Electromagnetic Wares in Vacuum.
\Rightarrow In region of free space (is the vacuum)
\rightarrow Where no electric changes, no electric currents and no matter of any are present
\rightarrow Maxwell's equations are.
1, $\vec{\nabla} \cdot \vec{E}(\vec{r}, t)=0$
2, $\bar{\nabla} \cdot \bar{B}(\bar{r}, t)=0$
3, $\bar{\nabla} \times \bar{E}(\bar{r}, t)=\frac{-\partial B(\bar{r}, t)}{\partial t}$
$4, \overline{\nabla^{*}} \times \bar{B}(\bar{r}, t)=M_{0} \epsilon_{0} \frac{\partial \bar{E}(\bar{r}, t)}{\partial t}$

$$
=\frac{1}{c^{2}} \frac{\partial \bar{E}}{\partial t} \quad \text { where } c^{2}=\frac{1}{\mu_{0} \epsilon_{0}}
$$

These epos, are set of couple d first -order partial equations
$\begin{aligned} \rightarrow & \text { Can be decoupled by applying } \\ & \text { curl operator to epis (3) } 24\end{aligned}$ curl operator to ens (3) 2 (4)

$$
\nabla \times(\nabla \times E)=\nabla \times\left(\frac{-\partial B}{\partial t}\right) \quad \nabla \times(\nabla \times B)=\nabla \times\left(\frac{1}{c^{2}} \frac{\partial \bar{E}}{\partial t}\right)
$$

using vector identity

$$
\left.\begin{array}{rl}
\nabla \times(\nabla \times A)=\nabla(\bar{\nabla} \cdot \bar{A})-\nabla^{2} \\
\Rightarrow & \bar{\nabla}(\bar{\nabla} \cdot \bar{E})-\nabla^{2} E=-\frac{\partial}{\partial t}(\nabla \times B) \\
& -\nabla^{2} E=-\frac{\partial}{\partial t}\left(\frac{1}{c^{2}} \frac{\partial \bar{E}}{\partial t}\right) \\
\Rightarrow & \nabla^{2} E=\frac{1}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}} \\
& \text { Similarly } \nabla^{2} B=\frac{1}{c^{2}} \frac{\partial^{2} B}{\partial t^{2}}
\end{array}\right\} \text { wave equations }
$$

\rightarrow Have exactly the same structure
\rightarrow Both are linear, homogenous, 2 nd ord differential equations.
Both espn's have explicit. dependent on space and time

$$
\begin{aligned}
\nabla^{2} \bar{E}(\bar{r}, t)-\frac{1}{c^{2}} & \frac{\partial^{2} \bar{E}(\bar{r}, t)=0}{\partial t} \\
& \nabla^{2} \bar{B}(\bar{r}, t)-\frac{1}{c^{2}} \frac{\partial^{2} \bar{B}(\bar{r}, t)}{\partial t^{2}}=0
\end{aligned}
$$

\Rightarrow Maxwell's equations implies that empty space - the vacuum - support the propagation of electromagnetic wares - at the speed of light

$$
C=\frac{1}{\sqrt{M_{0} E_{0}}}=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}
$$

Monochromatic EM Plane waves
\rightarrow A plane wave is a constant freq $V(\lambda)$
\rightarrow wavefronts are infinite parallel planes.
\rightarrow Have constant amplitude normal (1) to the phase velocity vector.
\rightarrow Propagates with speed of light

$$
c=v \lambda=\frac{w}{k}
$$

Math ematical form

$$
\vec{F}(\bar{r}, t)=\vec{F}_{0} e^{i(\bar{k}, \bar{r}-\omega t)}
$$

Uniform plane wave
Generally have uniform or constant propesties in plane 1 to their direction of propagation.
\Rightarrow The magnitude of the electric and magnetic fields are the same at all points in the direction of propagation
\Rightarrow The Electric o Magnetic fields are orthogonal to the direction of propagation, \Rightarrow EM wave that propagates in z-direction

Lie in plane 1 to the \hat{z}-axis. $\vec{E} 2 \vec{B}$ are function of (z, t)
\Rightarrow The direction of propagation is taken to be alongz-axis.
\Rightarrow The direction of propagation is normal to the plane forme \& by the electric 2 magnetic field vectors.
\Rightarrow The phase of these fields is indep-- endent of $x 2 y$.
\Rightarrow no phase variation exist ova the planer surfaces orthogonal to the direction of the propagation.

Important properties of waves are Amp, phase or frequency which allows the waves to carry information from source to destination
E is function of (\bar{x}, t) and inge pendent of $y \& z$.

Electromagnetic Spherical waves.
\rightarrow Another possible solution of wave equation can be spherical EM waves emitted from a point source
\rightarrow Ware -fronts associated with these EM waves are spherical.
 of EM
rectiation
Mathematical form

$$
\vec{F}(r, t)=\frac{F_{0}}{r} e^{i(k \cdot r-\omega t)}
$$

r-radial distance from the point source to a given pt on wave front.

$$
\frac{F_{0}}{\gamma} \text { - amplitude }
$$

\rightarrow If point source is infinitely far
away from field point (observer)
\rightarrow A spherical wave \rightarrow plane wave in this limit $\left(R_{c} \longrightarrow \infty\right)$
Criterion for a plane ware

$$
\lambda \ll R_{c}
$$

Monochromatic Plane waves associated with $\vec{E}=\vec{B}$
using complex notation is $e^{\text {it }}=\cos \omega t$ tisin ωt Euler's eq.

$$
\begin{aligned}
\Rightarrow & \overrightarrow{\tilde{E}}(\bar{r}, t)=\overrightarrow{\tilde{E}}_{0}\left(e^{i(k \cdot r-\omega t)}\right) \\
& 2 \overrightarrow{\vec{B}}(\bar{r}, t)=\overrightarrow{\widetilde{B}}_{0}\left(e^{i(k \cdot r-\omega t)}\right)
\end{aligned}
$$

For wave propagating in z-diredi.

$$
\begin{aligned}
\vec{k} \cdot \bar{r} & =\left(k_{x} \hat{x}+k y \hat{y}+k_{z} \hat{z}\right) \cdot(x \hat{x}+y \hat{y}+z \hat{z}) \\
& =k z
\end{aligned}
$$

Monochromatic EM Plane Waves

$$
\vec{F}^{2}(z, t)=\vec{E}_{0} e^{i(k z-\omega t)} \text { propaga }^{i(k z}
$$

complex vectors
Similarly for M. field

$$
\overrightarrow{\widetilde{B}}(z, t)=\overrightarrow{\vec{B}_{0}} e^{i(k z-\omega t)}
$$

with $\overrightarrow{E_{0}}=\vec{E}_{0} e^{i \delta}=E_{0} e^{i \delta} x^{\hat{B}}$

$$
2 \quad \overrightarrow{B_{0}}=\bar{B}_{0} e^{i \delta} y^{n}
$$

\Rightarrow The real, physical (instantaneous) fields are

$$
\begin{aligned}
\vec{E}(\bar{r}, t) & \equiv \operatorname{Re}(\overrightarrow{\vec{E}}(\bar{r}, t)) \\
2 \vec{B}(\bar{r}, t) & \equiv \operatorname{Re}(\overrightarrow{\vec{B}}(\bar{r}, t))
\end{aligned}
$$

\Rightarrow Maxwell's equations impose additional constraints on $\vec{E}_{0} 2 \overrightarrow{B_{0}}$

$$
\begin{array}{rll}
\text { As } \bar{\nabla} \cdot \bar{E}=0 & 2 & \bar{\nabla} \cdot \bar{B}=0 \\
\operatorname{Re}(\bar{\nabla} \cdot \vec{E})=0 & & \operatorname{Re}(\bar{\nabla} \cdot \vec{B})=0
\end{array}
$$

only satisfied if.
if $\bar{\nabla} \cdot \vec{E}=0$ for all $\bar{\gamma}, t$ and $\bar{\nabla} \cdot \stackrel{\rightharpoonup}{B}=0 \quad \forall(r, t)$
In cartesian Co-ordinates.

$$
\begin{gathered}
\vec{\nabla} z \quad \vec{\nabla}=\frac{\partial}{\partial x} x+\frac{\partial}{\partial y} \hat{j}+\frac{\partial}{\partial z} \hat{j} \\
\vec{\nabla} \cdot \vec{E}=0 \quad ; \quad \vec{\nabla} \cdot \overrightarrow{\vec{B}}=0 \\
\left(\frac{\partial}{\partial x} \hat{x}+\frac{\partial}{\partial y} \hat{y}+\frac{\partial}{\partial z} \hat{z}\right) \cdot\left(\vec{E}_{0} e^{i(k z-\infty t)}\right)=0
\end{gathered}
$$

If we allow all polarization direction

$$
\begin{aligned}
\Rightarrow & \overrightarrow{E_{0}}=\left(E_{0 x} \hat{x}+E_{0 y} \hat{y}+E_{0} \hat{z}\right) e^{i \delta} \equiv \vec{E}_{0} e^{i \delta} \\
& \bar{\nabla} \cdot \vec{E}=0 \\
\Rightarrow & \left(\frac{\partial}{\partial x} \hat{x}+\frac{\partial}{\partial y} \hat{y}+\frac{\partial}{\partial \hat{z}} \hat{)} \cdot\left(E_{0 x} \hat{x}+E_{0 y} \hat{y}+E_{0 z} \hat{z}\right) e^{i \delta} e^{i(k z-\omega t)}=0\right.
\end{aligned}
$$

Ex, Eoy z $E_{0 z} \Rightarrow$ Amplitudes of the E.F Components in x, y, z directions

$$
\begin{aligned}
\Rightarrow & \frac{\partial}{\partial x} \hat{x} \cdot E_{0 x} \hat{x} e^{i(k z-\omega t)} e^{i \delta}=0 \\
& \frac{\partial}{\partial y} \hat{y} \cdot \operatorname{Eoy} \hat{y} e^{i(k z-\omega t)} e^{i \delta}=0 \\
& \frac{\partial}{\partial z} \hat{z} \cdot E_{0 z} \hat{z} e^{i(k z-\omega t) i \delta} e^{i\left(k E_{0 z} e^{i(k z-\omega t) i \delta} e^{i}\right.}
\end{aligned}
$$

This will $=$ zero if and only if

$$
E_{0 z} \equiv 0
$$

Similar $B O z \equiv 0$ if r
\Rightarrow Maxwells epis impose the restriction that an electromagnetic plane wave cannot have any component of \vec{E} or \vec{B} parallel axil or anti-parallel to the propagation direction.
\Rightarrow EM wave is a transverse wave (at least for propagation in free space)
\rightarrow Maxwell's equs impose another restriction on the allowed form of \vec{E} and \vec{B} for an EM wave.

$$
\begin{aligned}
\vec{\nabla} \times \vec{E} & =\frac{-\partial \vec{B}}{\partial t} \quad \text { or } \quad \vec{\nabla} \times \vec{B}=\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t} \\
& =\operatorname{Re}(\vec{\nabla} \times \vec{E})=\operatorname{Re}\left(-\frac{\partial \vec{B}}{\partial t}\right)
\end{aligned}
$$

It can only be satisfied if and only

$$
\begin{aligned}
& \overline{\bar{\nabla}} \times \stackrel{\vec{E}}{\vec{E}}=\frac{-\partial \vec{B}}{\partial t} \text { or } \bar{\nabla} \times \overrightarrow{\widetilde{B}}=\frac{1}{c^{2}} \frac{\partial \overrightarrow{\widetilde{E}}}{\partial t} \\
& \bar{\nabla} \times \stackrel{\rightharpoonup}{E}=\left(\frac{\partial \widetilde{E}_{z}}{\partial y}-\frac{\partial \tilde{E}_{y}}{\partial z}\right) \hat{x}+\left(\frac{\partial \tilde{E}_{x}}{\partial z}-\frac{\partial \tilde{E}_{z}}{\partial x}\right) \hat{y}+\left(\frac{\partial \tilde{E}_{y}}{\partial x}-\frac{\partial \tilde{E}_{x}}{\partial y}\right) \\
& =-\frac{\partial \tilde{B}_{x}}{\partial t} \hat{x}-\frac{\partial \tilde{B}_{y}}{\partial t} \hat{y}-\frac{\partial \tilde{B}_{z}}{\partial t} \hat{z} \\
& \text { zero: } n_{0} \\
& x_{2} y \text { depeudere } \\
& \text { in } \tilde{E}_{x}=\tilde{E}_{y}
\end{aligned}
$$

$$
\begin{gathered}
\quad A_{s} E_{z} \& B_{z}=0 \\
\widetilde{\nabla} \times \widetilde{\tilde{E}}=-\frac{\partial \tilde{E_{y}}}{\partial z}+\frac{\partial \tilde{E}_{x}}{\partial z} \hat{y}=-\frac{\partial \tilde{B}_{x}}{\partial t} \hat{x}-\frac{\partial \tilde{B}_{y} y^{\hat{y}}}{\partial t} \text { \& it }_{\text {it }}^{\text {it }} \text { nell } \\
\text { metage } \\
\text { page }
\end{gathered}
$$

Complex Electricfield vector \vec{E} is given by

$$
\begin{aligned}
\overrightarrow{\tilde{E}} & =\tilde{E}_{x} \hat{x}+\tilde{E}_{y} \hat{y}+\tilde{E}_{z} \hat{j} \\
& =\left(E_{0 x} \hat{x}+E_{0 y} \hat{y}\right) e^{i(k z-w t)} e^{i \delta} \left\lvert\, \begin{array}{c}
\tilde{E}_{x}=E_{0 x} e^{i \delta} \\
x e^{i(k z z)}
\end{array}\right.
\end{aligned}
$$

Similarly.

$$
\begin{align*}
\overrightarrow{\widetilde{B}} & =\tilde{B}_{x} \hat{x}+\tilde{B}_{y} \hat{y}=\left(B_{0 x} \hat{x}+B_{0 y} \hat{y}\right) e^{i(k z-w t)} e^{i} \\
\bar{\nabla} \times \vec{E} & =-\frac{\partial \tilde{E}_{y}}{\partial z} \hat{x}+\frac{\partial \tilde{E_{x}}}{\partial z} \hat{y}=-\frac{\partial \tilde{B}_{x} \hat{x}}{\partial t}-\frac{\partial \tilde{B}_{y}}{\partial t} \hat{y} \tag{1}\\
\bar{\nabla} \times \overrightarrow{\widetilde{B}} & =-\frac{\partial \widetilde{B}_{y} \hat{x}}{\partial t}+\frac{\partial \tilde{B}_{x}}{\partial t} \hat{y}=\frac{1}{c^{2}} \frac{\partial \tilde{E}_{x}}{\partial t} \hat{x}+\frac{1}{e^{2}} \frac{\partial \tilde{E}_{y}}{\partial t} \hat{y} \tag{2}
\end{align*}
$$

Comparing tame components
x-Component

$$
\Rightarrow \quad \text { ikE } \begin{align*}
& \text { oy } \tag{3}\\
& \text { Fon } \\
& y-\text {-compt }
\end{align*}
$$

Foy y-cumpt.

$$
\frac{\partial E_{x}}{\partial z} \hat{y}=-\frac{\partial \tilde{B}_{y}}{\partial t} \hat{y} \Rightarrow i k E_{0 x}=i \omega B_{0} y \text {. }
$$

$$
\begin{aligned}
& \bar{\nabla} \times \overrightarrow{\tilde{E}}-\frac{\partial \tilde{E}_{y}}{\partial z} \hat{x}=-\frac{\partial \vec{B}_{x}}{\partial t} \hat{x} \\
& \begin{aligned}
& \Rightarrow \quad \frac{\partial \tilde{E}_{y}}{\partial z}=\frac{\partial \tilde{B}_{x}}{\partial t} \Rightarrow i k E_{0 y} e^{i(k z-\omega t) i /} e_{i}^{i\left(k_{z}-w\right)_{i} \mid} \\
&=-i \omega B_{0 x} e^{i} e^{i}
\end{aligned}
\end{aligned}
$$

For $\overline{\bar{x}} \times \bar{B}=\frac{\mu 0}{} \frac{\overline{\partial \bar{E}}}{\partial r}$
$\nabla \times B:\left[\frac{-\partial B_{y}}{\partial z} \hat{\imath}=\frac{1}{c^{2}} \frac{\partial E_{x}}{\partial t} \hat{x}\right]-i k B_{0 y}=\frac{-1}{c^{2}}$ ic \quad E
2

$$
\begin{equation*}
+\frac{\partial \tilde{B}_{x}}{\partial z} \hat{y}=\frac{1}{c^{2}} \frac{\partial \tilde{E}_{y}}{\partial t} \hat{y}^{n} \Rightarrow i k B_{0 x}=-\frac{1}{c^{2}} i \omega E_{0} y \tag{6}
\end{equation*}
$$

From eph 3, 4, sot we have

$$
\begin{align*}
& i k E_{0 y}=-i \omega B_{0 x} \Rightarrow E_{0 y}=-\left(\frac{\omega}{k}\right) B_{0 x} \\
& i k E_{0 x}=i \omega B_{0 y} \Rightarrow E_{0 x}=\left(\frac{\omega}{k}\right) B_{0 y} \tag{8}\\
& -i k B_{0 y}=-\frac{1}{c^{2}} i \omega E_{0 x} \Rightarrow B_{0 y}=\frac{1}{c^{2}}\left(\frac{\omega}{k}\right) E_{0 x}-9 \\
& i k B_{0 x}=-\frac{1}{c^{2}} i \omega E_{0 y} \Rightarrow B_{0 x}=-\frac{1}{c^{2}}\left(\frac{\omega}{k}\right) E_{0 y}-10
\end{align*}
$$

As $c=f \lambda$ or $c=\nu \lambda=(2 \pi f)\left(\frac{\lambda}{2 n}\right)=\frac{\nu}{k}$

$$
\frac{1}{c}=\frac{k}{\omega} \text { and } k=\frac{2 \pi}{x}
$$

equ(6) in tams of Boz $=-\left(\frac{k}{\omega}\right)$ Eon
"(8." "of $B_{0} y=\operatorname{ten}\left(\frac{\omega}{k}\right) E_{0 x}$

$$
\begin{aligned}
\vec{\nabla} \times \stackrel{\rightharpoonup}{E}: & B_{0 x}
\end{aligned}=-\frac{1}{c} E_{o y}
$$

Two independent relations are

$$
\begin{aligned}
& B_{0 x}=-\frac{1}{c} E_{0 y} \Rightarrow-\hat{x}=\hat{z} \times \hat{y} \\
& B_{0 y}=\frac{1}{c} E_{0 x} \quad \Rightarrow \quad y^{n}=\hat{z} \times \hat{x}
\end{aligned}
$$

In Compact form.

$$
\overrightarrow{\widetilde{B}}_{0}=\frac{1}{c}\left(\hat{z} \times \overrightarrow{E_{0}}\right)
$$

Physically this relation states that

$$
\vec{E} \& \vec{B} \text { are }
$$

\Rightarrow In phase with each other.
\Rightarrow Mutually \perp to each other $-(E \perp B) \perp \hat{z}$

The real amplitudes of E and B are related to each other.

$$
B_{0}=\frac{1}{c} E_{0}
$$

where $\quad B_{0}=\sqrt{B_{0 x}^{2}+B_{0} y^{2}}$

$$
2 E_{0}=\sqrt{E_{0 x}^{2}+E_{0} y^{2}}
$$

Instantaneous Poynting's Vector associate of with an EM Wave

$$
\begin{aligned}
\vec{S}(\overline{\vec{w}}, t) & =\frac{1}{M_{0}} \vec{E}(\vec{r}, t) \times \overrightarrow{\vec{B}}(\bar{r}, t) \quad \vec{r}=z \\
& =\frac{1}{M_{0}} \operatorname{Re}\{\vec{E}(z, t)\} \times \operatorname{Re}\{\widetilde{\vec{B}}(z, t)\} \quad \frac{\text { wat } s}{m^{2}}
\end{aligned}
$$

For linearly polarized plane wave propegating
in z-direction

$$
\begin{aligned}
& \vec{S}(z, t)=c \varepsilon_{0} E_{0}^{2} \cos ^{2}(k z-\omega t+\delta) z^{4} \\
& U_{E r A}(z, t)=\epsilon_{0} E_{0}^{2} \cos ^{2}(k z-\omega t+\delta)
\end{aligned}
$$

as $U_{E}=U_{B 1}$ in free space.

$$
I(\bar{r}) \equiv\langle S(\bar{r}, t)\rangle=c\left\langle u_{E M}\right\rangle=\frac{1}{2} C E_{0}^{\theta} E_{0}^{2}
$$

Electromagnetic Wave Propagation in
Linear Media
\rightarrow EM wave is propagating inside matte.
\rightarrow There are no free charges and no free currents
\rightarrow The medium is an insulator/non conductor Maxwell's equations become
$1, \bar{\nabla} \cdot \vec{D}(\bar{r}, t)=0$

$$
\begin{aligned}
& \vec{D}=\epsilon \bar{E}+\bar{P}=\epsilon \bar{E} \\
& \vec{B}=M_{0}(\bar{H}+\bar{M})=M \vec{H}
\end{aligned}
$$

$2, \bar{\nabla} \cdot \bar{B}(\bar{r}, t)=0$
3/ $\vec{\nabla} \times \vec{E}(\bar{r}, t)=-\frac{\partial B(\bar{r}, t)}{\partial t}$

$$
\begin{aligned}
& P=\epsilon_{0} X_{e} E \\
& M=X_{e} H
\end{aligned}
$$

4, $\bar{\nabla} \times \bar{H}(\bar{r}, t)=\frac{\partial \vec{D}(\bar{r}, t)}{\partial t}$

$$
\frac{\epsilon}{E_{0}}=1+x_{c}
$$

$$
\begin{aligned}
& \bar{E}_{0} \\
& \frac{M_{0}}{M_{0}}=\left(1+X_{m}\right)
\end{aligned}
$$

Medium is assume d to be linear, homogeneous and isotropic
$\Rightarrow \vec{D}=\epsilon \vec{E}(\bar{r}, t)$ and $\vec{H}(\bar{r}, t)=\frac{1}{M} \vec{B}(\bar{r}, t)$ and $P=\epsilon_{0} X_{e} E$ and $M=X_{e} H$

Maxwells equation interms of $\vec{E}=\vec{B}$
$1, \vec{\nabla} \cdot \vec{E}(\bar{r}, t)=0$
2, $\bar{\nabla} \cdot \vec{B}(\bar{r}, t)=0$
3, $\bar{\nabla} \times \vec{E}(\bar{r}, t)=\frac{-\partial B(\bar{r}, t)}{\partial t}$
4, $\bar{\nabla} \times \bar{B}(\bar{r}, t)=\mu \epsilon \frac{\partial \vec{E}(\hat{r}, t)}{\partial t}$
The \vec{E} and \vec{B} fields in medium obey
the following wave function. the following wave function.

$$
\begin{aligned}
& \nabla^{2} \bar{E}(\bar{r}, t)=\epsilon \frac{\partial^{2} \bar{E}(\bar{r}, t)}{\partial t^{2}}=\frac{1}{V_{\text {prop }}^{2}} \frac{\partial^{2} E(\bar{r}, t)}{\partial t^{2}} \\
& \nabla^{2} \bar{B}(\bar{r}, t)=\frac{\epsilon M \partial^{2} \bar{B}(\bar{r}, t)}{\partial t^{2}}=\frac{1}{v_{\text {prop }}^{2}} \frac{\partial^{2} B(\bar{r}, t)}{\partial t^{2}}
\end{aligned}
$$

where $V_{\text {prop }}=\frac{1}{\sqrt{\epsilon M}}$
is kpopspeed of propagation of EM wave in linear, homogeneous isotropic me dium.

For linear, homogeneous and isotropic media.

$$
\begin{aligned}
& \epsilon=k_{e} \epsilon_{0}=\left(1+X_{e}\right) \epsilon_{0} \Rightarrow \\
& M=k_{m} M_{0}=\left(1+X_{m}\right) M_{0} \quad \begin{array}{l}
k_{e}=\frac{\epsilon}{\epsilon_{0}}=\left(1+X_{e}\right) \\
\\
\\
\text { relative permittivity } \\
\text { or dielectrictant }
\end{array}
\end{aligned}
$$

$\Rightarrow k_{m}=\frac{M}{M_{0}}=\left(1+x_{m n}\right)$ relative magnetic permeability.

$$
\text { on } \begin{aligned}
& V_{\text {prop }}= \frac{1}{\sqrt{\epsilon M}}=\frac{1}{\sqrt{k_{e} \epsilon_{0} k_{m} M_{0}}}=\frac{1}{\sqrt{k_{e} k_{m}}} \frac{1}{\sqrt{\epsilon_{0} \mu_{0}}} \\
&= \frac{1}{\sqrt{k_{e} k_{m}}} \quad \text { where } c=\frac{1}{\sqrt{\epsilon_{0} \mu_{r}}} \\
& \text { If } k_{e} k_{m} \geq 1 \\
& \Rightarrow \quad \frac{1}{\sqrt{k_{e} k_{m}}} \leqslant 1 \\
& \Rightarrow \quad V_{\text {prop }}=\frac{1}{\sqrt{k_{e} k_{m}}} c \leqslant c
\end{aligned}
$$

as $k_{e}=\frac{\epsilon}{\epsilon_{0}}$ and $k_{m}=\frac{\mu}{M_{0}}$ are dimensionless.
$\Rightarrow \frac{1}{\sqrt{k e k m}}$ is abs dimensionless
Define the index of refraction of Linear, Homogeneous rand isotropic medium as.

$$
\begin{aligned}
& h \equiv \sqrt{k_{e} k_{m}}=\sqrt{\frac{\epsilon M}{\epsilon_{0} M_{0}}} \\
\Rightarrow & C=\frac{U^{\prime p}}{M} \quad V_{p}=\frac{c}{n} \leqslant c \\
\text { OR } & \\
& C=n V_{p r o p}^{\prime}
\end{aligned}
$$

For many pamagnetic and da-- magnetic type materials.

$$
\begin{aligned}
& M=M_{0}\left(1+X_{m}\right) \simeq M_{0} \\
& A_{s}\left(X_{m}\right) \sim \theta\left(10^{-8}\right) \sim 0 \\
& \Rightarrow K_{m}=\frac{M_{1}}{M_{0}}=\left(1+X_{m}\right)=1 \\
& \Rightarrow \quad n=\sqrt{k e} \quad 2 \quad V^{\prime}=\frac{c}{n}=\frac{c}{\sqrt{k t}}
\end{aligned}
$$

Maxwells Equations for Linear dielectric
is $\bar{\nabla} \cdot \bar{D}(r, t)=0$
(ii) $\quad \bar{\nabla} \cdot B(\bar{r}, t)=0$
iii, $\nabla_{\times} E(\bar{r}, t)=-\frac{\partial B}{\partial t}(\bar{r}, t)$
(iv, $\quad \nabla \times H(\bar{r}, t)=\frac{\partial D}{\partial t}$
Where $D=\epsilon \in F_{*} P$ o $B=\mu_{0} H$
$P-$ is the macroscopic Polarization of the medium.
ϵ_{0} - permittivity of free space
Mo - permeability of ""
Applying curl operator to both
sides of equiii we get.

$$
\begin{aligned}
& \bar{\nabla} \times \bar{\nabla} \times \bar{E}=\bar{\nabla}(\bar{\nabla} \cdot \bar{E})-\nabla^{2} E \\
\Rightarrow & \bar{\nabla}(\bar{\nabla} \cdot \bar{E})-\nabla^{2} E=-\frac{\partial}{\partial t}\left(\nabla \times \mu_{0} H\right)
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & \nabla(\nabla \cdot E)-\nabla^{2} E=-\frac{\partial}{\partial t}\left(m_{0} \frac{\partial D}{\partial t}\right) \\
& A S \quad D=\epsilon_{0} E+P \\
& \nabla(\nabla \cdot E)-\nabla^{2} E=-\epsilon_{0} M_{0} \frac{\partial^{2} E}{\partial t^{2}}-M_{0} \frac{\partial^{2} P}{\partial t^{2}}
\end{aligned}
$$

For transverse fields $\bar{\nabla} \cdot \bar{E}=0$

$$
\Rightarrow \bar{\nabla}^{2} E-\frac{1}{c^{2}} \frac{\partial^{2} \bar{E}}{\partial t^{2}}=+\frac{m \otimes J^{2} p}{\partial t^{2}}
$$

