messages”

A pushing to B

System A System B | J

Workshop on Rapid Prototyping of loT for Science (smr3268) — January 2019

) Request/response approach

| —
GRC

O REST: Representational State Transfer

O Widely used; based on HTTP
O Lighter version: CoAP (Constrained Application Protocol)

JSON

Request
¢ ‘ I

[
/> 4 e o o o []
Client et Web Server
I A

JSON

Response

Workshop on Rapid Prototyping of loT for Science (smr3268) — January 2019

)

| —
GRC

Pub/sub approach

O Publish/Subscriber

o aka: producer/consumer

Publisher 1 Publisher 2

N\ Lo

[Broker]
v Vi i
Subscriber 1 Subscriber 2

O Various protocols:
o MQTT, AMQP, XMPP (was Jabber)

O Growing technique

Subscriber 3

o E.g., https://cloud.google.com/iot/docs/how-tos/mqtt-bridge

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

) Pub/sub approach

| —
GRC

O Pub/Sub separate a client, who is sending a message about a
specific topic, called publisher, from another client (or more
clients), who is receiving the message, called subscriber.

O There is a third component, called broker, which is known by
both the publisher and subscriber, which filters all incoming
messages and distributes them accordingly.

S“bsc‘.\be E

2A°C
9\)‘0\"5“.' .

- ’
-

.
" publish: “21°C" |

laptop

<

MQTT Stbscrip,
m
temperature MQTT-Broker D>

sensor

subscribe to o publish to mobile device

topic: “temperature” topic: “temperature”

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

(%) An example

Earthquake Monitor

O

Subscribe
"sensors/vibration/#"

& & Subscribe London
‘/\ "sensors/temperature/uk/london" Weather
\
- g I e ‘Y
6 Qﬁ, ‘,,: (. ‘T
e
. Publish —

60 "sensors/{type}/{country}/{city}/{location}"

S

& Subscribe
ll#ll

L =

Source: https://zoetrope.io/tech-blog/brief-practical-introduction-mgtt-protocol-and-its-application-iot

Workshop on Rapid Prototyping of loT for Science (smr3268) — January 2019

https://zoetrope.io/tech-blog/brief-practical-introduction-mqtt-protocol-and-its-application-iot

Intro to MQTT

O Fundamental concepts

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

(%) NlQ'rr Message Queuing Telemetry Transport

O A lightweight publish-subscribe protocol that can run on
embedded devices and mobile platforms =» http://mqgtt.org/

o Low power usage.

o Binary compressed headers

o Maximum message size of 256MB
* not really designed for sending large amounts of data
* better at a high volume of low size messages.

O Documentation sources:

o The MQTT community wiki:
* https://github.com/mgtt/mgtt.github.io/wiki

o Avery good tutorial:
* http://www.hivemqg.com/mgtt-essentials/

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

http://mqtt.org/

) Some details about versions

| —
GRC

O MAQTT 3.1.1is the current version of the protocol.
o Standard document here:
* http://docs.oasis-open.org/mqgtt/mqtt/v3.1.2/mqtt-v3.1.12.html
o October 2gth 2014: MQTT was officially approved as OASIS Standard.
* https://www.0oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt

O MQTT vs.ois the successor of MQTT 3.1.1

o Current status: Committee Specification 02 (15 May 2018)
* http://docs.oasis-open.org/mqgtt/mqtt/vs.o/cso2/mqtt-v5.0-cso2.html
o Not backward compatible; too many new things are introduced so
existing implementations have to be revisited, for example:

* Enhancements for scalability and large scale systems in respect to setups
with 1000s and millions of devices.

* Improved error reporting (Reason Code & Reason String)
* Performance improvements and improved support for small clients

o https://www.youtube.com/watch?time_continue=3&v=Ylpesv_blgU

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=mqtt
http://docs.oasis-open.org/mqtt/mqtt/v5.0/cs02/mqtt-v5.0-cs02.html

) MQTT works on top of...

| —
GRC

O mainly of TCP

o Thereis also the closely related MOTT for Sensor Networks (MOTT-SN)
where TCP is replaced by UDP = TCP stack is too complex for WSN

O websockets can be used, too!
o Websockets allows you to receive MQTT data directly into a web browser.

(fn)]
[Iyl
m TCP MQTT Clié'r{j:. é
h _~TCP MQTT Client
TCPMQTT Client ... <
‘g : l | ‘ ‘ l l Q
——— > é MOTT
........ ki MQTT _
----------- . TCPMQTT Client
Websocket MQTT Client R [O |
I !
E‘. TCP MQTT Client

Websocket MQTT Client

O Both, TCP & websockets can work on top of “Transport Layer
Security (TLS)” (and its predecessor, Secure Sockets Layer (SSL))

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

V2N
GRC

) Publish/subscribe interactions sequence

BROKER

connect

connect ACK

connect

connect ACK _

subscribe (topic)

a

subscribe ACK

publish (topic, data)

publish (topic, data)

Workshop on Rapid Prototyping of loT for Science (smr3268) — January 2019

) Topics

| —
GRC

O MAQTT Topics are structured in a hierarchy similar to folders and files in a file
system using the forward slash (/) as a delimiter.

O Allow to create a user friendly and self descriptive naming structures

topic leve
parat

O Topic names are: v
myhome / groundfloor / livingroom / temperature
topic leve

o Case sensitive

o use UTF-8 strings.

o Must consist of at least one character to be valid.
O Except for the $SYS topic there is no default or standard topic structure.

[$SYS/broker/clients/connected
SSYS/broker/clients/disconnected
Special $SYS/ topics 4 SSYS/broker/clients/total
SSYS/broker/messages/sent
SSYS/broker/uptime

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

) Topics wildcards

| —
GRC

O Topic subscriptions can have wildcards. These enable nodes to
subscribe to %roups of topics that don't exist yet, allowing greater
flexibility in the network’s messaging structure.

o '+ matches anything at a given tree level
o ‘#' matches a whole sub-tree

O Examples:

o Subscribing to topic house/# covers:
v house/roomi1/main-light
v housefroomz1/alarm
v house/garage/main-light
v" house/main-door
o Subscribing to topic house/+/main-1ight covers:
v house/room1/main-light
v house/room2/main-light
v house/garage/main-light
o but doesn't cover
v housefroomz1/side-light
v house/room2/side-light

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

) Quality of Service (QoS)

| —
GRC

O Messages are published with a Quality of Service (QoS) level, which specifies
delivery requirements.

O A QoS o (“at most once”) message is fire-and-forget.

o For example, a notification from a doorbell may only matter when
immediately delivered.

O With QoS 1 (“at least once”), the broker stores messages on disk and retries
until clients have acknowledged their delivery.

o (Possibly with duplicates.) It's usually worth ensuring error messages are
delivered, even with a delay.

O QoS 2 (“exactly once”) messages have a second acknowledgement round-
trip, to ensure that non-idempotent messages can be delivered exactly
&) PUBLISH QoS 2

once.
€ PUBREC 4)
A
& PUBREL
, € PuBCOMP

MQTT Client MQTT Broker

v

4

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

) Retained Messages!!!

| —
GRC

O Aretained message is a normal MQTT message with the
retained flag set to true. The broker will store the last retained
message and the corresponding QoS for that topic

o Each client that subscribes to a topic pattern, which matches the topic of
the retained message, will receive the message immediately after
subscribing.

o For each topic only one retained message will be stored by the broker.

O Retained messages can help newly subscribed clients to get a
status update immediately after subscribing to a topic and
don’t have to wait until a publishing clients send the next
update.

o In other words a retained message on a topic is the last known good
value, because it doesn’t have to be the last value, but it certainly is the
last message with the retained flag set to true.

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

Intro to MQTT

O Brokers and clients

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

N
GRC
N

Creating a broker

s

BROKER

@ =y
£)

Workshop on Rapid Prototyping of loT for Science (smr3268) — January 2019

L

()
L

) Available MQTT brokers

| —
GRC

O The most widely used are:
o http://mosquitto.org/

* man page: https://mosquitto.org/man/mosquitto-8.html
o http://www.hivemqg.com/
* The standard trial version only supports 25 connections.

O And also:
o https://www.rabbitmg.com/mqtt.html

o http://activemqg.apache.org/mqtt.html

O A quite complete list can be found here:
o https://github.com/mqgtt/mqtt.github.io/wiki/servers

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

http://mosquitto.org/
http://www.hivemq.com/
https://www.rabbitmq.com/mqtt.html
http://activemq.apache.org/mqtt.html
https://github.com/mqtt/mqtt.github.io/wiki/servers

) Installing Mosquitto on a Raspberry Pi

| —
GRC

O It takes only a few seconds to install a Mosquitto broker on a

Raspberry. You need to execute the following steps:

sudo apt-get update
sudo apt-get install mosquitto mosquitto-clients

O Installation guidelines with websockets
https://gist.github.com/smoofit/dafa4d93aec8d4leal057370dbfde3f3fc

O Managing the broker:

o To start and stop its execution use:
sudo /etc/init.d/mosquitto start/stop

o Verbose mode:

sudo mosquitto —v

o To check if the broker is running you can use the command:
sudo netstat -tanlp | grep 1883

* note: "-tanlp" stands for: tcp, all, numeric, listening, program

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

) Cloud based MQTT brokers: CloudMQTT

| —/
GRC

https://www.cloudmgqtt.com/ =» based on Mosquitto

CloudMQTT Pricing Documentation Support Blog

Hosted message broker for the

Internet of Things
@ Power Pug . 299
¥ :Jsﬁi"::;z:: ooooooooooo mized message queues for loT, ready in seconds.
s
> %
‘ N\
=]
A =
\E&f cuecat FREE - Y,
Z ok et [cenow | o @E

Workshop on Rapid Prototyping of loT for Science (smr3268) — January 2019

(%) Cloud based brokers: flespi

https://flespi.com/mqtt-broker

fles p| Resources v Terms of use About us Blog o}

MQTT broker

Fast, secure, and free public MQTT broker with MQTT 5.0 support, private namespace,
WSS, ACLs, and rich API.

Also check out - our MQITT 5.0 client tool for debugging and testing.

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

(g) Cloud based brokers: flespi

Terms of use

https://flespi.io/#/panel/mqgttboard

v.3.7.0

flespi

Pietro

manzoni@ieee.org
Tokens Publisher >

Access management T
opic

MQTT my/topic
PUB/SUB

mgqtt-board-panel-3de8eb91

100 active MQTT sessions

Message

MQTT Board Options - {"hello": "world"}
MQTT Client
S 1 2
@ Toolbox 2 0 Options o
el [J Nolocal
MQTT Broker API . _ QS 0 1 2
| E} Documentation [CJ Retain as Published
YouTube Videos Retain handling 0 1 D) Retain
= VErIEE [J Duplicate flag
Properties v .
Properties v
Unsubscribe properties ¢

flespi MQTT broker connection details

« Host — mqtt.flespi.io.
Port — 8883 (SSL) or 1883 (non-SSL); for MQTT over WebSockets: 443 (SSL) or 80 (non-SSL).
« Authorization — use a flespi platform token as MQTT session username; no password.
« Client ID — use any unique identifier within your flespi user session.
» Topic — you can publish messages to any topic except flespi/.
o ACL — both flespi/ and MQTT pub/sub restrictions determined by the token.

https://flespi.com/maqtt-api

I1RKMMIUJppLdlQoSgAQ8MvJIJPYyNVI9R2HIJgijOlSlgt5SrajaeIOaiakKWwlHt2z1z

Workshop on Rapid Prototyping of loT for Science (smr3268) — January 2019

(%) P Open brokers (“Sandboxes")

O TCP based:

o https://iot.eclipse.org/getting-started/#sandboxes
* Hostname: iot.eclipse.org
o http://test. mosquitto.org/
* Hostname: test.mosquitto.org
o https://www.hivemg.com/mqtt-demo/
* Hostname: broker.hivemq.com
* http://www.mqtt-dashboard.com/
o Ports:
e standard: 1883
* encrypted: 8883 (TLS vi.2, vi.1 or vi.0 with x509 certificates)

O Websockets based:

o broker.mqttdashboard.com port: 8000
o test.mosquitto.org port: 8080
o broker.hivemg.com port: 8000

O https://github.com/mqgtt/mqtt.github.io/wiki/public brokers

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

https://github.com/mqtt/mqtt.github.io/wiki/public_brokers

Creating clients

BROKER

Workshop on Rapid Prototyping of loT for Science (smr3268) — January 2019

o

}T
<<ﬁ»

) Clients for testing

| —
GRC

O The Mosquitto broker comes with a couple of useful commands
to quickly publish and subscribe to some topic.

O Their basic syntax is the following.

o mosquitto sub -h HOSTNAME -t TOPIC
o mosquitto pub -h HOSTNAME -t TOPIC -m MSG

O More information can be found:

o https://mosquitto.org/man/mosquitto_sub-1.html

o https://mosquitto.org/man/mosquitto pub-1.html

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

https://mosquitto.org/man/mosquitto_sub-1.html
https://mosquitto.org/man/mosquitto_pub-1.html

MQTT clients: i0OS

Mqttt
Utilidades

Workshop on Rapid Prototyping of loT for Science (smr3268) — January 2019

ICPDAS MQ...

M@" Utilidades

(%) MQTT clients: Android

y\ MQTT
"Q\ CLIENT
O

MQTT Dash (loT, MyMQTT loT MQTT Panel loT MQTT Dashb: MQTT Client
Routix software instant:solutions OG Rahul Kundu Nghia TH Webneurons
* % %k *k * % % Kk * % %k Kk A * % kK * %k Kk
1
M Snooper
0] L
5 ’ I MQTT.RN
= |0 MQTT
MQTIZER
MQTT Snooper MQTIZER - Free \ Linear MQTT Das Virtuino MQTT Mqtt Client
Maxime Carrier Sanyam Arya ravendmaster llias Lamprou Darlei Kroth
* % %k ok L 8. 8.8 .8 ¢ L2. 8. 8.8 * % % % ¥ * % %k K

Workshop on Rapid Prototyping of loT for Science (smr3268) — January 2019

@) MQTT websocket clients

http://test.mosquitto.org/ws.html http://mitsuruog.github.io/what-mqtt/

MQTT over WebSockets MQTT on Websocket sample

This is a very early/incomplete/broken example of MQTT over Websockets for test. mosquitto.org. Play around with the buttons below, but don't
be surprised if it breaks or isn't very pretty. If you want to develop your own websockets/mqtt app, use the url ws://test.mosquitto.org/mqtt , use

subprotocol "mqtt" (preferred) or "mqttv3.1" (legacy) and binary data. Then just treat the websocket as a normal socket connection and
read/write MQTT packets.

Usage

Click Connect, then use the Publish and/or Subscribe buttons. You should see text appear below. If you've got another mqtt client available, try
subscribe to a topic here then use your other client to send a message to that topic.

Broker
Connect Disconnect
Publish
Topic:
Payload:
Publish

Subscrib H Iv E M Q Websockets Client Showcase

Connect / Disconnect

connect disconnect

MQTT broker on websocket

Address:

ws://broker.hivemg.com:8000/mqtt

Subscribe / Unsubscribe
Topic:
subscribe unsubscribe

Publish

! ENTERPRISE MQTT BROKER Jlopics
Topic: ssys/#)
Subscribe Unsubscribe
Connection (] A
Host Port ClientlD
broker.mgttdashboard.com 8000 clientld-EVUOqAkr8g m
Username Password Keep Alive Clean Session
60 X
Last-Will Topic Last-Will QoS Last-Will Retain
0
Last-Will Messsage
z

Publish ™V, Subscriptions M,
Messages M

Workshop on Rapid Prototyping of loT for Science (smr3268) — January 2019

Intro to MQTT

O Time for some exercise: Lab o

https://bit.ly/ictp2019-1ab0

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

https://bit.ly/ictp2019-lab0

Intro to MQTT

O More time for some demo/exercise: Lab 0.1

Broker address:

192.168.XX.XX
port: 9001

https://www.raspberrypi.org/products/sense-hat/

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

Intro to MQTT

O Clients in Python

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

(%) MQTT clients: Python vs Micropython

O The MQTT available versions for Python and MicroPython are
slightly different.

O MicroPython is intended for constrained environments, in
particular, microcontrollers, which have orders of magnitude
less performance and memory than "desktop" systems on
which Python3

O Basically remember that, when using the LoPy you have to use
the MicroPython version of MQTT

O In the following we will see information about both cases.

Vs.

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

- Eclipse Paho Python

O Eclipse Paho Python (originally the mosquitto Python client)
o http://www.eclipse.org/paho/

O Documentation: https://pypi.org/project/paho-mqtt/
o or: http://www.eclipse.org/paho/clients/python/docs/

O Source: https://github.com/eclipse/paho.mqtt.python

MQTT MQTT MQTT SSL/ Automatic Offline Message WebSocket Standard MQTT Blocking Non- High
Client 3.1 3.11 5.0 LWT TLS Reconnect Buffering Persistence Support Support API Blocking APl ' Availability
Java v v x v v v v v v v v v v
Python v v X v v v v x v v v v x
JavaScript v v x v v v v v v x x v v
Golang v v x v v v v v v v x v v
C v v v v v v v v v v v v v
C++ v v x v v v v v x v v v v
Rust v v X v v v v v x v v v v
.Net (C#) v v x v v x x x x v x v x
Android v v x v v v v v v v x v v
Service
Embedded v v x v v x x x X v v v x
C/C++

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

https://github.com/eclipse/paho.mqtt.python

= Paho MQTT Python client: general usage flow

The general usage flow is as follows:
O Create a client instance

O Connect to a broker using one of the connect®() functions

O Call one of the loop*() functions to maintain network traffic
flow with the broker

O Use subscribe() to subscribe to a topic and receive messages
O Use publish() to publish messages to the broker
O Use disconnect() to disconnect from the broker

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

-~ Example 1: a simple subscriber

File: sisub.py

import paho.mgtt.client as mgtt

THE BROKER = "iot.eclipse.org"
THE_TOPIC = "S$SYS/#"
CLIENT _ID = ""

The callback for when the client receives a CONNACK response from the server.
def on_connect(client, userdata, flags, rc):

print("Connected to ", client. host, "port: ", client._port)

print("Flags: ", flags, "returned code: ", rc)

client.subscribe (THE_TOPIC, gos=0)

The callback for when a message is received from the server.
def on_message(client, userdata, msq):
print("sisub: msg received with topic: {} and payload: {}".format(msg.topic, str(msg.payload)))

client = mgtt.Client(client_id=CLIENT ID,
clean_session=True,
userdata=None,
protocol=mgtt.MQTTv311,
transport="tcp")

client.on_connect = on_connect

client.on_message = on_message

client.username pw_set (None, password=None)
client.connect (THE BROKER, port=1883, keepalive=60)

Blocking call that processes network traffic, dispatches callbacks and handles reconnecting.

client.loop_forever()
More on this later

Workshop on Rapid Prototyping of loT for Science (smr3268) — January 2019

Example 1: output

Connected to
Flags:
sisub:
sisub:
sisub:
sisub:
sisub:
sisub:
sisub:
sisub:
sisub:
sisub:
sisub:

sisub:

{'session present':

msg
msg
msg
msg
msg
msg
msg
msg
msg
msg
msg
msg

received
received
received
received
received
received
received
received
received
received
received

received

with
with
with
with
with
with
with
with
with
with
with
with

topic:
topic:
topic:
topic:
topic:
topic:
topic:
topic:
topic:
topic:
topic:
topic:

jot.eclipse.org port: 1883
0} returned code: O

$SYS/broker/version and payload: b'mosquitto version 1.4.15'
$SYS/broker/timestamp and payload: b'2018-04-11 '
$SYS/broker/clients/total and payload: b'162523"
$SYS/broker/clients/active and payload: b'4103"
$SYS/broker/clients/inactive and payload: b'158420'
$SYS/broker/clients/maximum and payload: b'162524'
$SYS/broker/clients/disconnected and payload: b'158420"
$SYS/broker/clients/connected and payload: b'4103'
$SYS/broker/clients/expired and payload: b'0’
$SYS/broker/messages/received and payload: b'1171291305"
$SYS/broker/messages/sent and payload: b'6271921352"
$SYS/broker/messages/stored and payload: b'1380714’

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

- Paho MQTT Python client: connect

O connect(host, port=1883, keepalive=60,)

O The broker acknowledgement will generate a callback
(on_connect).

O Return Codes:

o 0: Connection successful

1: Connection refused — incorrect protocol version
2: Connection refused —invalid client identifier

3: Connection refused — server unavailable

4: Connection refused — bad username or password
5: Connection refused — not authorised

O O O O O O

6-255: Currently unused.

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

-~ Paho MQTT Python client: pub/sub

subscribe(topic, qos=0)
o e.g., subscribe("my/topic", 2)
o E.g., subscribe([("my/topic", 0), ("another/topic", 2)])

o on_message(client, userdata, message) Called when a message has been
received on a topic that the client subscribes to.

publish(topic, payload=None, qos=0, retain=False)

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

- Paho MQTT Python client: Network loop

client.username pw _set (None, password=None)
client.connect (THE BROKER, port=1883, keepalive=60)

Blocking call that processes network traffic, dispatches callbacks and handles reconnecting.

client.loop forever ()
More on this later

What are network loops for?

Workshop on Rapid Prototyping of loT for Science (smr3268) — January 2019

- Paho MQTT Python client: Network loop

loop_forever()

O This is a blocking form of the network loop and will not return until
the client calls disconnect(). It automatically handles reconnecting.

loop_start() / loop_stop()

O These functions implement a threaded interface to the network loop.

o Calling loop_start() once, before or after connect(), runs a thread in the
background to call loop() automatically. This frees up the main thread for other
work that may be blocking.

o (Callloop_stop() to stop the background thread.

loop(timeout=1.0)

O

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

A

Example 2: subscriber with loop start/loop stop

import sys
import time

import paho.mgtt.client as mqgtt

THE BROKER = "test.mosquitto.org"
THE TOPIC = "$SYS/broker/load/bytes/#"

def on_connect (mgttc, obj, flags, rc):
print ("Connected to ", mgttc. host, "port:
mgttc.subscribe (THE_TOPIC, 0)
def on_message (mgttc, obj, msqg):
global msg_counter
print (msg. topic+"
msg_counter+=1

"+str (msg.qos) +"

def
print ("Subscribed:

mgttc = mgtt.Client()
mgttc.on_message = on_message
mgttc.on_connect = on_connect
mgttc.on_subscribe = on_subscribe

mgttc.connect (THE_BROKER, keepalive=60)

msg_counter = 0
mgttc.loop start()
while msg_counter < 10:
time.sleep(0.1)
mgttc.loop_ stop()
print msg_counter

on_subscribe (mgttc, obj, mid, granted gos):
", mid, "granted QoS: ", granted gos)

", mgttc._ port)

"+str (msg.payload))

paho—code:pietro$ python example3.py

('Connected to ', 'test.mosquitto.org', 'port: ',
('Subscribed: ', 1, 'granted QoS: ', (9,))
$SYS/broker/load/bytes/received/1min @ 489527.05
$SYS/broker/load/bytes/received/5min 0 491792.65
$SYS/broker/load/bytes/received/15min 0 495387.48
$SYS/broker/load/bytes/sent/1min © 4133472.81
$SYS/broker/load/bytes/sent/5min @ 3515397.37
$SYS/broker/load/bytes/sent/15min @ 2885966.59
$SYS/broker/load/bytes/received/1min @ 483622.23
$SYS/broker/load/bytes/sent/1min @ 3766302.58
$SYS/broker/load/bytes/received/5min 0 490441.96
$SYS/broker/load/bytes/sent/5min @ 3458734.24
$SYS/broker/load/bytes/received/15min © 494888.07
$SYS/broker/load/bytes/sent/15min © 2874493.79

12

1883)

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

-~ Example 3: very basic periodic producer

import random

import time

mport paho.mqtt.client as matt client = mgtt.Client (client id=CLIENT ID,
clean session=True,

THE BROKER = "test.mosquitto.org" di

THE TOPIC = "PMtest/rndvalue" userdata=None,

CLIENT ID = "" protocol=mgtt.MQTTv31l1,

transport="tcp")

The callback for when the client receives a CONNACK response

from the server. client.on connect = on connect
def on_connect(client, userdata, flags, rc):

client.on publish on publish

print ("Connected to ", client. host, "port: ", client. port)

print ("Flags: ", flags, "returned code: ", rc))
client.username pw_ set (None, password=None)

The callback for when a message is published. client.connect (THE BROKER, port=1883, keepalive=60)

def on_publish(client, userdata, mid):
print ("sipub: msg published (mid={})".format (mid)) client.loop_start()

while True:

u msg_to be sent = random.randint (0, 100)
client.publish (THE TOPIC,

payload=msg_to_be_sent,
gos=0,
retain=False)

////// time.sleep (5)

Generates a new data every 5 secs _
client.loop_stop()

Workshop on Rapid Prototyping of loT for Science (smr3268) — January 2019

- Example 3: output

Python 3.6.1 (default, Dec 2015, 13:05:11)

[GCC 4.8.2] on linux

sipub: msg published (mid=1) _
Connected to test.mosquitto.org port: 1883

Flags: {'session present': 0} returned code: O

sipub: msg published (mid=2
sipub: msg published (
sipub: msg published (
sipub: msg published (mid=5
sipub: msg published (
sipub: msg published (

Python 3.6.1 (default, Dec 2015, 13:05:11)

[GCC 4.8.2] on linux

Connected to test.mosquitto.org port: 1883

Flags: {'session present': 0} returned code: O

sisub: msg received with topic: PMtest/rndvalue and payload: b'll'
sisub: msg received with topic: PMtest/rndvalue and payload: b'l4'
sisub: msg received with topic: PMtest/rndvalue and payload: b'31'
sisub: msg received with topic: PMtest/rndvalue and payload: b'27'
sisub: msg received with topic: PMtest/rndvalue and payload: b'60’'
sisub: msg received with topic: PMtest/rndvalue and payload: b'70"'
sisub: msg received with topic: PMtest/rndvalue and payload: b'60’'
sisub: msg received with topic: PMtest/rndvalue and payload: b'66"
sisub: msg received with topic: PMtest/rndvalue and payload: b'45'
sisub: msg received with topic: PMtest/rndvalue and payload: b'56"
sisub: msg received with topic: PMtest/rndvalue and payload: b'37’

Workshop on Rapid Prototyping of loT for Science (smr3268) — January 2019

-~ Example 4: Pub/Sub with JSON

Consumer

The callback for when a PUBLISH message is received
PrOducer from the server.

def on message(client, userdata, msg):
print (msg. topic+" "+str (msg.payload))

themsg = json.loads (str (msg.payload))
mgttc.loop start ()
print ("Sensor "+str (themsg['Sensor'])+" got value "+
while True: str (themsg['Value'])+" "+themsg['C F']+
Getting the data " at time "+str (themsg['Time']))
the_time = time.strftime ("%H:%M:%S")
the_value = random.randint(1,100)

the msg={'Sensor': 1, 'C_F': 'C',
'Value': the value, 'Time': the time}

the msg str = json.dumps (the msq)

mgttc.publish (THE TOPIC, the msg str)
time.sleep (5)

mglte.loop stopl) paho-code:pietro$ python example4-cons.py
Connected with result code 0
PMtest/jsonvalue {"Time": "12:19:30", "Sensor": 1, "Value": 33, "C_F": "C"}
Sensor 1 got value 33 C at time 12:19:30
PMtest/jsonvalue {"Time": "12:19:35", "Sensor": 1, "Value": 11, "C_F": "C"}
Sensor 1 got value 11 C at time 12:19:35

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

MQTT with MicroPython

O Import the library

from mgtt import MQTTClient

O Creating a client:

MQTTclient(client id, server, port=0, user=None, password=None,
keepalive=0, ssl=False, ssl params={})
e.g., client = MQTTClient("dev_id", "10.1.1.101", 1883)

O The various calls:
e connect(clean session=True):
e publish(topic, msg, retain=False, gos=0):
* subscribe(topic, gos=0):
* set callback(self, f):

O wait msg():

o Wait for a single incoming MQTT message and process it. Subscribed messages are
delivered to a callback previously set by .set_callback() method. Other (internal) MQTT
messages processed internally.

O check msg():

o Checks whether a pending message from server is available. If not, returns
immediately with None. Otherwise, does the same processing as wait_msg.

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

MicroPython: a simple publisher

file: mp sipub.py m

from mgtt import MQTTClient
import pycom ### if name == " main ":

import sys

import time ufun.connect to wifi(wifi ssid, wifi passwd)
import ufun client = MQTTClient (CLIENT ID, THE BROKER, 1883)
wifi ssid = 'THE NAME OF THE AP' print ("Connecting to broker: " + THE BROKER)
wifi passwd = "' try:

client.connect ()

THE BROKER = "iot.eclipse.org" except OSError:
THE TOPIC = "test/SRM2018" print ("Cannot connect to broker: " + THE BROKER)
CLIENT ID = "" sys.exit ()

print ("Connected to broker: " + THE BROKER)

def settimeout (duration) :

pass print ('Sending messages...')
while True:
def get data from sensor(sensor id="RAND"): # creating the data
if sensor id == "RAND": the_data = get_data_from_ sensor()

publishing the data
client.publish (THE TOPIC, str(the_ data))
print ("Published message with value: {}".format (the data))

return ufun.random in range ()

time.sleep (1)

J

Workshop on Rapid Prototyping of loT for Science (smr3268) — January 2019

MicroPython: a simple subscriber

file: mp sisub.py m

from mgtt import MQTTClient

import pycom ### if name == " main ":

import sys

import time ufun.connect to wifi(wifi ssid, wifi passwd)

import ufun client = MQTTClient (CLIENT ID, THE BROKER, 1883)
client.set_callback (on_message)

wifi ssid = 'THE NAME OF THE AP'

wifi passwd = "' print ("Connecting to broker: " + THE BROKER)
try:

THE BROKER = "iot.eclipse.org" client.connect ()

THE TOPIC = "test/SRM2018" except OSError:

CLIENT ID = "" print ("Cannot connect to broker: " + THE BROKER)

sys.exit ()
def settimeout (duration): print ("Connected to broker: " + THE BROKER)
pass

client.subscribe (THE_TOPIC)
def on _message(topic, msg):
print ("Received msg: ", str(msg), print ('Waiting messages...')
"with topic: ", str(topic)) while 1:

N

Workshop on Rapid Prototyping of loT for Science (smr3268) — January 2019

client.check msg()

Intro to MQTT

O Some final details

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

) MQTT Keep alive

| —
GRC

O The keep alive functionality assures that the connection is still
open and both broker and client are connected to one another.

O The client specifies a time interval in seconds and

communicates it to the broker during the establishment of the
connection.

o The interval is the longest possible period of time which broker and client
can endure without sending a message.

o If the broker doesn’t receive a PINGREQ or any other packet from a
particular client, it will close the connection and send out the last will and
testament message (if the client had specified one).

O Good to Know
o The MQTT client is responsible of setting the right keep alive value.
o The maximum keep alive is 18h 12min 15 sec.

o If the keep alive interval is set to o, the keep alive mechanism is
deactivated.

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

http://www.hivemq.com/mqtt-essentials-part-9-last-will-and-testament/

) “"Will” message

| —
GRC

O When clients connect, they can specify an optional “will”
message, to be delivered if they are unexpectedly disconnected
from the network.

o (Inthe absence of other activity, a 2-byte ping message is sent to clients
at a configurable interval.)

O This “last will and testament” can be used to notify other parts
of the system that a node has gone down.

CONNECT o

WHEN?

clientId “client-1“
cleanSession true
username “hans”
password “letmein”
lastWillTopic “/hans/will”
lastWillQos 2
lastWillMessage “unexpected exit”
lastWillRetain false
keepAlive 60

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

GRC

)

Persistent session

O A persistent session saves all information relevant for the client on the
broker. The session is identified by the clientld provided by the client
on connection establishment

O So what will be stored in the session?

Existence of a session, even if there are no subscriptions
All subscriptions

All messages in a Quality of Service (QoS) 1 or 2 flow, which are not confirmed by the
client

All new QoS 1 or 2 messages, which the client missed while it was offline
All received QoS 2 messages, which are not yet confirmed to the client

That means even if the client is offline all the above will be stored by the broker and
are available right after the client reconnects.

O Persistent session on the client side

@)

Similar to the broker, each MQTT client must store a persistent session too. So when
a client requests the server to hold session data, it also has the responsibility to hold
some information by itself:

All messages in a QoS 1 or 2 flow, which are not confirmed by the broker
All received QoS 2 messages, which are not yet confirmed to the broker

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

) Topics best practices

| —
GRC

O First of all:

o Don't use aleading forward slash
o Don't use spaces in a topic
o Use only ASCII characters, avoid non printable characters

O Then, try to..

o Keep the topic short and concise
o Use specific topics, instead of general ones
o Don't forget extensibility

O Finally, be careful and don't subscribe to #

%

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

(%) A few words on security

O MQTT has the option for Transport Layer Security
(TLS) encryption.

O MQTT also provides username/password
authentication with the broker.

o Note that the password is transmitted in clear text. Thus, be sure to use
TLS encryption if you are using authentication.

Workshop on Rapid Prototyping of loT for Science (smr3268) — January 2019

(8)

A few words on security

Smart homes can be easily hacked via
unsecured MQTT servers

https://www.helpnetsecurity.com/2018/08/20/unsecured-mqtt-servers/

In fact, by using the Shodan loT search engine, Avast researchers found over
49,000 MQTT servers exposed on the Internet and, of these, nearly 33,000
servers have no password protection, allowing attackers to access them and all

the messages flowing through it.

TOTAL RESULTS
49,197

TOP COUNTRIES

ﬁ
i f)

China 12,151
United States 8,257
Germany 3,092
Korea, Republic of 2,003
Hong Kong 2,002

Workshop on Rapid Prototyping of loT for Science (smr3268) — January 2019

TOTAL RESULTS
32,888

TOP COUNTRIES

China b 8,446
United States 4,733
Germany 1,719
Hong Kong 1,614
Taiwan 1,565

) MQTT vs REST

| —
GRC

O Canthey really be compared?!?!?

o MQTT was created basically as a lightweight messaging protocol for
lightweight communication between devices and computer systems

o REST stands on the shoulders of the almighty HTTP

O Soit's better to understand their weak and strong points and
build a system taking the best of both worlds... if required

N—

)

PR O

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

GRC

) REST advantages

O Itis always independent of the type of platform or languages

o Theonly thingis that it is indispensable that the responses to the requests
should always take place in the language used for the information
exchange, normally XML or JSON.

O Itis stateless =» This allows for scalability, by adding additional

server nodes behind a load balancer
o No state can be stored on servers: “keep the application state on the

client.”
o All messages exchanged between client and server have all the context
needed to know what to do with the message.

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

) REST disadvantages

| —
GRC

O Today's real world embedded devices for loT usually lacks the
ability to handle high-level protocols like HTTP and they may
be served better by lightweight binary protocols.

O Itis PULL based. This poses a problem when services depend
on being up to date with data they dont own and manage.

o Being up to date requires polling, which quickly add up in a system with
enough interconnected services.

o Pull style can produce heavy unnecessary workloads and bandwidth
consumption due to for example a request/response polling-based
monitoring & control systems Request /Response

Client Side Server Side

O Itis based on one-to-one interaction }

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

) Advantages of MQTT

| —
GRC

O Push based: no need to continuously look for updates

O It has built-in function useful for reliable behavior in an
unreliable or intermittently connected wireless environments.

1. “last will & testament” so all apps know immediately if a client
disconnects ungracefully,

2. ‘“retained message” so any user re-connecting immediately gets the very
latest information, etc.

O Useful for one-to-many, many-to-many applications

O Small memory footprint protocol, with reduced use of battery

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

(8)

Energy usage: some number

amount of power taken to establish the initial connection to the server:

% Battery Used

3G Wifi

HTTPS MQTT HTTPS MQTT

0.02972 0.04563 0.00228 0.00276

3G — 240s Keep Alive — % Battery Used Creating and Maintaining a Connection

0.14
HTTPS
MQTT
0.12
0.10
= 0.08
£
0.06 —
0.04
0.02
0 700 200 300 400 500 600 700 800 900 1000

1 second period

cost of ‘maintaining’ that connection (in % Battery / Hour):

% Battery / Hour
3G Wifi
Keep Alive | yrppg MQTT HTTPS MQTT
(Seconds)
60 111553 072465 | 015839 | 0.01055
120 048697 | 032041 | 0.08774 | 0.00478
240 033277 | 016027 | 0.02897 | 0.00230
480 0.08263 | 0.07991 | 0.00824 | 0.00112

you'd save ~4.1% battery per day just
by using MQTT over HTTPS to

maintain an open stable connection.

http.//stephendnicholas.comy/posts/power-profiling-magtt-vs-https

Workshop on Rapid Prototyping of loT for Science (smr3268) — January 2019

(%) MQTT disadvantages

O Ifthe broker fails...

O Does not define a standard client API, so application developers
have to select the best fit.

O Does not include many features that are common in Enterprise
Messaging Systems like:
o expiration, timestamp, priority, custom message headers, ...

O Does not have a point-to-point (aka queues) messaging pattern

o Pointto Point or One to One means that there can be more than one
consumer listening on a queue but only one of them will be get the
message

O Maximum message size 256 MB

Workshop on Rapid Prototyping of IoT for Science (smr3268) — January 2019

r— e, W
uznyg WaadMzhadsas aay
ThintKo "~ T kk
Blagudafam "m

e —1o

Men:e g;

[ﬂlallslﬂ S=E=
' ungasek Bayarlalaa

K

Obrigado

kS - Grare
HE l’,SIIIhnkraneK,,h,s
= = XI0X| e Daiakuj 2 e
A= X‘l'exmﬂarﬁmj Glatlashmmus .
rean[amaSi:% = A[lcmk §
Squs s € S L=
= L=l
= 1SS bialisshgp ===
bl e Kkhunkha
mSahHamnida € S
e 55 Milmess S

Workshop on Rapid Prototyping of loT for Science (smr3268) — January 2019

