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Three sets of experiments will be presented, namely on: 
     

1 - MICHELSON  INTERFEROMETER, WITH AN 
 INTRODUCTION ON INTERFERENCE 

2 - BASIC OF SPECTROSCOPY: DECOMPOSITION OF LIGTH 
 BY DIFFRACTION GRATINGS 

3 - DIFFRACTION and FOURIER TRANSFORM   

------------------------- 

1 - INTERFERENCE AND MICHELSON 
INTERFEROMETER 

1.1 Simple formulas on interference 
Let us start by considering the superposition of two spherical waves, of a given wavelength, l, like 
those used in the theory of the Young interferometer. Remember that the interferometer was 
developed by Young to show the wave nature of light.  It consisted of two very small holes on an 
opaque screen, at a small separation with respect to the other dimensions. A plane wave, impinging 
on one side, gives rise to two spherical waves on the other side, one from each hole, according to 
Huygens-Fresnel principle.  
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Let us consider two spherical waves v1 and v2 from two source points, e.g. the two holes. As usual in 
optics, we refer to one component of the electromagnetic field, that in our case is enough to describe 
the entire phenomenon. 

With reference to an orthogonal system of coordinates, Fig 1, be zo and -zo the locations of the two 
sources. Let r and r' be their distances from a point P(x,z), respectively. We assume that the distance 
of P from the two sources be large with respect to distance 2zo of the two sources. 

 
 
We assume, as usual, time dependence "−$%&.  The complex amplitudes of the two waves reaching P 
are given by: 
 
1)                              v(		=		 ar 	"

)*+                 and                 	v2		=		 ar' 	"
)*+/      

 
      

where a denotes amplitude, k=20/2 ,  2	wavelength, and  
 
 

2)                         r = 	4(z	-	zo): 	+ 	x2		       and           >′	 = 4(z	+	zo): 	+ 	x: 
 
The two distances r and r' can be assumed to be equal  
 
in the amplitudes of the two waves, of course not in the phase. Eq.s 1) become 
 
 

3)                                    v(	=	A	"
)*+        and           v2		=		A	")*+/      

 
 
Where A = a/r.  The total field v at P is therefore 
 
4)                                                 v = v1 + v2 = A	")*+ + A	")*+/           
 
With a simple mathematical trick v can be written as: 
 

5)            			v = A	")*
ABAC
D 		 E"$F(

>−>′
2 )	+ "G)*H
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D
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Fig 1.  Scheme to evaluate interference at point P(x, z) of two spherical waves, v1 and v2 , 
originating at points zo and – zo respectively. 

x 
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We now evaluate the intensity, I, that is the modulus square of v. As is well known our eyes are 
sensitive to the intensity.    
       

6)                                      	I	 = 	4	R:		STU: N*(+G+/)
:

O 
      
Eq.6)   represent regions of the plane of variable intensity. The equation of the lines of maximum 
intensity is 
 

7)                                        
k	(r	-	r')

2
		= 	n	p  

     
where n denotes an integer number positive or negative. The lines of maximum intensity (fringes) 
are therefore hyperbolas with focus in the sources.  If we extend the formulas to the space, by 
noting that there is rotation symmetry with respect to the z axis, we reach the final results that: in 
the space, the maxima are hyperboloids of rotation, with respect to the z axis, with focus on the 
sources.  Their equation is:  
 
 8)                                               r -  r' = n 2  
      
On a far plane, located perpendicularly to the x axis, the interference fringes are hyperbolas. 
They become parallel lines near the x axis, as are the fringes of the Young interferometer in a first 
approximation.  
On a far plane, located perpendicularly to the z axis, the interference fringes are circles.  
The above simple formulas allow one to explain many interference phenomena. For instance, when 
one of the two sources go to infinity, Newton rings are obtained. Here they are useful to understand 
the Michelson interferometer. 
 
1.2 - MICHELSON INTERFEROMETER 
 

 
Fig. 2 -  Simple scheme of Michelson interferometer 
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An extended beam of light, from a coherent source (e.g. a laser beam) on the left side of Fig.2, travels 
toward a semi-transparent mirror, A (beamsplitter), where it is split in two beams, one reflected 
towards mirror 1 and another transmitted towards mirror 2.  The beam reflected from mirror 1 crosses 
the beamsplitter and a part is transmitted towards the screen/receiver. The beam reflected from mirror 
2 crosses a compensating plate and part of it is reflected from the semi-transparent mirror towards the 
receiver. Of course, the part going back to the source is not of interest here. The two superposed 
beams interfere and give rise to a pattern in the receiver screen/plane. One of the two mirrors, here 
mirror 1, can be moved back and forth or rotated. 
If the two mirrors are perfectly parallel, and so are the beams, the two beams reach the screen 
with a phase difference, for instance, they can be in phase or out of phase and so on.  The phase 
difference depends on the different optical paths of the two beams in the arms. Circular fringes are 
produced on the screen. In particular, if the optical path difference is zero, the screen is completely 
illuminated, if the two beams are out of phase the screen is black. In the general case, there are a 
number of circular fringes depending on the difference in the optical path. To understand this 
behaviour, one can refer to the previous section 1.1 by considering a plane normal to the z axis at a 
very far positive distance. In the far region near the z axis, the spherical wavefronts are approximately 
plane surfaces and the above results can be applied here. In this comparison, the difference of optical 
path of the interferometer corresponds to the difference 2zo of the two sources. 
If the two mirrors are tilted, and therefore the beams are not parallel the comparison with the 
results of Section 1.1 requires to consider a far plane perpendicular to x axis. Here the fringes are 
hyperbolas and become straight lines near the x axis. 
The shapes of the fringes can help aligning the interferometer. In the Laboratory, we will learn how 
to align a Michelson interferometer by utilizing the shapes of the fringes. 
The previous analysis was made for a perfectly coherent source, that is a precise wavelength.  In the 
case of a partially coherent source the visibility of the fringes decreases from the maximum. One 
can utilize the decrease of visibility to measure the coherence of a source. 
 
1.3 - Michelson interferometer: experiment procedure  
by Dr Miltcho Danailov 
 
The Laboratory experiment can include: setting up and alignment of a Michelson interferometer, 
fringe observation, and change of the relative phase of the two beams by a wedge pair in one arm. 
Wedge pairs are often used in ultrashort pulse setups for controlling and stabilizing the Carrier-to-
Envelope phase of ultrafast lasers.    

Main components of the set up: He Ne laser, Telescope, Negative lens, Beamsplitter, HR 
mirrors, Fused Silica wedges 

1. Interferometer alignment and fringe observation in slightly tilted wavefront geometry 
a. Insert the telescope in-front of the He-Ne laser and achieve a good beam collimation 
b. Setup the Michelson interferometer by inserting the beamsplitter and placing the HR 
mirrors appropriately 
c. Position the white screen in a position where fringes can be observed and align the beams 
reflected by the mirrors to coincide on the screen 
d.  Find out how different fringe spacing can be obtained and explain it 

2. Interferometer alignment in parallel wavefront geometry 
a. Insert the negative lens for easy fringe observation 
b. Align the interferometer for observing circular fringes 
c. How the number of fringes in this geometry can be reduced? Tray to get few fringes 

or even a single fringe 



 5 

3. Interferometer measurement of phase changes by a wedge pair 
a. Insert and align the two wedges in one of the interferometer arms in antiparallel 

configuration 
b. Using the micrometer change the insertion of the wedge and measure the relation 

between wedge movement and fringe changes,  
c. on the basis of the above measurement estimate the wedge angle, given that the 

wedge material is fused silica with refractive index of 1.46  

 

2 - BASIC of SPECTROSCOPY: 
 DECOMPOSITION of LIGHT by 
 DIFFRACTION GRATINGS 
 
Spectroscopy is separation of light from a source in its (time) frequency components. The basic 
element allowing it is the diffraction grating. 
 
A linear diffraction grating is a transparent, or reflecting, element where a number of parallel lines 
are drawn. The elements can be reflecting or transmitting.  
A beam impinging onto the grating  is "diffracted" by each element, a system of diffracted waves 
propagates in reflection or transmission. Let us now refer to a transmitting grating and a beam 
impinging normally. The diffracted waves at each point in the space give rise to interference; there 
are directions where they interfere constructively and other directions where the interference is 
destructive.  Let d denote the period of the grating and θ denote the angle between the normal to the 
surface and an arbitrary direction. The interference is constructive in those directions θ where one 
has, Fig.2,   
         
                                   d sin θ = m λ,              
 
where m is an entire number denoting the order of the diffracted field, spectrum. It is clear that in the 
main direction, where m=0, there is no frequency separation.  From the equation it is also clear that, 
apart from m=0, for any other value of m, the diffraction angle depends on the wavelength. 
       

If q is small                   q = m l/d 
     
Therefore a radiation constituted by different wavelengths can be decomposed in its basic 
components. By measuring angle θ it is possible to measure the wavelength of a given radiation, 
spectroscopy. A large number of applications are based on spectroscopy.  
 
In addition to linear gratings there are also two-dimensional gratings, where two sets of perpendicular 
lines are present. In this case one has a spectrum in the space where the directions of constructive 
interference are given by a double set of integer numbers. 
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EXPERIMENTS: by use of gratings of different periods, decomposition will be shown of radiation 
from different sources.   
By use of linear gratings of different periods (100, 300, and 600 and 1000 lines/mm) decomposition 
will be shown of radiation from different sources including lasers and leds.  A number of orders will 
be seen. In particular cases the relationship between the wavelength of two lasers, namely green and 
red, will be found by measuring the diffraction angles.  Examples will be also seen of spectra 
produced by a two-dimensional grating.  
   

3 - EXPERIMENTS on DIFFRACTION and 
 FOURIER TRANSFORM 
It is well known that diffraction from an aperture in a screen gives rise to a system of waves 
propagating from the aperture.  In addition, there are evanescent waves that do not propagate but 
"flow" along the surface. For simplicity let us refer to a plane monochromatic wave impinging 
normally on the screen.  
At each point behind the screen the field is the result of the interference of the diffracted waves and, 
depending on the distance, in wavelengths, from the screen, two different regions are considered, 
namely Fresnel region (far but not too much from the aperture) and Fraunhofer region (very far, 
practically at infinity).  Depending on the shape of the aperture there are different shapes and formulas 
for the diffracted field.  
 
Here we will experience diffraction of laser radiation (HeNe, wavelength 632,8nm) by  
1- wires, by 
2- slits of different width and by  

Diffraction 
grating

Scheme for  description of the spectrum  from a diffraction 
grating

x

θ
Impinging 
radiation

Fig. 2 
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3- circular apertures of different radius. 
 
 Of course, as our eyes see the energy, we will always "see" the square of the field. By using a 
moving screen, we will follow the development of the field (intensity) from the diffracting screen 
through the Fresnel region up to the Fraunhofer region. We will check the angular dependence on the 
aperture width by measuring the width of the intensity patterns in the Fraunhofer region in different 
cases.  
- Note that, mathematically, the diffracted field at infinity is the Spatial Fourier Transform of the 
field on the diffracting aperture.  Commonly diffraction is said to operate a Fourier transform, the 
transform is also called spectrum. Each spatial frequency corresponds to a plane wave propagating 
in a suitable direction. As mentioned, interference of all waves gives rise to the field at any point in 
the space. Evanescent waves do not propagate, as they flow along the surface, and information carried 
by them is lost. 
From the point of view of the transform, we will also check the different shapes of the patterns 
according to the different apertures. The transform of a Rect (slit uniformly illuminated) is Sinc = 
(sin(x))/x and the transform of a Circ (diffraction from a circular aperture) is a Bessel function divided 
its argument.  
Of  course, we "see" the modulus square of each transforms, precisely:  
 

        FUNCTION                TRANSFORM                                                   WE SEE 

 

         1 - Rect       Sinc = [sin(arg)] /arg    Sinc2 

 
         2 - Circ       Airy Function = [Bessel J1(arg)] /arg        Airy Function2 

 
Note that in the case of a slit the Fourier transform is a transform in one variable, while in the case 
the circular hole we are faced to a transform in two variables. 
 
If the aperture is the border of a converging lens, the lens "carries" the field from infinity to the 
focal plane. This property, commonly referred to as the property of a lens of "making Fourier 
transforms", is the basis of image elaboration. However, the transform is performed by the border 
of the lens, by diffraction, not by the lens as such. When a lens forms an image, the propagating part 
of the diffracted field is collected, while the evanescent waves are lost. Information carried by the 
evanescent waves is also lost and this explains why the image of a source point is not a point but a 
diffraction figure, and is the cause of the "resolution" problem.  
  

For more information on Diffraction and Evanescent waves see Lectures of Winter College 1993. 
        

 

 

http://indico.ictp.it/event/a02251/speakers


http://indico.ictp.it/event/a02251/speakers
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