Molecular Energy levels and
Interaction of Electromagnetic Radiation with Matter.
\rightarrow There exist 92 elements \rightarrow stable atoms
\rightarrow Atoms can form molecules
\rightarrow The number of atoms in a molecule vary from two $\rightarrow a \sin N_{2}$, to many thou--sands as in DNA
\Rightarrow Molecules form when the total energy of the es s is lower in the molecule than in individual atoms
\Rightarrow According to Aufban principle.
states: toput ès into the lowest energy configuration in atom.
\Rightarrow The same principle goes for molecules.

Properties of molecules depend on:
\rightarrow The specific kind of atoms they are Composed of
\rightarrow The spatial structure of the molecules - the way in which the atoms are arranged with in the molecule.
\rightarrow The binding energy of atoms or atomic groups in the molecule.
Types of molecules
\Rightarrow Monoatomic molecules
\rightarrow The elements that donst have tendency to form molecules.
\rightarrow Elements are stable single atom molecules Examples are: helium, neon, argon, krypton xenon and radon.
\Rightarrow Diatomic Molecules:
\rightarrow Are composed of only two atams -- of sane or different dements.

Examples: hydrogen $\left(\mathrm{H}_{2}\right)$, oxygen $\left(\mathrm{O}_{2}\right)$, Cabon monoxide (CO), nitric oxide (NO)
\Rightarrow Polyatomic Molecules
Consist of a stable system comprising three or more atoms.

Atomic oxygen

monotonic
diatomic
Ozone

polyatomic

Formulas
\Rightarrow Empirical formula: gives the simplest whole number ratio of all the atoms in a molecule
\rightarrow Example: The empirical formula of glucose is $\mathrm{CH}_{2} \mathrm{O}$

Molecular formula: Describes the exact number and type of atoms in a single molecule of a compound

- Ex: The molecular formula for glucose is $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

Structural formula.
Indicates the number of atoms and their arrange meat Ho in space

Difference between Isomers and
Allotrope
ISOTOPE
Atoms with the same number of protons but different number of neutrons are called isotopes = chemical behaviour remains unchanged
ISOMERS:
Two molecules with the same atoms joined together in a different shape.
\rightarrow Sane molecular formula but different chemical structure.

Examples: Butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$

$\Rightarrow n$-butane or isobutane

Same molecular formula by different structural arrangment.
 Another shape.

ALLTROPE
Different structural forms of the same element but exhibit quite different physical and chemical properties. Example: Diamond, graphite, ...

Chemical Bonds
\rightarrow Chemical bonds between atoms in a molecule make the situation more stable for the involved atoms.
Tonic Bonding: is the complete transfer of valence electron (s) between atoms.
\rightarrow It generates two oppositely charged ion.
\rightarrow In ionic bonds, the metal loses es to become a tively charged ion (cation) whereas the non-metal. accepts those es to become a-ively charged anion.
\rightarrow Two opposite ions attract each other and form the ionic bond.
Covalent Bonds: is a form of chemical bonding between two non-metal atoms Which is characterized by the sharing of pairs of elcetrons between atoms
\rightarrow The only pure covalent bonds occur between identical atoms.

Metallic bonds: occur between the ionized atoms of metal and the sea of es around them.
\rightarrow is a type of chemical bonding that rises from the electrostatic. attractive force between conduction es (in the form of an electron cloud) and positively charged metal ions
$(t),(t) \cdot(t)$
(t). (t) (t).

Energy levels.
A quantum mechanical system or particle that is bound-can take diskette values of energy. - Energy levels
\rightarrow It rs used for energy levels of ès in atoms, ions or molecules - bound by the Electric field of the nucleus.
\rightarrow Enagy levels of nuclei or vibrational or rotational energy levels in molecules abo are λ referel as this.
\rightarrow If an atom, ic and molecule is at the lowest possible energy level, and its is are said to be in the ground state.
\rightarrow Any electrons that have higher energy than the ground state are excited state
\rightarrow Quantized energy levels result from the relation b/w a particle's energy and its wavelength.
\rightarrow For a confined particle, such as an election in an atom, the wave function has the form of standing waves.
\rightarrow Stationary states with energies correspond - ing to integral numbers of wavelengths can exist.
\rightarrow Examples that show how energylevets come about mathematically are the \rightarrow Particle in a box
\rightarrow Quantum harmonic oscillator.

Molecular Energy Levels.
\Rightarrow Energy can be stored as potential and kinetic energy in different ways.

1, Translational energy: small amount of energy stored as Kinetic energy.
2, Rotational energy: Kinetic energy associated with the rotational motion of molecules.
3, Vibrational energy: The oscillatory motion of atoms or group of atoms with in a molecule (potential \longleftrightarrow kinetic enagy exchange)
4, Electronic Energy: energy stored as potential energy in excited electronic configurations
\rightarrow All except the Translational enagy are quartion

$$
E_{\text {molecule }}=E_{\text {rot }}+E_{v_{i} b}+E_{\text {cle }}
$$

Molecular Energy levels.
\Rightarrow The relative energy of the spacing b/w energy levels for various types of transitions in a molecule are in the order.

$$
\begin{aligned}
& \text { Rotational } \begin{array}{l}
\text { Transitions } \ll \frac{\text { Vibrational }}{\text { Transition }} \ll \text { Electronic } \\
1-20 \mathrm{~cm}^{-1} \quad 2000-4000 \mathrm{~cm}^{-1} \quad 10000-50000 \mathrm{~cm}^{-1}
\end{array} \\
& 1 \text { Transition }
\end{aligned}
$$

\Rightarrow The various types of energy transitions occur in different regions of the EMspectrum and do not overlap.

Molecular Electronic levels
\rightarrow In molecules we have two opposing forces - the repelling force of the nuclei and the binding force of the electrons.
\rightarrow If the orbit of the electrons change then binding force will change \Rightarrow the net potential energy of the molecule will change.
\Rightarrow This leads to the change in interatomic distance.
\Rightarrow Different electronic level will have different rotational and vibrational constant.

$$
\Rightarrow \quad E_{n, v, J}=E_{n}+E_{v}+E_{j}
$$

Vibrational Molecular Levels
\rightarrow Like atoms - molecular motion is governed by quantum mechanics.
\rightarrow Energies due to rotation and vibration are quantized.
Molecular Vibrations
\rightarrow Chemical bond acts like a spring and can display SHM
\rightarrow with an effective spring constant k for the bond involved and effective mass $m_{e y}$
\rightarrow Angular frey, $\quad \omega=\sqrt{\frac{k}{m_{\text {eff }}}}$
\rightarrow Energy of vibration

$$
E_{v}=\left(v+\frac{1}{2}\right) \hbar \omega=\left(v+\frac{1}{2}\right) h f
$$

$\rightarrow \frac{1}{2} \hbar w-$ zero-point energy that implies that molecule nerve stops vibe-
-ating - even in the $V=0$ state
$\rightarrow V$ _vibrational quantum numb ber

$$
v=0,1,2,3, \ldots
$$

\rightarrow zero-point energy exists at absolute zero
\rightarrow Energy levels are equally spaced with separation $\hbar \omega$
\rightarrow Follows selection rule $\Delta V= \pm 1$, if no accompanying electronic transition otherwise can be anything.
\rightarrow For वhiatomic molecule with mass

$$
\begin{aligned}
& M_{1} \& M_{2} \\
& m_{e f f}=\frac{M_{1} M_{2}}{M_{1}+M_{2}}
\end{aligned}
$$

\rightarrow Energy scale for molecular vibrations is much less than for electronic excitation
\rightarrow Excitation energies corresponds to IR region of the spectrum.
\rightarrow Vibrational levels are built on electronic states - each electronic state will hast the whole range of vibrational states.
\rightarrow At normal temperature most of mole-- cules will be in state $v=0$

Vibrational excitation and de-excitation

Rotational Molecular Levels
\rightarrow In quantum machanics - the rigid rotor has energy levels

$$
E_{J}=\frac{\hbar^{2}}{2 I} J(J+1)
$$

where I- is the moment of inertia of the rigid rotor relative to the axis of rotation.

$$
\rightarrow \quad J=0,1,2, \ldots
$$

Angular momentum
\rightarrow Excitation energies correspond to the microwave region
\rightarrow Energy scale for rotations \ll vibration
\rightarrow Each vibrational level has rotational bands built on it
\rightarrow Selection rule $\Rightarrow \Delta J= \pm 1$
Rigid Rotor is a mechanical model that is used to explain rotating systems.
\rightarrow The linear rigid rotor model consists of two point masses at fixed distances from their center of mass. For many diatomics the ts the distances are net usually fixed.

$$
E=T+V \text { as } V \rightarrow 0 \text { for fixed distancy }
$$

Rotational Levels

Vibrational
state $V=1$

Vibration state

$$
V=1
$$

$\sim \sim$

Microwave radiation
\Rightarrow Two types of transitions
$J \rightarrow$ increasing
$J \rightarrow$ decreasing

Molecular Spectroscopy
\Rightarrow Is the study of the interaction of electromagnetic radiation with matier.
\Rightarrow Based on the analysis of EM radiation that is emitted, absorbed or scattered by molecules - we can have information on
\rightarrow Chemical analysis
\rightarrow Molecular structure
\rightarrow Bond length
\rightarrow Strengths
\rightarrow angles
\rightarrow enagy levels
\Rightarrow EM radiation consists of photons which behave as both particles 2 waves.

$$
\begin{aligned}
& c=\nu \lambda \\
& \lambda-\text { wavelength } \\
& \nu-\text { frey } \\
& c \text { - speed of light. }
\end{aligned}
$$

X-Ray Interactions
\Rightarrow Energies of X-ray photons are too highto be absorbed by electronic transitions in most atoms
\Rightarrow Only possibility is the complete removal of an election from atom
$\Rightarrow X$-rays are ionizing radiation
\Rightarrow Photoionization: If the all the energy is given to an electron.

Compton Scatleing
If part of the energy is given to an electorn
 and the rest to a lower energy photon

ULTRAVIOLET INTERACTIONS
\Rightarrow UV photons above the ionization energy can dismpt atoms and molecules nigh $4 v^{2}$?
\Rightarrow At higher energies-
ionizing Limit for many moleculs are reached and phatoionization takes place.
\Rightarrow UV photons below the ionizing energy are strongly absorbed in producing electronic transitions.

Election's

$$
\text { ionizahru dey }-\underset{\text { av in }}{\text { UV }}
$$

Visible Light Interactions.
\Rightarrow Visible light is absorbed by election transitions.
\Rightarrow Higher energies are absorbed more relative to low energies. - red light is less strongly absorbed than blue light.
\Rightarrow Absorption of visible light can causes heating but no ionization

Electron level chayes.

UV 2 visible spectroscopy.
\rightarrow An emission spectrometer is use of to analyse light emitted from an excited source.
\Rightarrow Radiation from an external source interacts with matter -absorption occure.
\rightarrow Certain characteristic frequenies of radiation are absorbed\& by each kind of matilu and these frequeniag are thus missing from the speetram of radiation reflected from the object.
\Rightarrow Are apple is absorbing white light and reflecting wavelength of
of visible light that are in the red region.
\rightarrow An absorption spectrometer is use \& to analyze light reflected by or transmitted through matter.

Infrared Interactions
\Rightarrow The energy of infrared light cares--ponds to the energy required to cause molecular vibration(molecule absorbs a quart,
of energy $E=h \nu$)
\Rightarrow Vibrations arse as molecular bonds are not rigid but behave like springs

\Rightarrow A molecular vibration occurs when atoms in a molecule are in periodic motion.
\rightarrow While molecule as whole has constant trasslational and rotational motion.
\Rightarrow A fundamental vibration is excited when one quantum of eneyy $E=h r$ is absorbed by the molecule in its ground stat τ.
\Rightarrow For two quanta absorbed the first overtone is excited and soon.
\Rightarrow The vibrational states of a molecule can be probe of by uni.
\rightarrow Infrared \& spectroscopy.
\rightarrow Raman 4
Infrare of spectroscopy: involves the inthaction of infrared of radiation with Water. it is based on absorption spectrascopy.
Raman Spectroscopy: use d to observe the Vibrationd, rotational and other low frequency modes in a system. Its is commonly used in the chemistry.
\Rightarrow It relies on inelastic scattering, or Raman Scattering of monechromatic light (say laser) in visible, near infrared or near ultraviolet range.
\Rightarrow The laser light interacts with molecular

Vibrations, phonon or other excitations in the system.
\Rightarrow The eveng of the las photon being shifted up or down \Rightarrow gives in formation about the vibration al modes in the system.
\Rightarrow Vibrational excitation can occurs in conjuetion with electronic excitation in ultra-videtz - visible region = called vibronic transition.
\Rightarrow Vibrational

Vibrational transitions are sub-divided into two cases
\rightarrow Stretching:
Symmetric and Asymmetric
$\stackrel{\triangle}{\triangle \rightarrow} \rightarrow$ diatomic

$$
\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{CO}
$$

Somommeri Linear triatomic $\left(\mathrm{CO}_{2}, \mathrm{~N}_{2} \mathrm{O}\right)$
CS
As ymmetric stretch.
\rightarrow Bending

scissoring, rocking, wagging and twisting.
\rightarrow Stretching frepies are higher than correspondi y bending frey pies - it is easier to bend a bond than to stretch or compress it

Triatomic $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{3}\right)$

Microwave Interactions
\rightarrow Quantum energy of microwave photons matches the ranges of energies separating quantum states of molecular rotations.
\rightarrow Rotational motion of molecule is quantized.
\rightarrow Absorption of microwave radiation causes heating due to increased molecular rotational activity.

The electric field of an electromagnetic wave exerts a torque on an electric dips!

