Review of Quantum Mechanics
Classical Mechanics
classical mechanics is based on on the assumption that any physically interesting variables connecte of with a system/partide, such as its position, velocity or its energy can be measure dol with arb-- trary precisions and without mutual interference for any other such measur-
-cement.
LAW's of classical mechanics can be expressed in various mathe --matical forms.
1, Newtonian Mechanics
2) Hamiltonian Mechanics
\Rightarrow Quantum Mechanics is base \& on the realization that the measuring process mag affect the physical system.
\Rightarrow It is therefore impossible to measure simultaneously certain pair of variables
with precision.
\Rightarrow Quantum mechanics can be expressed by.
(1) Wave Mechanics
2) Dirac's Notion.

Wave Mechanics
A quantum system, such as atoms, molecules, ion etc, are given by its wave function $\psi(\bar{r}, t)$
\Rightarrow Itself $\psi(\hat{r}, t)$ has no physical mean-

- ing but it allows to calculate the expectation values of all observable, of interest.
Observables.
\Rightarrow Measurable quantities are called observable and abe represented by
Hermition operators \hat{O} Hemition operators \hat{O} Expectation values:

$$
\langle\hat{a}\rangle=\int \psi^{*}(r, t) \hat{O} \psi(\sigma, t) d \dot{\gamma}
$$

Probability
\Rightarrow As the system exist, its poobality of being somewhere has to equal 1 .

$$
\begin{aligned}
& \int \psi^{*}(\bar{r}, t) \psi(\bar{r}, t) d \bar{r}=1 \\
& \int \psi_{n}^{*}(r, t) \psi_{m}(r, t) d^{\prime} \bar{r}=\delta_{n m}\left\{\begin{array}{l}
1 \text { for } r=m \\
0 \text { for } n \neq m
\end{array}\right.
\end{aligned}
$$

The time development of system
Schrodinger equation

$$
i \hbar \frac{\partial}{\partial t} \psi(r, t)=H \psi(r, t)
$$

$\Rightarrow H \rightarrow$ Hamiltonian of the system.
\rightarrow Energy of the system.
\rightarrow For unperturbed system for instance an atom not interacting with light (Em-field) is the
sum of its potential and kinetic sum on its

$$
H=\frac{p^{2}}{2 m}+V(\bar{r})
$$

Stationar States
States for which space and time dep--endence are separated.

$$
\psi_{n}(\bar{n}, t)=U_{n}(\bar{r}) A(t)=U_{n}(\bar{r}) e^{-i \omega_{n} t}
$$

Time independent equation.

$$
H U_{n}(\bar{r})=E_{n} U_{n}(\bar{r})=\hbar \omega_{n} U_{n}(r)
$$

$U n(\bar{r})$ - called eigen function of H En - called eigen value.
\Rightarrow The eigen functions of Hermitian operators belonging to different eigen values are orthogonal
\Rightarrow Eigen functions having same eigen

$$
\int U_{n}^{*}(\bar{r}) U_{m}(\bar{r}) d \bar{n}=\delta_{n m}
$$

and Complete.

$$
\sum_{n} U_{n}^{*}(r) U_{m}(r)=1
$$

\Rightarrow The completeness relation means that any function can be whiten as a linear combination of the $U_{n}(\bar{r})$
The wave function

$$
\psi(\bar{r}, t)=\sum_{n} \psi_{n}(\bar{r}, t)=\sum_{n} C_{n}(t) \psi_{(\bar{r})}^{-i e_{n} t}
$$

$C_{n}(t)$ - exparsion coefficients.
$C_{n}(t)$ - Constant for problems relate of to free part of Hamiltonian.
$C_{n}(t)$ - Change with time for interaction Hamiltonian.
Pulling value of $\psi(r, t)$ in nomaliza-

- tron condition.

$$
\begin{aligned}
& \psi_{n}(\bar{r}, t)=\sum_{n} C_{n}(t) U_{n}(\bar{r}) e^{-i \omega n t} \\
& \psi_{m}^{*}(\bar{r}, t)=\sum_{m} C_{m}^{*}(t) U_{m}^{*}(r) e^{+i \omega_{m} t} \\
& \int \psi_{m}^{*}(\bar{r}, t) \psi_{n}(\bar{r}, t) d \bar{r}=\sum_{n, m} \int C_{n}(t) C_{m}^{*}(t) \\
& U_{n}(\bar{r}) U_{m}^{*}(\bar{r}) e^{-i\left(\omega_{n}-\omega_{m}\right) t} d \bar{r}
\end{aligned}
$$

Using

$$
\begin{gathered}
\int u_{m}^{*}(\bar{r}) U_{n}(\bar{r}) d \bar{r}=\delta_{n m} \\
\begin{aligned}
& \int \psi_{m}^{*}(\bar{r}, t) \psi_{n}(\bar{r}, t) d \bar{r}=\sum_{n, m} C_{n}(t) C_{m}^{\alpha}(t) \delta_{n m} \\
& e^{-i\left(\omega_{n}-\omega_{m}\right) t} \\
&=\sum_{n}\left|C_{n}\right|^{2}=1
\end{aligned}
\end{gathered}
$$

\Rightarrow gives the probability of finding the system in staten.

Expectation Value

$$
\begin{aligned}
&\langle\hat{v}\rangle=\int \sum_{n, m} C_{n}(t) C_{m}^{*}(t) U_{m}^{*}(r) \hat{o} U_{m}(r) x \\
& e^{-i\left(\omega_{n}-\omega_{m}\right) t} d r \\
&= \sum_{n, m} C_{n}(t) C_{m}^{*}(t) O_{n m} e^{-i \omega_{n m}}
\end{aligned}
$$

where $\omega_{n}-\omega_{m}=\omega_{n m}$ and

$$
O_{n m}=\int U_{m}^{*}(\bar{r}) O^{\hat{a}} U_{n}(r) d \bar{r}
$$

Matrix element of operator.
DIRAC NOTATION
\Rightarrow The wave function of wave mechanics corresponds to the stat vector in Dirac's formulation of quantum Mech-
\Rightarrow The relation between state vector and wave function is analogous to using vectors instead of coordinates. A vector \vec{V} is 2-D space can be expanded as.

$$
\vec{V}=V_{x} \hat{x}+V_{y} \hat{y}
$$

\hat{x}-compt of vector V

$$
\left.\begin{array}{l}
\text { is } \vec{V} \cdot \hat{x}=V_{x} \\
\text { s } \vec{V} \cdot \hat{y}=V_{y}
\end{array}\right\} \text { By taking dot product }
$$

In Diracts notation

$$
|V\rangle=V_{x}|x\rangle+V_{y}|Y\rangle
$$

Taking inner product with

$$
\begin{aligned}
\langle x \mid v\rangle & =V_{x} \\
2\langle y \mid v\rangle & =V_{y}
\end{aligned}
$$

putting in above equ we get.

$$
\begin{aligned}
|V\rangle & =|x\rangle\langle x \mid V\rangle+|Y\rangle\langle y \mid V\rangle \\
& =[|x\rangle\langle x|+|Y\rangle\langle Y\rangle]|V\rangle
\end{aligned}
$$

The identity diadic (on ta product

$$
|x\rangle\langle x|+|y\rangle\langle y|=I
$$ of two vectors)

For n-dimensional space

$$
\begin{aligned}
& \quad|v\rangle= \sum_{n}|n\rangle\langle n \mid v\rangle \\
& \Rightarrow \quad \sum_{n}|n\rangle\langle n|=I
\end{aligned}
$$

$\{|n\rangle\} \rightarrow$ complete set of vectors \rightarrow a basis.

The inner products $\langle n \mid v\rangle$ are the v expansion co-efficients of the vector V in this basis.
Expansion co-effs ate in general Complex.

$$
\langle k \mid v\rangle=\langle v \mid k\rangle^{*}
$$

For continors basis $\{|r\rangle\}$

$$
I=\int d \bar{r}|r\rangle\langle r|
$$

\Rightarrow The wave vector

$$
|\psi(\bar{r}, *)\rangle=\int d \bar{r}|r\rangle\langle r| \psi(\bar{r}, *\rangle
$$

where $\psi(\bar{r})=\langle r \mid \psi\rangle$
Where $4(r)=\langle r \mid \psi\rangle$ wave functions of wave mechanics.
\Rightarrow Hermitian

$$
\begin{gathered}
\langle\psi(\bar{r}, t)| \hat{c} \mid \psi(\bar{r}, t\rangle=\left[\langle\psi(t)| 0^{t}|\psi(t)\rangle\right]^{*} \\
=\langle\psi(t)| \hat{c}|\psi\rangle^{*} \\
\hat{O}=o^{+}
\end{gathered}
$$

\Rightarrow The set of eigen vectors of atlemitian operater is complete.
\Rightarrow And arbitrary vector $|\psi(t)\rangle$ can be expAny arbitrary sum of orthogonal eigen

- essed as a
vectors.

$$
|\psi(r)\rangle=\sum_{n=0}^{\infty} C_{n}\left|X_{n}\right\rangle e^{-i \omega n t}
$$

Eigen vectors are orthogonal

$$
\left\langle x_{n} \mid x_{m}\right\rangle=\delta_{n m} \quad \delta_{n m}=\begin{aligned}
& \quad 0 n \neq m \\
& 1 n=m
\end{aligned}
$$

Completeness relation

$$
\begin{aligned}
& \sum\left|x_{n}\right\rangle\left\langle x_{n}\right|=I \\
& |\psi(r)\rangle=\int d \dot{r}|\vec{\psi}\rangle\langle\bar{r} \mid \psi\rangle \\
& \Rightarrow \int d \bar{r}|\bar{r}\rangle\langle\bar{r}|=I
\end{aligned}
$$

State vector obeys the Schrodinge"s equation.

$$
\begin{aligned}
& i \hbar|\dot{\psi}\rangle=H|\psi\rangle \\
& \left.\left.|\psi\rangle=\sum_{n} C_{n} e^{-i \omega_{n} t}\right) n\right\rangle
\end{aligned}
$$

Expectation value can be written as.

$$
\begin{aligned}
\langle\psi| \hat{c}|\psi\rangle & =\sum_{n, m} C_{n}^{*} C_{m}^{*} e^{-i(\omega-\omega m) t} \hat{O}_{m n} \\
\hat{O}_{m n} & =\langle m| \hat{o}|n\rangle=\hat{O}_{n m}
\end{aligned}
$$

Matrix element of operator $\hat{0}$.
Two-level System
Wave function for two-tevel system is

$$
\psi(\bar{r}, t)=C_{a} U_{a}(\bar{r}) e^{-i \omega_{a} t}+C_{b} U_{b}(\bar{r}) e^{-i \omega_{b} t}
$$

State -vector.

$$
|\psi(\bar{r}, t)\rangle=C_{a} e^{-i \omega_{a} t}|a\rangle+C_{b} e^{-i \omega_{b} t}|b\rangle
$$

Schrodinger, Heisenberg and Interaction
Pictures:
Schrodinger Picture:
\rightarrow The interaction of raclition with matter involves a hamiltonian.

$$
H=H o+V
$$

Ho \qquad unperturbed enagy.
V \qquad Interaction energy
The corresponding schrodinger equ

$$
\begin{aligned}
|\dot{\psi}(\bar{r}, t)\rangle=\frac{-i}{\hbar}+1|\psi(\bar{r}, t)\rangle \\
\Rightarrow \quad|\dot{\psi}(\bar{r}, t)\rangle=\frac{-i}{\hbar}\left(H_{0}+V\right)|\psi(\bar{r}, t)\rangle
\end{aligned}
$$

$$
\langle\hat{o}\rangle=\langle\psi(t)| \hat{o}(0)|\psi(t)\rangle
$$

Operator \hat{O} is independent of time, but $|\psi(t)\rangle$ is a function of time.
\Rightarrow Schroclinger picture way of writing the expectation value of an operator.
tlersenberg Picture.
\rightarrow Total time dependence goes into operator \rightarrow stake vector is independent of time.

Expectation value of $\hat{O}(0)$ in Sch.pic

$$
\Rightarrow\langle\hat{o}\rangle=\langle\psi(t)| \hat{O}(0)|\psi(t)\rangle
$$

Can be written as

$$
\langle\hat{o}(t)\rangle=\langle\psi(t)| e^{-i H t / \hbar} e^{\text {+it }} e^{-i+H / \hbar} e^{i+H t / 4}|\psi(t)\rangle
$$

where $H=H_{0}+V$ - Total hamiltonian

$$
\begin{aligned}
& \text { As } \quad|\psi(t)\rangle=e^{-i+t / \hbar}|\psi(0)\rangle \\
& \Rightarrow e^{i+t / \hbar}|\psi(t)\rangle=|\psi(0)\rangle
\end{aligned}
$$

As

$$
e^{i+1 \psi / n}|\psi(t)\rangle=|\psi(0)\rangle
$$

Taking complex conjugate of

$$
\begin{aligned}
&|\psi(t)\rangle=e^{-i H t / \hbar} \mid \psi(0) \\
&\langle\psi(t)|=\langle\psi(0)| e^{i H t / \hbar} \\
&\langle\psi(t)| e^{-i H t / \hbar}=\langle\psi(0)| e^{i+H / \hbar} e^{-i H t / \hbar} \\
& \Rightarrow\langle\hat{O}(t)\rangle=\langle\psi(0)| e^{i H / \hbar} \hat{O}(0) e^{-i H t / \hbar}|\psi(0)\rangle
\end{aligned}
$$

Define

$$
\hat{O}(t)=e^{i+t / \hbar} \hat{O}(0) e^{-i+t / \hbar}
$$

Then

$$
\langle O(t)\rangle=\langle\psi(0)| \hat{O}(t)|\psi(0)\rangle
$$

Total time dependence is with operator.
\Rightarrow State vector is time independent Heisenberg Picture method to calculate expectation value,

Why called tleisenberg Pictur?

$$
\begin{aligned}
\hat{O}(t) & =e^{+i H t / \hbar} O(0) e^{-i t t / \hbar} \\
\dot{O}(t) & =\frac{i}{\hbar} H \hat{O}+\frac{-i}{\hbar} \hat{O} H \\
& =\frac{i}{\hbar}[H, \hat{O}]
\end{aligned}
$$

is Heisenberg equation of motion.

Interaction Picture

$$
\langle\hat{O}(t)\rangle=\langle\psi(0)| e^{i+1 / \hbar} O(0) e^{-i t 1 t / \hbar}|\psi(0)\rangle
$$

As $H=H o+V$
\Rightarrow If the time dependence created by the interaction energy is only assigned tothe state vector and rest of time dependence goes to the operator, the the expectation value is written as.

$$
\begin{aligned}
& \langle\hat{O}(t)\rangle=\left\langle\psi(0) e^{i v t / \hbar}\right| e^{i H_{0} t / \hbar} \hat{O}(0) e^{-i t_{0} t / \hbar}\left|e^{-i v t / \hbar} \psi(0)\right\rangle \\
& \Rightarrow\langle\hat{O}(t)\rangle=\left\langle\psi_{I}(t)\right| \hat{O}_{I}(t)\left|\psi_{I}(t)\right\rangle
\end{aligned}
$$

\Rightarrow The Interaction picture state vector

$$
\left|\psi_{I}(t)\right\rangle=e^{-i V t / \hbar}|\psi(0)\rangle
$$

Pauli Spin Matrix:
\rightarrow Another way to write twodevel atom is matrix notation

$$
\left.\begin{array}{l}
|a\rangle \longleftrightarrow U_{a} \longleftrightarrow\binom{1}{0} \\
|b\rangle \longleftrightarrow U_{b} \longleftrightarrow\binom{0}{1}
\end{array}\right\} \begin{aligned}
& \text { column matrix }_{\omega_{a b}}{ }^{|a\rangle}
\end{aligned} \left\lvert\, \begin{aligned}
& |b\rangle \\
& \psi(\hat{r}, t)=\left[\begin{array}{l}
C_{a} e^{-i \omega_{a t}} \\
C_{b} e^{-i \omega_{0} t}
\end{array}\right]=\left[\begin{array}{l}
C_{a(t)} \\
C_{b}(t)
\end{array}\right]
\end{aligned}\right.
$$

\Rightarrow Two-level atom is andogus to Spin up 2 down states
The spin-flip operators.

$$
\begin{aligned}
& \sigma_{+}=\frac{1}{2}\left(\sigma_{x}+i \sigma_{y}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \\
& \sigma_{-}=\frac{1}{2}\left(\sigma_{x}-i \sigma_{y}\right)=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

whee

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Pauli. Spin matrices

$$
\sigma_{-}|a\rangle=\sigma_{-}\binom{1}{0}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\binom{1}{0}=\binom{0}{1}=|b\rangle
$$

$\Rightarrow \sigma_{-}$flips the system from uppa-

- Revel to a lower-level
while σ_{+}

$$
\sigma_{+}|b\rangle=\sigma_{+}\binom{0}{1}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\binom{0}{1}=\binom{1}{0}=|a\rangle
$$

flips the system from lower - level to the upper-hevel.

Dipole, operator for two-level atom The expectation value of any operator is given by.

$$
\begin{aligned}
\langle\psi| \hat{O}|\psi\rangle= & C_{a} C_{a}^{*} \hat{O}_{a a}+C_{b} C_{b}^{*} \hat{O}_{b b}+\left\{C_{a} C_{b}^{*} \hat{O}_{a b} x\right. \\
& \left.e^{-i \text { wast }}+c \cdot c\right\}
\end{aligned}
$$

The expectation value of er is

$$
\begin{aligned}
\langle\psi| e|\psi\rangle & =e C_{a} C_{a}^{*}\langle a| r|a\rangle+e C_{b} C_{b}^{*}\langle b| c|b\rangle \\
& \left.+e\left\{C_{a} C_{b}^{*} e^{-i\left(w a-\omega_{b}\right) t}\langle ||r| a\right\rangle+c \cdot c\right\}
\end{aligned}
$$

As the diagonal matrix element of "er" between eigen states of the Hamiltonian generally vanishes.

$$
\begin{aligned}
& e r_{a a}=\langle a| e r|a\rangle=e \int u_{a}^{*}(r) \hat{r} u_{a}(r) d \bar{r}=0 \\
& e_{b b}=\langle b| e r|b\rangle=e \int U_{b}^{*}(r) r U_{b}(r) d \bar{r}=0
\end{aligned}
$$

$$
\begin{array}{r}
e r_{a b}=\langle a| e r|b\rangle=e \int U_{a}^{x}(r) r U_{b}(r) d r \\
\neq 0
\end{array}
$$

$$
\begin{aligned}
\Rightarrow\langle e r\rangle & =e C_{a} C_{b}^{*} e^{-i\left(\omega a-\omega_{b}\right) t} r_{b a}+c i c \\
& =e\left(\begin{array}{cc}
0 & r_{a b} \\
r_{b a} & 0
\end{array}\right)
\end{aligned}
$$

AtOM - FIELD INTERACTION SEMICLASSICAL Theory
\Rightarrow Atom \longrightarrow Quantum Mechanical
Field \longrightarrow Classical
Two-Level atomic system.

$$
\left.|\psi(t)\rangle=c_{\text {at }}\right)|a\rangle+c_{b}(t)|b\rangle
$$

Hamiltonian of the system

$$
H=H_{0}+H^{\prime}
$$

Ho _ Free part of Hamiltonian H^{\prime} perturbed part of Hamiltonian Completeness relation for atomic system.

$$
\begin{aligned}
& |a\rangle\langle a|+|b\rangle\langle b|=1 \\
\Rightarrow & H_{0}=\frac{(|a\rangle\langle a|+|b\rangle\langle b|}{\sqrt{1}}, H_{0}[|a\rangle\langle a|+|b\rangle\langle b|]
\end{aligned}
$$

$$
\begin{aligned}
& \text { As } H_{0}|a\rangle=E_{a}|a\rangle ; H_{0}|b\rangle=E_{b}|b\rangle \\
\Rightarrow & H_{0}=E_{a}|a\rangle\langle a|+E_{b}|b\rangle\langle b| \\
\Rightarrow & H_{0}=\hbar \omega_{a}|a\rangle\langle a|+\hbar \omega_{b}|b\rangle\langle b|
\end{aligned}
$$

Interaction part of Hamiltonian is written as.

$$
H^{\prime}=-e r \cdot E(r, t)
$$

under dipole approximation

$$
\begin{gathered}
\quad E(R, t)=E(r, t) \approx E(t) \simeq \varepsilon_{0} \cos \omega t \\
H^{\prime}=-e r \cdot \varepsilon_{0} \cos \omega t \\
H^{\prime}=[|a\rangle\langle a|+|b\rangle\langle b|] H^{\prime}[|a\rangle\langle a|+|b\rangle\langle b|] \\
=|a\rangle\langle a| H|-| a\rangle\langle a|+|b\rangle\langle b| H^{\prime}|a\rangle\langle a| \\
+|a\rangle\langle a| H^{\prime}|b\rangle\langle b|+|b\rangle\langle b|+H^{\prime}|b\rangle\langle b| \\
A_{s} \quad H_{a a}^{\prime}=0=H_{b b}^{\prime} \\
H^{\prime}=|a\rangle\langle b| H_{a b}^{\prime}+|b\rangle\langle a| H_{b a}^{\prime}
\end{gathered}
$$

Where $H_{a_{b}}^{\prime}=\langle a| H^{\prime}|b\rangle$

$$
\begin{aligned}
& =-\langle a| e r|b\rangle \varepsilon_{0} \cos \omega t \\
& =-p_{a b} \varepsilon_{0} \cos \omega t
\end{aligned}
$$

and

$$
\begin{gathered}
H_{b a}^{\prime}=-p_{b a} \varepsilon_{0} \cos \omega t \\
\Rightarrow H^{\prime}=-\left(p_{a b}|a\rangle\langle b|+p_{b a}|b\rangle\langle a|\right) E(t)
\end{gathered}
$$

where

$$
p_{a b}=p_{b a}^{*}=e\langle a| r|b\rangle \text { - matrix element }
$$

of the electric dipole moment and $E(t)$ is the field at the atom.
The time-derelopment of the system is given by schrodinger equation.

$$
|\dot{\psi}(t)\rangle=\frac{1}{i \hbar} H|\psi(t)\rangle
$$

Substitute values of state-vector and Hamiltonian we get.

$$
\begin{gathered}
\dot{C}_{a}|a\rangle+\dot{C}_{b}|b\rangle=\frac{-i}{\hbar}\left[C a \hbar w_{a}|a\rangle+C_{b} \hbar w_{b}|b\rangle+\right. \\
\left.+H_{a b}^{\prime} C_{b}|a\rangle+H_{b a}^{\prime} C_{a}|b\rangle\right]
\end{gathered}
$$

Multipling with <al and using

$$
\begin{array}{ll}
\langle a \mid a\rangle=1 & :\langle a \mid b\rangle=0 \\
\langle b \mid b\rangle=1 & :\langle b \mid a\rangle=0 \\
C_{a} \cdot & =\frac{-2}{\hbar}\left[\hbar w_{a} c_{a}+H_{a b}^{\prime} c_{b}\right]
\end{array}
$$

and

$$
c_{b}=-\frac{i}{\hbar}\left[\hbar \omega_{b} c_{b}+H_{b a}^{\prime} c_{a}\right]
$$

Putting values of interaction Hamiltonian

$$
\dot{c}_{a}=-i \omega_{a} c_{a}+\frac{i p_{a b}}{\hbar} \varepsilon_{0} \cos \omega t c_{b}
$$

and

$$
i_{b}=-i \omega_{b} c_{b}+\frac{i p_{b a}}{h} \varepsilon_{0} \cos \omega t c_{a}
$$

Define

$$
\Omega_{R}=\frac{\left|p_{b a}\right|}{\hbar} \varepsilon \text {-Rabi frequency }
$$

$$
\begin{aligned}
p_{b a} & =\left|p_{b a}\right| e^{i \phi} \\
\Rightarrow p_{a b} & =p_{b a}^{*}=\left|p_{b a}\right| e^{-i \phi}
\end{aligned}
$$

where ϕ is the phase of the alipole matrix element

$$
\begin{aligned}
\Rightarrow \quad \dot{c}_{a} & =-i \omega_{a} c_{a}+i \Omega_{R} e^{-i \phi} \cos \omega t c_{b} \\
\dot{c}_{b} & =-i \omega_{b} c_{b}+i \Omega_{R} e^{i \phi} \cos \omega t c a
\end{aligned}
$$

Transform $c_{a} 2 c_{b}$ (Sch. picture amplitude, into slowly varying interaction picture amplitude

$$
\begin{aligned}
& C_{a}=C_{a} e^{i \omega_{a} t} \\
& C_{b}=C_{b} e^{i \omega_{b} t}
\end{aligned}
$$

Differentiating above eqn's

$$
\begin{aligned}
C_{a} & =i_{a} e^{i \omega_{a} t}+i \omega_{a} C_{a} e^{i \omega a t} \\
C_{a} & =\left(-i \omega_{a} c_{a}+i \Omega_{R} e^{-i \phi} \cos \omega t c_{b}\right) e^{i \omega_{a} t}+i \omega_{Q} C_{a} e^{i \omega_{a} t} \\
& =i \Omega_{R} e^{-i \phi} \cos \omega t c_{b} e^{i \omega_{a} t} \\
& =i \Omega_{R} e^{-i \phi} \cos \omega t e^{i \omega_{a b} t} C_{b} \quad \omega_{a_{b}}=\omega_{a}-\omega_{b}
\end{aligned}
$$

Similarly.

$$
\dot{C}_{b}=i \Omega_{R} e^{i \phi} \cos \omega t e^{-i \omega_{a b} t} C_{a}
$$

$\omega_{a b}=\omega_{0}$ - transition frequency.
Expanding coswt.

$$
\dot{C}_{a}=\frac{i \Omega_{R}}{2} e^{-i \phi}\left[e^{i \omega t+i \omega_{0} t}+e^{-i \omega t+i \omega_{0} t}\right] C_{b}
$$

Neglecting rapidly oscillating terms like $e^{i\left(\omega+\omega_{0}\right) t}$

$$
C_{a}=\frac{i \Omega_{R}}{2} C_{b} e^{i\left(\omega_{0}-\omega\right) t} e^{-i \phi}
$$

Similarly.

$$
\dot{C}_{b}=\frac{i \Omega_{R}}{2} C_{a} e^{-i\left(\omega_{0}-\omega\right) t} e_{\phi}^{+i \phi}
$$

where $\Delta=w_{0}-\omega$. detuning.
\Rightarrow Consider atom initially in the excited state $\quad C_{a}(0)=1$

$$
C_{b}(0)=0
$$

Assume resonance $\Delta=\omega_{0}-\omega=0$

$$
\begin{aligned}
& C_{a}(t)=\cos \frac{\Omega_{R} t}{2} \\
& C_{b}(t)=i e^{i \phi} \sin \frac{\Omega_{e} t}{2}
\end{aligned}
$$

Probability of atom in state $|a\rangle$ at time t

$$
\begin{aligned}
P_{a}(t) & =|\langle\psi \mid a\rangle|^{2}=\left|C_{a}(t)\right|^{2} \\
& =\cos ^{2}\left(\frac{\Omega_{R} t}{2}\right)=\frac{1}{2}\left(1+\cos \Omega_{R} t\right)
\end{aligned}
$$

and

$$
\begin{aligned}
P_{b}(t) & =\left|C_{b}(t)\right|^{2}-P_{r o b a b i l i t y ~ o f ~ a t o m ~} \\
& =\sin ^{2}\left(\Omega_{R} t\right) \\
& =\frac{1}{2}\left(1-{ }^{2} \cos \Omega_{R} t\right)
\end{aligned}
$$

Atom oscillates with Rabi-frep.

Population inversion

$$
\begin{aligned}
& W(t)=P_{a}(t)-P_{b}(t) \quad \text { at } \Delta=0 \\
& W(t)=\cos ^{2}\left(\frac{\Omega_{R} t}{2}\right)-\sin ^{2}\left(\frac{\Omega_{R} t}{2}\right)=\cos \Omega_{R} t
\end{aligned}
$$

It oscillates between -1 and +1
$1 \times 1(t)$

There are three frequency involved
1, $\omega_{0}=\omega_{a}-\omega_{b}=\frac{E_{a}-E_{b}}{\hbar}$. Transition Frequency
2, ω frequency of the field
3, Rabi frequency $\Omega_{R}=\frac{\left|P_{a b}\right| \varepsilon}{\hbar}$

Atom-Field Interaction
Quantum Theory.
\Rightarrow ATOM \longrightarrow Quantum Mechanically
\Rightarrow Field \longrightarrow Quantum Mechanically.
Interaction between a single-mode radiation field and a two-level atom inside a cavity

Atomic state-vector

$$
\left|\psi_{\text {atom }}\right\rangle=c a|a\rangle+c b|b\rangle
$$

Field state-vector

$$
\left|\psi_{\text {field }}\right\rangle=\sum_{n} C_{n}|n\rangle
$$

Atom-field state-vector

$$
\left|\psi_{a-p}\right\rangle=\sum_{n}\left[C_{a, n}|a\rangle|n\rangle+C_{b, n}|b\rangle|n\rangle\right]
$$

$\mathrm{Ca}, n \longrightarrow$ probability amplitude

If at time $t=0$

$$
\left|\psi(0)_{a-f}\right\rangle=|a\rangle|n\rangle
$$

Then at later time t.

$$
\left|\psi(t)_{a-f}\right\rangle=\langle a, n \mid a\rangle|n\rangle+c_{b, n+1}|b\rangle|n+1\rangle
$$

\Rightarrow a finite probability that atom has made a transition to the lower level and emitted a photon.

Total Hamiltonian of the system

$$
\begin{aligned}
H_{A} & =H_{A}+H_{F}+I_{I} \\
H_{A} & - \text { Energy of Free-atom } \\
& =\sum_{i} E_{i}|i\rangle\langle i| \\
& H_{F}
\end{aligned}=\text { Energy of free-field } \quad \begin{aligned}
& =\sum_{k} \hbar \omega_{k}\left(a_{k}^{+} a_{k}+\frac{1}{2}\right) \\
H_{I} & =\text { Interaction energy under dipole-approximation } \\
H_{I} & =-e \vec{r} \cdot \vec{E}
\end{aligned}
$$

Define - atom transition operators

$$
\begin{aligned}
& \sigma_{i j}=|i\rangle\langle j| \quad i, j-\text { atomic level } \\
\Rightarrow & H_{A}=\sum_{i} E_{i} \sigma_{i i}
\end{aligned}
$$

and

$$
\begin{aligned}
e \vec{r} & =\sum_{i} \sum_{j}|i\rangle\langle i| e \bar{r}|j\rangle\langle j| \\
& =\sum_{i, j} p_{i j} \sigma_{i j}
\end{aligned}
$$

with

$$
p_{i j}=e\langle i| \vec{r}|j\rangle \text { - electric-dipote transition } \quad \underset{\text { matrix element. }}{ }
$$

Electric field operator

$$
E=\sum_{k} \hat{\epsilon}_{k} \varepsilon_{k}\left(\hat{a}_{k}+\hat{a}_{k}^{+}\right)
$$

with

$$
\varepsilon_{k}=\left(\hbar \omega_{k} / 2 \epsilon_{0} V\right)
$$

$\hat{\epsilon}_{k}$-represents polarization
\Rightarrow Complete Hamiltonian

$$
\begin{aligned}
H= & \sum_{k} \hbar \omega_{k}\left(\hat{a}_{k}^{+} \hat{a}_{k}+\frac{1}{2}\right)+\sum_{i} E_{i} \sigma_{i i}+ \\
& +\hbar \sum_{i, j} \sum_{k} g_{k}^{i j} \sigma_{i j}\left(\hat{a}_{k}+\hat{a}_{k}^{+}\right)
\end{aligned}
$$

Here

$$
g_{k}^{i j}=\frac{-p_{i j} \cdot \hat{e}_{k} \varepsilon_{k}}{\hbar} \text { - coupling constant. }
$$

- similar to Rabi-frequenco.

For a two-level atom and single-mode field

$$
\left.\begin{array}{rl}
k & =1 \\
i & =a, b \\
j & =a, b
\end{array}\right\} \text { for two-devel atom. }
$$

dipolertransitions.
and

$$
g^{a b}=g^{b a}=g \quad g \text { is real. }
$$

As $\quad \sigma_{a a}+\sigma_{b b}=|a\rangle\langle a|+|b\rangle\langle b|=1$
Hamiltonian reduces to

$$
\begin{aligned}
H= & E_{a \sigma_{a a}}+E_{b \sigma_{b b}}+\hbar \omega\left(a^{+} a+\frac{1}{2}\right)+ \\
& +\hbar g\left(\sigma_{a b}+\sigma_{b a}\right)\left(a+a^{+}\right)
\end{aligned}
$$

First term

$$
\begin{aligned}
E_{a} \sigma_{a a}+E_{b \sigma_{b b}} & =\frac{1}{2}\left(E_{a}-E_{b}\right)\left(\sigma_{a a}-\sigma_{b b}\right) \\
& +\frac{1}{2}\left(E_{a}+E_{b}\right)\left(\sigma_{a a}+\sigma_{b b}\right)
\end{aligned}
$$

As $E_{a}-E_{b}=\hbar \omega_{0}$

$$
\Rightarrow E_{a \sigma_{a a}}+E_{b} \sigma_{b b}=\frac{1}{2} \hbar \omega_{0}\left(\sigma_{a a}-\sigma_{b b}\right)+\frac{1}{2}\left(E_{a}+E_{b}\right)
$$

The total Hamiltonian

$$
\begin{gathered}
H=\hbar \omega\left(a^{+} a+\frac{1}{2}\right)+\frac{1}{2} \hbar \omega_{0}\left(\sigma_{a a}-\sigma_{b b}\right)+\frac{1}{2}\left(E_{a}+E_{b}\right) \\
+\hbar g\left(\sigma_{a b}+\sigma_{b a}\right)\left(a+a^{+}\right) \\
\sigma_{a a}-\sigma_{b b}=\sigma_{2} \\
\sigma_{a b}=|a\rangle\langle b|=\sigma_{+} \\
\sigma_{b a}=|b\rangle\langle a\rangle=\sigma_{-}
\end{gathered}
$$

Ignoring
$\frac{1}{2}\left(E_{a}+E_{b}\right) 2 \frac{1}{2} \hbar \omega\{$ constant enegy terms

$$
H=\hbar \omega a^{+} a+\frac{1}{2} \hbar \omega_{0} \sigma_{z}+\hbar g\left(\sigma_{+}+\sigma_{-}\right)\left(a+a^{+}\right)
$$

Here

$$
\begin{aligned}
& \sigma_{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \text { - lowering operator } \\
& \sigma_{+}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \text { - raising operator } \\
& \sigma_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

$$
\Rightarrow H=\hbar \omega a^{+} a+\frac{1}{2} \hbar \omega 0 \sigma_{2}+\hbar g\left(\sigma_{1} \hat{a}^{\hat{+}}+\sigma_{+} a^{+}+\sigma_{-} \hat{a}+\sigma \hat{a}^{+}\right)
$$

$\left.\begin{array}{l}\sigma_{+} a^{+} \\ \sigma_{-} a\end{array}\right\}$ energy non-conservingterms σ a Doping under RWA

$$
\begin{array}{r}
\Rightarrow H=\hbar \omega_{a}+a+\frac{1}{2} \hbar \omega_{0} \sigma_{z}+\hbar g\left(\sigma_{+} a+a^{+} \sigma_{-}\right) \\
H_{0}=\hbar \omega_{a}+a+\frac{1}{2} \hbar \omega_{0} \sigma_{z} \\
H_{I}=\hbar g\left(\sigma_{+} a+a^{+} \sigma_{-}\right)
\end{array}
$$

For multimode field

$$
H=\sum_{k} \hbar \omega_{k} a_{k}^{+} a_{k}+\frac{1}{2} \hbar \omega_{0} \sigma_{z}+\hbar \sum_{k} g_{k}\left(\sigma_{1} a_{k}+a_{k}^{+} \sigma_{-}\right)
$$

Hamiltonian

$$
H=\hbar a^{+} a+\frac{1}{2} \hbar \omega_{0} \sigma_{z}+\hbar g\left(\sigma_{+} a+a^{+} \sigma\right)
$$

Describes the atom-field interaction under dipole and rotating-wave-approximat

This Hamiltonian is exadly solvable is called Jaynes - Cumming Model (JCM)

Interaction Picture

Operator in Interaction Picture

$$
\hat{O}_{I}=e^{i H_{0} t / \hbar} \hat{O}(0) e^{-i H_{0} t / \hbar}
$$

Hamiltonian in Interaction picture

$$
V=e^{i H_{0} t / \hbar} H_{I} e^{-i H_{0} t / \hbar}
$$

with

$$
\begin{aligned}
& H_{0}=\frac{1}{2} \hbar \omega_{0} \sigma_{2}+\hbar \omega_{a^{+}} a \\
\Rightarrow & V=\hbar g\left\{e^{i\left(\omega^{+}+a+\frac{\omega_{0} \sigma_{2}}{2}\right) t}\left(\sigma_{1} \hat{a}+a^{+} \sigma_{)}\right) e^{-i\left(\omega_{0}^{+} a+\frac{\omega_{0} \sigma_{2}}{2}\right) t}\right\}
\end{aligned}
$$

Atomic and field operators comate

$$
\begin{aligned}
& \left.+\left(e^{i \omega \alpha^{\dagger} a t} a^{+} e^{-i \omega a^{+} a t}\right)\left(e^{i \omega 0 \sigma_{2} t} \sigma^{2} e^{-i \omega 0 \sigma_{2} t}\right)\right\}
\end{aligned}
$$

Using

$$
e^{\alpha A} B e^{-\alpha A}=B+\alpha[A, B]+\frac{\alpha^{2}}{\partial!}[A[A, B]]+\cdots
$$

First consider

$$
e^{i \omega a^{t} a t} \hat{a} e^{-i \omega a^{t} a t}=?
$$

here $\alpha=i w t ; A=\hat{a}^{+} \hat{a}$ and $B=a^{\hat{a}}$

$$
e^{i \omega a^{+} a t} \hat{a} e^{-i \omega a^{t} a t}=\hat{a}+i \omega t\left[\hat{a}^{+} \hat{a}, \hat{a}\right]+\frac{(i \omega t)^{2}}{2!}\left[a^{+} a,\left[a^{+} a, a\right)\right]+
$$

As $\left[\hat{a}, \hat{a}^{+}\right]=1 \quad 2 \quad\left[\hat{a}^{+}, \hat{a}\right]=-1$

$$
\begin{aligned}
{\left[a^{+} a, a\right] } & =\hat{a}^{+} \hat{a} \hat{a}-\hat{a} \hat{a}^{+} \hat{a}=\left[\hat{a}^{+} \hat{a}-\hat{a} \hat{a}^{+}\right] \hat{a} \\
& =\left[\hat{a}^{+}, \hat{a}\right] \hat{a}=-\hat{a}
\end{aligned}
$$

And

$$
\left[a^{+} a,\left[a^{+} a, a\right]\right]=\left[\hat{a}^{+} \hat{a},-\hat{a}\right]=\hat{a}
$$

Putting in above eph we get.

$$
\begin{aligned}
e^{i \omega a t a t} \hat{a} e^{-i \omega t a t} & =\hat{a}-i \omega t a^{\hat{a}}+\frac{(i \omega t)^{2}}{2!} a-\frac{(i \omega t)^{3}}{3!} a+\cdots \\
& =a\left[1-i \omega t+\frac{(i \omega t)^{2}}{2!}-\frac{(i \omega t)^{3}}{3!}+\cdots\right] \\
& =a e^{-i \omega t}=\hat{a}_{I}-\frac{\text { destruction in }}{1 \cdot P}
\end{aligned}
$$

Similarly.

$$
\begin{aligned}
& e^{i \omega a^{+} a t} \hat{a} e^{-i \omega a^{t} a t}=a^{+} e^{i \omega t}=\hat{a}_{I}^{+} \\
& e^{i \frac{\omega_{0} \sigma_{z}}{2}} \sigma_{+} e^{-i \frac{\omega_{0}+\sigma_{2}}{2}}=\sigma_{+} e^{i \omega_{0} t}=\sigma_{+I}
\end{aligned}
$$

And $e^{i \frac{\omega_{0} t \sigma_{2}}{2}} \sigma_{-} e^{-i \frac{\omega_{0} t}{2} \sigma_{z}}=\sigma_{-} e^{-i \omega_{0} t}=\sigma_{-I}$
Putting in V we get.

$$
\begin{aligned}
V & =\hbar g\left[\sigma_{+} a e^{i\left(\omega_{0}-\omega^{2}\right) t}+a^{+} \sigma_{-} e^{-i\left(\omega_{0}-\omega\right) t}\right] \\
& =\hbar g\left(\sigma_{+} \hat{a} e^{i \Delta t}+a^{+} \sigma_{-} e^{-i \Delta t}\right)
\end{aligned}
$$

where $\Delta=w_{0}-\omega$ - detuning.
The non-conservative terms

$$
\begin{aligned}
& \sigma_{+} \hat{a}^{+} \approx e^{i\left(\omega_{0}+\omega\right) t} \text { ? Rapidly oscillating } \\
& \sigma_{-} \hat{a} \sim e^{-i\left(\omega_{0}+\omega\right) t} \text { neglected in R.WA. } \\
& \Rightarrow I_{n} \cdot P \\
& \hat{a}_{I}^{+}=a^{+} e^{i \omega t} ; a_{I}=a e^{-i \omega t} \\
& \text { and } \\
& \sigma_{+I}=\sigma_{+} e^{i \omega_{0} t} ; \sigma_{-I}=\sigma e^{-i \omega_{0} t}
\end{aligned}
$$

At exact resonance

$$
\begin{aligned}
& \Delta=\omega_{0}-\omega=0 \quad \\
\Rightarrow & V=\hbar g\left(a \sigma_{+}+a^{+} \sigma\right)
\end{aligned}
$$

Is the interaction part of Hamiltonian in Interaction picture in RW/A approximation and at exact resonance.

Equation of motion in Interaction picture is written as.

$$
\left|\psi_{I}\right\rangle=\frac{-i}{\hbar} V|\psi\rangle
$$

The state-vector in I.P

$$
|\psi(t)\rangle_{I}=\sum_{n}\left[C_{a n}(t)|a, n\rangle+C_{b_{n}}(t)|b, n\rangle\right]
$$

Can $2 C_{b n}$ - slowly varying probability
amplitudes. amplitudes.

The interaction energy can only cause transitions b/w $|a, n\rangle 2|b, n+1\rangle$

$$
\Rightarrow \quad\left|\psi_{I}(t)\right\rangle=\langle a n \mid a, n\rangle+C_{b, n+1}|b, n+1\rangle
$$

Putting in eph. of motion and multipling the result by $\langle a, n|$

$$
\begin{aligned}
\dot{C}_{a n}= & -i g\langle a, n|\left(a \sigma_{+}+a^{+} \sigma_{-}\right)|a, n\rangle C_{a, n} \\
& \left.-i g\langle a, n| a \sigma_{+}+a^{+} \sigma_{-}\right)|b, n+i\rangle C_{b, n+1}
\end{aligned}
$$

using

$$
\begin{aligned}
& a|n\rangle=\sqrt{n}|n-1\rangle: a^{+}|n\rangle=\sqrt{n+1}|n+1\rangle \\
& \sigma_{+}|b\rangle=|a\rangle ; \sigma_{-}|a\rangle=|b\rangle \\
& \text { and }\langle\alpha, n \mid \alpha, n\rangle=1 \\
& \Rightarrow C_{a n}(t)=-2 g \sqrt{n+1} C_{b, n+1}(t) \\
& C_{b, n+1}(t)=-i g \sqrt{n+1} C_{a, n}(t)
\end{aligned}
$$

Coupled differential equations.

For atom initially in level $|a\rangle$

$$
\begin{aligned}
& C_{a n}(0)=C_{n}(0) \quad \text { where } C_{a}(0)=I \\
& C_{b n}(0)=0 \quad, C_{b}(0)=0 \\
& \Rightarrow C_{a n}(t)=C_{a n}(0) \cos (g \sqrt{n+1} t)=C_{n}(0) \cos g \sqrt{n+1} t \\
& \text { and } \\
& C_{b, n+1}(t)=-i C_{a n}(0) \sin (g \sqrt{n+1} t)=-i(n(0) \sin (g \sqrt{n+1} t)
\end{aligned}
$$

There are the conditions for emission For stimulated absorption

$$
\left|\Psi_{I}(0)\right\rangle=|b\rangle
$$

Solutions are

$$
\begin{aligned}
& \left(a, n(t)=-i \sin (g \sqrt{n+1} t) C_{b, n+1}(0)\right. \\
& \left(C_{b, n+1}(t)=\cos (g \sqrt{n+1} t) C\right.
\end{aligned}
$$

The factor $g \sqrt{n+1}$ is the Rabi flopping frequency.

Population Inversion.
Probability of finding atom in state $|a\rangle$ - taking trace over field variables

$$
\begin{aligned}
P(a) & =\operatorname{Tr}_{f}\left|C_{a n}\right|^{2}=\operatorname{Trg}_{f} \sum_{n}|n\rangle\langle n|\left|C_{a n}\right|^{2} \\
& =\sum_{n}\langle n \mid n\rangle\left|C_{a n}\right|^{2}=\sum_{n}\left|C_{a n}\right|^{2}
\end{aligned}
$$

Probability of finding the atom in state lb)

$$
P(b)=\sum_{n}\left|C_{b n}\right|^{2}
$$

\Rightarrow Population Inversion

$$
W=P(a)-P(b)=\sum_{n}\left[\left|C_{a n}\right|^{2}-\left|C_{b n}\right|^{2}\right]
$$

Probability of finding n-photons in the field at time is

$$
\begin{aligned}
P(n, t) & =T_{r_{\alpha}}\left|C_{\alpha, n}(t)\right|^{2}=\sum_{\alpha=a, b}\left|C_{\alpha, n}(t)\right|^{2} \\
& =\left|C_{a n}(t)\right|^{2}+\left|C_{b n}(t)\right|^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow P(n, t)=S_{n n}(t) \\
& \Rightarrow S_{n n}(0)=\left|C_{a n}(0)\right|^{2}+\left|C_{b n}(0)\right|^{2}
\end{aligned}
$$

For initial condition

$$
\begin{aligned}
& C_{\text {an }}(0)=C_{n}(0) \& \quad C_{b, n+1}(0)=0 \\
\Rightarrow & S_{n n}(0)=\left|C_{\text {an }}(0)\right|^{2}=\left|C_{n}(0)\right|^{2} \quad \because C_{a}(0)=1
\end{aligned}
$$

It gives the probability that there are n-photons in the field at time $t=0$

$$
\begin{aligned}
\Rightarrow P(n, t) & =\left|C_{a n}(0)\right|^{2} \cos ^{2}(g \sqrt{n+1} t)+\left|C_{a, n-1}(0)\right|^{2} \sin ^{2} g \sqrt{n} t \\
& =\rho_{n n}(0) \cos ^{2}(g \sqrt{n+1} t)+\rho_{n-1, n-1}(0) \sin ^{2} g \sqrt{n} t
\end{aligned}
$$

Using $\rho_{\text {ni in }}(0)=\left|C_{\text {an }}(0)\right|^{2} \quad$ Population inversion can be written as.

$$
\begin{aligned}
W & =P(a)-P(b)=\frac{\sum}{n}\left[\left|C_{a n}\right|^{2}-\left|C_{b n}\right|^{2}\right] \\
& =\sum_{n}\left[\rho_{n n}(0) \cos ^{2} g \sqrt{n+1} t-\rho_{n-1, n-1}(0) \sin ^{2} g \sqrt{n} t\right]
\end{aligned}
$$

We need $\operatorname{Snn}(0)=$? for W

In semiclassical theory probability amplitudes are

$$
\begin{aligned}
& C_{a}(t)=\cos \left(\frac{\Omega_{R} t}{2}\right) \\
& C_{b}(t)=i \sin \left(\frac{\Omega_{R} t}{2}\right)
\end{aligned}
$$

$$
\Omega_{R}=\frac{p \cdot \varepsilon}{\hbar}=\text { Rabi-freq }
$$

$\Rightarrow \quad$ Population inversion in semiclassical theory

$$
\begin{aligned}
V \mid(t) & =P_{a}(t)-P_{b}(t)=\cos ^{2}\left(\frac{\Omega_{e} t}{2}\right)-\sin ^{2}\left(\frac{\Omega_{e} t}{2}\right) \\
& =\cos \left(\Omega_{R} t\right)
\end{aligned}
$$

Population inversion oscillates b/w-12+1 at at freq. Ω_{R}. Atom undergoes a Rabi flopping b/w the upper and lower level under the action of field.

If atomic is included the probability amplitudes are written as.

$$
\begin{aligned}
& C_{a}(t)=e^{-\gamma / 2 t} \cos \left(\frac{\Omega_{R} t}{2}\right) \\
& C_{b}(t)=i e^{-\gamma / 2 t} \sin \left(\frac{\Omega_{R} t}{2}\right)
\end{aligned}
$$

\Rightarrow Population inversion at time t is

$$
W(t)=e^{-\gamma t} \cos \left(\Omega_{R} t\right)
$$

Rabi-oscillations are damped due to atomic decay.

In quantum theory of atom-field interaction For atom initially in excited state we hare

$$
\left.W(t)=\sum_{n}\left[\rho_{n n}(0) \cos ^{2} g \sqrt{n+1} t-\rho_{n-1, n-1}(0) \sin ^{2} g \sqrt{n} t\right]_{\sqrt{\text { shifting }} \text { br }}\right]_{0 n c}
$$

$S_{n n}(0)=\left|C_{n}(0)\right|^{2}$ - probability that there are n-photons at time $t=0$
Field can be
i) Vaccum
iii. Fork state
iiii Coherent state.
i, For a vacuum state

$$
\begin{aligned}
& \quad \rho=|0\rangle\langle 0| \\
& \Rightarrow \rho_{n n}(0)=\langle n \mid 0\rangle\langle 0 \mid n\rangle=\delta_{n 0}=1 \\
& \text { As } \\
& W(t)=\sum_{n=0}^{\infty}\left[\rho_{n n}(0) \cos ^{2} g \sqrt{n+1} t-\rho_{n n}(0) \sin ^{2} g \sqrt{n+1} t\right] \\
& =\sum_{n=0}^{\infty} \rho_{n n}(0)[\cos 2 g \sqrt{n+1} t]
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow W(t) & =\sum_{n=0}^{\infty} \delta_{n_{0}} \cos (2 g t \sqrt{n+1}) \\
& =\cos 2 g t \sqrt{1} \quad \text { for } n=0
\end{aligned}
$$

\Rightarrow The Rabi-oscillations take place even when there is no field.
\Rightarrow The square root of $1 \quad i, e, \sqrt{1}$ corresponds to spantanears emission.
This is drastically different from the predictions of semi-classical theory.
\Rightarrow In Semi-classical theory the probability of finding the atom in state $|b\rangle$ is $P_{b}(t)=\sin ^{2}$ (STet) whee $\Omega_{R}=\frac{P \cdot E}{\hbar}$
If there is no field.

$$
P_{b}(t)=\sin ^{2}\left(\Omega_{R} t\right)=0
$$

\Rightarrow No transition in the absences of field.

In quantum theory. the probability of finding atom in state $|b\rangle$ is

$$
\begin{aligned}
P_{b}(t) & =\sum_{n=0}^{\infty}\left|C_{b n}(t)\right|^{2} \\
& =\sum_{n=0}^{\infty} S_{n n}(0) \sin ^{2}(g \sqrt{n+1} t)
\end{aligned}
$$

$$
\text { For Vacuum }=\text { no. field }
$$

$$
\begin{aligned}
& \left.\operatorname{Snn}(0)=\delta_{n 0} \quad\right\}=1 \text { for } n=0 \\
\Rightarrow & P_{b}(t)=\sum_{n=0}^{\alpha} \delta_{n_{0}} \sin ^{2}(g \sqrt{n+1} t)=\sin ^{2} g t
\end{aligned}
$$

Vacuum Rabi-frg,
\Rightarrow In semi-classical theory-atom in excited state cannot make a transition to lower-level in the absence of field. In quantum treatmed transition from $|a\rangle \rightarrow|b\rangle$ in vacuum becomes possible due to spontaneoy emission.

For field initially in number state

$$
\begin{aligned}
& f=\left|n_{0}\right\rangle\left\langle n_{0}\right| \\
\Rightarrow \quad f_{n n}(0) & =\left\langle n \mid n_{0}\right\rangle\left\langle n_{0} \mid n\right\rangle=S_{n n 0} \\
\Rightarrow W(t) & \left.=\sum_{n=0}^{\infty} \delta_{n n_{0}} \cos \alpha 2 g \sqrt{n+1} t\right) \\
= & \cos 2 g t \sqrt{n_{0}+1} \\
& \text { for } n_{0} \gg 1 \\
W(t) & \simeq \cos \left(2 g t \sqrt{n_{0}}\right)
\end{aligned}
$$

\Rightarrow This is like semi-classical result For $n_{0} \gg 1$

$$
W(t)=\cos \left(2 g t \sqrt{n_{0}}\right)
$$

here fur $n_{0}=0$

$$
V(t)=0 \quad \text { like classical }
$$ treatment.

For the field to be initially in the coherent state.

$$
\begin{aligned}
& \rho_{n n}(0)=\frac{|\alpha|^{2 n} e^{-|\alpha|^{2}}}{n!} \\
\Rightarrow & W(t)=\sum_{n=0}^{\infty}\left[\frac{e^{-|\alpha|^{2}}|\alpha|^{2 n}}{n!} \cos ^{2} g \sqrt{n+1}+-\frac{e^{-\mid \alpha)^{2}}|\alpha|^{2 n-1}}{(n-1)!} \sin ^{2} g \sqrt{n t}\right]
\end{aligned}
$$

here $|\alpha|^{2}=\bar{n}$

$$
\begin{aligned}
W(t) & =\sum_{n=0}^{\infty}\left(\frac{e^{-n} \bar{n}^{n}}{n} \cos ^{2} g \sqrt{n+1}+-\frac{e^{-\bar{n}}-(n-1)}{\sum(n-1)!} \sin ^{2} g \sqrt{n t}\right] \\
& =\sum_{n=0}^{\infty} \frac{e^{-\langle n\rangle}\langle n\rangle}{n!}\left[\cos ^{2} g \sqrt{n+1} t-\sin ^{2} g \sqrt{n+1} t\right] \\
& =\sum_{n=0}^{\infty} \operatorname{snn}(0)[\cos 2 g \sqrt{n+1} t]
\end{aligned}
$$

$x_{-1}^{+1} 0-\sqrt{1(x)}$

The phenomena of collapse and revival can be understood from

$$
W(t)=\sum_{n=0}^{\infty} \sin (0)[\cos 2 g \sqrt{n+1} t]
$$

\Rightarrow Each term in the summation represents
Rabi-oscillations; for a definite value of n. At time $t=0$ all terms are correlate of. As time increases the Rabi-osciffations associated with different excitations have different frequenies and therefore beccuies un-cooreleted leading to a collapse of inversion. As time further increase dol the correlation is restored and revival occurs.
\Rightarrow Revival is pure Q.M phenomenon and cures due to the discrete valuexth.

The number state behaves like semi--classical state because both have definite Intensity, nee le dol to avoid the interference leading to a collapse. The random phase associate \& with number state (but not with the classical field) is not important for Rabi-flopping since the atom and fred \& maintain a precise relative phase in the absence of decay processes.
While cokes minimum uncertainty intensity in coherent state, causes the atom-field relative phase to diffure away ice any spread in field strength will dephase Rabi-oscillaticus

