
Vector Analysis Vector, A physical quantity possessing both magnitude and direction. eg displacement, velocity, force etc Scalars: Quantities that have magnitude but no direction are called scalars. examples are: Mass, charge, density. A vector is represented as leigh & tomagnitude of the redor Vectors are not localized

	but magnitude equal to unity
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Scalar or Dot product
0.	A.B = IAIIBI coso
	A.B_B.A Comunitative B Comunitative
	and A A distributive A B + A · C
	B/1
	Acord
	cross Product of two vectors
	AXB-ABSINON B
	$A \times B = -(B \times A)$ $A \times B = -(B \times B)$ $A \times B = -(B$
	inwerl A

(4) Not Commutative $B \times A = -(A \times B)$ area of a parallelogan generated by AxB F=q(UxB) Scalar Triple Product $A \cdot (B \times C) = B \cdot (\overline{C} \times \overline{A}) = C \cdot (\overline{A} \times B)$ Cyclic order. [A.(Bxc)] - volume of the parallele--piped generated by A, B and C. | Bx 21 -> aread base | Acrol -> altitude cyclic order

Eijk Elmk = Sil Sim - Sim Sil (Kis repealed) inden Similarly. Eijk Eimn = Sim Skn - Sin Skm · Sij - Kronecker's delta. 8ij - 1 if i = jSij = 0 " i + j SijAi = Aj Sij AiBj = AiBi = AjBj = A.B => Tensor's are generalization of scalars
and vectors. Tensor of order (or rank) zero are scalars -> Tensor of order one are vectors. In 3-D space - Scalar is 3° = 1 comp Vector is 3' = 3 comp In general a tensor of rank n has 3" - compts

Differential Calculus ordinary decivatives. f(n) - function of one variable is df(n) - How rapidly f(x) changes of n with a tiny change dx in x = df(x) = (df(n)) dn slow = if n changes by dn

then g(x) — df df - Slope of curve fla)

Operator Del. V = 2 2 + 2 3 + 2 2 operator "Del" is not a vector in a usual sense. An ordinary vector A can multiply in three ways. i Multiply la scalar a = Aa ii. Multiply with another vector B via iii, Muliply another vector via the cross
product: AxB Correspondingly there are three ways the operator V can act: ii, Act on a scalar function: $\nabla f = Gradient$ iii, Act on a vector function ∇v ; via dot product $\nabla v = \nabla v = V$ iii, Act on a redor function $\nabla v = V$ product $\nabla v = V$ The curl.

The Gradient. The gradient of a scalar function f(x,y,z) is given by. $\nabla f(x,y,2) - \partial f \hat{x} + \partial f \hat{y}' + \partial f \hat{z}'$ In temor notation the ith component is represented as. $(\nabla f)_{\dot{i}} = \nabla_{\dot{i}} f = (\nabla f)_{\dot{i}} - \delta f$ A small change in function of when we go small distance (dx, de, d2) away from point (x,y,z) from theory of partial derivatives it is given by df = (dt) dn + (df) dy + (dd) d2 = (21 n+ 28 g+ 21 2). (dnn+dgg+dz2) = > dj= \(\forall \) de dantdøgtdes is infinitesimal

(19) displacement vector and Tf is gradient of f which is generalization of a derivative is 3-D Ty is a vector quantity. The Divergence $\nabla \cdot V = \left(\frac{8}{3} \frac{\partial}{\partial x} + \frac{2}{3} \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \frac{2}{3} \right) \cdot \left(v_x \vec{n} + v_y \vec{y} + v_z \vec{z} \right)$ - dvx + dvy + dvz Divergence of a rector Vis a scalar quantity. The curl Curl of a vector function \vec{V} is given by. $\vec{\nabla} \times \vec{V} = \begin{bmatrix} \vec{\lambda} & \vec{\lambda} & \vec{\lambda} \\ \vec{\lambda} & \vec{\lambda} & \vec{\lambda} \end{bmatrix}$ Vector quantity. 1 Va Vg V3 1

 $=\widehat{n}\left(\frac{\partial V_3}{\partial y}-\frac{\partial V_3}{\partial z}\right)+\widehat{y}\left(\frac{\partial V_2}{\partial z}-\frac{\partial V_2}{\partial n}\right)+\widehat{z}\left(\frac{\partial V_3}{\partial n}-\frac{\partial V_3}{\partial y}\right)$

Product Rules Like ordinary derivatives a number of general rules, such as the Sum rule, multiplication by a constant, the product rule and quotient rule hold for vector derivatives Ordinary delivatives d (frg) = df + dg gl (kg) = kgl gh (89) = falg + gal d (g) - gd8 - 8 dg

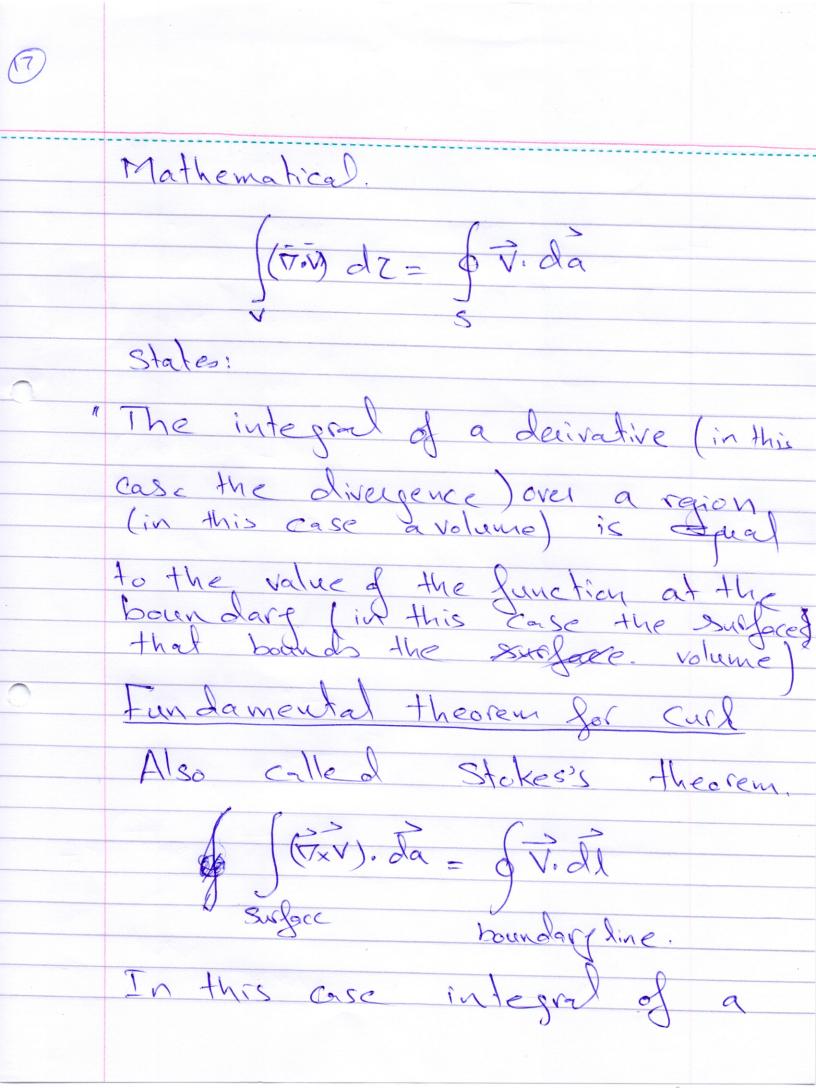
dn (g) = g2 Ve dos Derivatives. Sum Rules. a, \(\frac{7}{3+9}\) = \(\frac{7}{9} + \(\frac{7}{9}\) b, V. (A+B) = 7.A + T.B C, TX(A+B) = TXA+TXB

2, Rule for Multiplication with a Constant a, V(Kg)=K\langle , b V, (KA) = K(V,A) C, Tx(KA) - K(TXA) Product Rules. - Two for gradient. in V(8g) = f Vg + g Vf $V_{A}^{(i)} = \overline{A} \times (\nabla \times B) + B \times (\nabla \times A) + (A \nabla) \overline{B} + (B \cdot \overline{\nabla}) \overline{A}$ => Two for divergence. i, V. (JA) = g(\(\bar{\tau}\). A) + A. (\(\bar{\tau}\)g) 11, V. (AxB) = B. (VxA) - A. (VxB) -> Two for curls i, $\nabla \times (J\bar{A}) = \rho(\bar{\nabla} \times \bar{A}) = \bar{A} \times \bar{\nabla} f$

(13) (ii, $\nabla \times (\bar{A} \times \bar{B}) = (\bar{B}, \bar{\nabla})\bar{A} \cdot (\bar{A}, \bar{\nabla})\bar{B} + \bar{A}(\bar{\nabla}, \bar{B})$ $-\bar{B}(\bar{\nabla}, \bar{A})$ Quotient Rule $(1, \nabla(\frac{1}{9}) = 979 - 979 - 929 (scalar)$ 1:, V. (A) = g(\overline{\nabla}, A) - A. (\overline{\nabla}\) $\lim_{n \to \infty} \nabla \times (A) = \int (\nabla \times A) + A \times (\nabla J)$ Second Derivatives The Gradient Tt - s is vector. $\nabla \cdot (\nabla t) = \nabla^2 t$ $7^2 - \frac{\partial^2}{\partial n^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ Laplacian

VV -> vector

The Divergence T.V -> is Scalge in Gradienent of divergence V(V.V) + (V.V) V The Cyrl TXY -> is vector $(i, \nabla \cdot (\nabla x \nabla) = 0$ 111, $\nabla x(\nabla x V) = \nabla(\nabla \cdot V) - \nabla^2 V$ gradiened gradiened glace
g divergen.


(IU) INTEGRAL GALCULUS Fundamental Theorem of Calculus Suppose f(n) is a function of one variable. The fundamental theorem of calculus states. If F(n) is continous on a closed interval [a, b] and if f(n) is an antialerivative of F(n) so that $F(n) = \frac{dg(n)}{dg(n)}$ $\int_{\mathbb{R}^{n}} F(x) dx = g(x)$ JF(n) dn = f(b) -f(a)

 $\int F(n) dn = \int (b) - \int (a)$ $\int \frac{df(n)}{dn} dn = \int (b) - \int (a)$

=> The basic format of the funda-mental theorem is "The integral of a derivative over some integral is given by the Value of the function at the end points (or boundaries) Vectos Calculus Three kinds of vector derivatives i, The Gradienent ii, The Divergence Mi, The Curl => The fundamental Theorem for Gradient As $dT = (\overline{T}) \cdot dI$ $dT = \int (\overline{T}) \cdot dI = T(b) - T(a)$

(16) It states. "The line integal of a deciralize (gradient) of a Junction VT over some interval is given by the value of the function at I the boundary Corollary: I

(VT). Is independent
of the path taken from Co-sollarg: 2 -> The Fundamental Theorem for divergence. Also called Granss's or divergence theorem.

decirative (here, the curl) over a region (here a patch of sufface) is equal to the Value of the Junction at the boundary (here the perimetal of the patch).