

Time-resolved NIRS and non-destructive assessment of food quality

Lorenzo Spinelli, Alessandro Torricelli

Dipartimento di Fisica – Politecnico di Milano Istituto di Fotonica e Nanotecnologie – CNR

Winter College on Applications of Optics and Photonics in Food Science

20 February 2016, Trieste

Non-destructive optical characterisation of internal optical properties and correlation with quality parameters

- Basic studies in apples, kiwifruits, nectarines, tomatoes, ...
- Changes in optical properties during growth in Elstar apples and Tophit plums
- Texture in Jonagored apples, Braeburn apples and Pink Lady apples during storage

Non-destructive assessment of fruit maturity at harvest and correlation with quality parameters

- Basic studies in apples, kiwifruits, nectarines, peaches, mangoes, ...
- Sensory attributes, aroma composition, ethylene production Ambra nectarines
- Softening prediction (based on biological age) in Spring Belle nectarines
 and in Tommy Atkins mangoes

Non-destructive detection of internal disorders and defects

- Browning in Granny Smith apples, Braeburn apples and Conference pears
- Watercore in Fuji apples
- Mealiness in Braeburn apples and Jonagored apples
- Chilling injuries in Jubileum plums and Morsiani 90 nectarines

Non-destructive optical characterisation of internal optical properties and correlation with quality parameters

- Basic studies in apples, kiwifruits, nectarines, tomatoes, ...
- Changes in optical properties during growth in Elstar apples and Tophit plums
- Texture in Jonagored apples, Braeburn apples and Pink Lady apples during storage

Non-destructive assessment of fruit maturity at harvest and correlation with quality parameters

- Basic studies in apples, kiwifruits, nectarines, peaches, mangoes, ...
- Sensory attributes, aroma composition, ethylene production Ambra nectarines
- Softening prediction (based on biological age) in Spring Belle nectarines and in Tommy Atkins mangoes
- Non-destructive detection of internal disorders and defects
 - Browning in Granny Smith apples, Braeburn apples and Conference pears
 - Watercore in Fuji apples
 - Mealiness in Braeburn apples and Jonagored apples
 - Chilling injuries in Jubileum plums and Morsiani 90 nectarines

Cubeddu et al., Applied Optics 40:538-543 (2001)

Optical characterization of foods effect of skin: Apple (cv. Golden Delicious)

No effect of the skin on the spectra of absorption and reduced scattering coefficients

- Mangoes (cv Palmer) harvested in Minas Gerais (Brazil) and transported by plane to Milan (Italy)
- 20 mangoes selected
- 2 nearby regions on red (10 fruit) and green (10 fruit) side

Experimental protocol

Measurements performed on both pulp and skin

- TRS: 13 wavelengths in the spectral range 540-900 nm
- color measurements with spectrophotometer (CM-2600d, Minolta):
 - spectral range: 360-740 nm;
 - color parameters: L*, a*, b* values $\rightarrow C^* = [(a^*)^2 + (b^*)^2]^{-2}$

$$\rightarrow$$
 H° = arctan(b*/a*).

 \rightarrow absorbance

- days 1, 4 and 11 of shelf life: temperature \rightarrow 20±2°C; RH \rightarrow 75±5%

TRS measurements: Absorption and scattering spectra

Correlations: absorption coefficients *vs* color parameters

 $p = \mu_a$ measured on the pulp; $s = \mu_a$ measured through the skin

poor correlations between skin color and μ_a

Conclusions

From measurements on **exposed pulp** and on **skin**, it results that:

- skin attenuates the TRS signal intensity
- skin does not affect the estimate of pulp optical properties

Absorption spectrum features:

- increase in the 540–600 nm range
 - \rightarrow changes in the carotenoid content
 - \rightarrow skin color measures are affected by other pigments
- decrease at 670 nm
 - \rightarrow changes in the chlorophyll content

TRS non-destructive characterization of mango during ripening

pulp

Shorter distance: early photons travel in the albedo, late photons in the pulp

Longer distance: photon-path is mainly in the pulp

Non-destructive optical characterisation of internal optical properties and correlation with quality parameters

- Basic studies in apples, kiwifruits, nectarines, tomatoes, ...
- Changes in optical properties during growth in Elstar apples and Tophit plums
- Texture in Jonagored apples, Braeburn apples and Pink Lady apples during storage

Non-destructive assessment of fruit maturity at harvest and correlation with quality parameters

- Basic studies in apples, kiwifruits, nectarines, peaches, mangoes, ...
- Sensory attributes, aroma composition, ethylene production Ambra nectarines
- Softening prediction (based on biological age) in Spring Belle nectarines and in Tommy Atkins mangoes

Non-destructive detection of internal disorders and defects

- Browning in Granny Smith apples, Braeburn apples and Conference pears
- Watercore in Fuji apples
- Mealiness in Braeburn apples and Jonagored apples
- Chilling injuries in Jubileum plums and Morsiani 90 nectarines

Nondestructive assessment of maturity at harvest Softening prediction in 'Spring Belle' nectarines

Kinetic model linking μ_a at 670 to firmness allowing softening prediction of individual fruit from μ_a measurement at harvest

$$F = \frac{F_{\max} - F_{\min}}{1 + e^{k_f \cdot (F_{\max} - F_{\min}) \cdot t + \Delta t_F^*}} + F_{\min}$$

$$\Delta t_F^* = \alpha \left(\log \left(\frac{\mu_{a, \max}}{\mu_a} - 1 \right) + \beta \right)$$

Biological shift factor

'Spring Belle' nectarines

μ_a at 670 is an effective maturity index

Lorenzo Spinelli

Eccher Zerbini *et al.*, Postharvest Biology and Technology 39, 223-232 (2006) Tijskens *et al.*, Int. J. Postharvest Technology and Innovation 1, 178-188 (2006) Tijskens *et al.*, Postharvest Biology and Technology 45, 204-213 (2007)

Nondestructive assessment of maturity at harvest Softening prediction in 'Spring Belle' nectarines

Distribution of biological shift factor at harvest with **Classes of usability**

Softness scores after transport and 5, 6, 13 days of shelf-life

Classes of usability successfully tested in an export trial from Italy to Netherlands

Eccher Zerbini et al., Biosystems Engineering 102, 360-363 (2009 in press)

Nondestructive assessment of maturity at harvest Softening prediction in 'Morsiani 90' nectarines

Predicted firmness and measured firmness according to the biological shift factor model

Chlorophyll-a and carotenoids estimation from TRS Open problem: extinction coefficient for carotenoids *in vivo*

Nondestructive assessment of maturity at harvest Ethylene production in "Haden" mangoes

Nondestructive assessment of maturity at harvest Ethylene production in "Haden" mangoes

Optical properties at harvest

Eccher Zerbini et al., Postharvest Biology and Technology 101, 58-65 (2015)

Nondestructive assessment of maturity at harvest Ethylene production in "Haden" mangos

Biological shift factor model

Ethylene production and firmness predicted by biological shift factor

Eccher Zerbini et al., Postharvest Biology and Technology 101, 58-65 (2015)

Differently from nectarines and mangoes apples ripening is not correlated only to chlorophyll content

Many factors are involved in the ripening process in apples

A more complex model is need to describe the maturity

An important parameter for quality in apples is fruit texture

- The apple texture is linked to fruit structure at molecular, micro and macroscopic levels
- Crispiness, juiciness and mealiness are bound to mechanical and acoustic properties of the pulp
- Different apple texture are characterized by different pulp optical properties

Pulp optical properties measured by TRS

Fruit texture measured through mechanical-acoustic and sensory analysis

- Cultivar 'Gala':
 - 270 apples
 - Measurements during shelf-life at harvest, after 2 and 4 months of CA storage
- Cultivar 'Kanzi':
 - 270 apples from Laimburg + 270 apples from Schludern
 - Measurements during shelf-life at harvest, after 3 and 6 months of CA storage
 - Cultivar 'Braeburn':
 - 1320 apples
 - Harvested for 7 weeks (ripening on the tree) from inner and outer parts of the canopy
 - Measurements at harvest and after 2 of CA storage

MONALISA Project:

Monitoring key environmental parameters in the alpine environment involving science, technology and application

Non-destructive evaluation of apple quality TRS measurements

- 3 maturity levels according to the chlorophyll content: less, medium, more
- Measurements of shelf-life at harvest

Non-destructive evaluation of apple quality Texture Analysis

- SENSORY PROFILES (firm, juicy, mealy, crispy)
- Relative intercellular space volume (RISV) computed according to:
 - $RISV = 100 \times [1-(df/dj)]$ where df=fruit density and dj=fruit juice density.
- MECHANICAL and ACOUSTIC PROPERTIES

measured by using a TA-XT plus Texture Analyzer equipped with an acoustic emission detector (AED) which simultaneously profile a mechanical force displacement together with the corresponding acoustic response

MECHA	NICAL parameters	ACOUSTIC parameters		ACOUSTIC parameters	
Fmax	Maximum Force	MEAN Average sound			
St	Stiffness	LD Linear distance			
W	Work	РК	N°peaks		
		acMAX	Max value of ac. peaks		
		acFmax	Value of ac.peaks at Fmax		

 NON destructive compression test: each apple was compressed between two steel parallel plates to a fixed deformation of 1 mm (speed of 25 mm/min) and the modulus of deformability (Ed) was computed according to:

E _d	F	
$1-\mu^2$ =	$(d_L/2)^{3/2} D^{1/2}$	

Non-destructive evaluation of apple quality Main results

TRS optical properties and fruit texture

In the PCA plot:

•CHL content measured by TRS is positively related to Ed

• μ'_{s} (MUS) measured by TRS is positively related to RISV and mealiness and negatively to mechanical and acoustic parameters and to water content (H2O) measured by TRS

•sensory firmness, crispness and juiciness are positively related to mechanical and acoustic parameters

•PC1 distinguished Kanzi from Braeburn and Gala

Kanzi had a compact, firm and crispy texture with higher H2O content and lowest MUS and RISV

•PC2 distinguished Braeburn from Gala

Braeburn had higher CHL content, lowest acoustic parameters and a mealy texture

Gala had higher MUS and RISV, easily deformable, moderately firm and crisp

Non-destructive evaluation of apple quality Main results

Firmness prediction from TRS optical properties

Multiple Linear Regression model

(MUS=scattering value; CHL=chlorophyll content; H_2O =water content; μ a670H= μ a670 at harvest)

These models are significant at *P*<0.0001 but explain only about 47-58% of the variability of the three cultivars

Relationships between apple texture and TRS optical properties – Gala

•CLUSTER ANALYSIS ON SENSORY ATTRIBUTES

Cluster number and sensory profiles	firm	juicy	mealy	crispy	Nobs
W1 - very firm, juicy and crispy. Not mealy	76	68	19	59	53
W2 - firm and juicy	65	46	24	45	72
W3 - quite firm, juicy, crispy, mealy	43	44	32	31	69
W4 - mealy	27	32	46	17	76

• TRS PARAMETERS DIFFERED WITH SENSORY PROFILES

	CHL	H2O	μ's
	μM-1	%	cm-1
W1	0.395 a	93.9 a	17.3 a
W2	0.382 ab	92.3 b	16.8 a
W3	0.325 bc	92.1 b	17.1 a
W4	0.270 c	92.1 b	17.4 a

DISCRIMINANT ANALYSIS

Non-destructive TRS parameters (chlorophyll and water contents, scattering) were used as explanatory variables to discriminate the sensory profiles obtained by Cluster Analysis

CLASSIFICATION TABLE at harvest

	Predicted Cluster					
actual CLUSTER	Group Size	W1	W2	W3	W4	
W1	36	86.1	0.0	5.6	8.3	
W2	14	28.6	28.6	35.7	7.1	
W3	24	25.0	4.2	62.5	8.3	
W4	16	12.5	6.3	37.5	43.8	

At harvest: only 63.3% well-classified fruit, even if very firm and juicy apples were well-classified in 86.1% of the cases

After storage: the performance of the model worsened (34.4%%)

All data: the performance of the model was 41.1%

Non-destructive evaluation of apple quality Main results

Relationships between apple texture and TRS maturity class

•GALA

	µ'a670	firmness	acPK	Ed
	cm-1	Ν	n°	N/mm2
less	0.045 a	61.5 a	40.2 a	6.8 a
medium	0.026 b	54.5 b	38.7 a	6.6 ab
more	0 017 c	49.8 c	285h	610

•KANZI

Laimb	μ'a670	firmness	acPK	RISV
	cm-1	Ν	n°	%
less	0.038 a	61.0 a	57.4 a	15.5 c
medium	0.027 b	57.1 b	55.0 ab	16.0 b
more	0.019 c	54.8 b	49.0 b	16.4 a
Schlud	μ'a670	firmness	acPK	RISV
Schlud	μ'a670 cm-1	firmness N	acPK n°	RISV %
Schlud less	μ'a670 cm-1 0.054 a	firmness N 75.3 a	acPK n° 66.7 ab	RISV % 17.1 b
Schlud less medium	μ'a670 cm-1 0.054 a 0.042 b	firmness N 75.3 a 74.6 a	acPK n° 66.7 ab 70.8 a	RISV % 17.1 b 17.6 ab

CL1 CL2 CL3 CL4

Cluster number and sensory profiles	firm	juicy	mealy	crispy	Nobs
CL1 - very firm, juicy and crispy	78	73	18	68	223
CL2 - quite firm and juicy but less crispy	52	60	23	41	115
CL3 - firm but quite crispy and less juicy	70	48	20	58	143
CL4 - mealy	30	41	42	26	58

Both for Gala and Kanzi, fruit classified at harvest according to $\mu_a 670$ had different firmness, crispness (acPK) deformability and RISV and developed different sensory profiles.

Gala: less mature apples were characterized by high % of firm and very firm texture;

more mature apples had the highest % of mealy texture

<u>Kanzi – Laimburg</u>: less mature apples had the highest % of firm and crispy texture (CL1) and the lowest of mealy more mature apples had the highest % of mealy texture and of apples with low cispyness (CL2); <u>Schludern</u>: the % of very firm, juicy and crispy apples (CL1) was evenly distributed among the 3 classes; more mature apples showed the highest % of low juicy texture (CL3) and of mealy.

Non-destructive evaluation of apple quality TRS perspectives

- Feasibility (now)
 - we demonstrate the possibility to perform spectral TRS measurements on apples with a portable instrumentation
 - non-destructive assessment of flesh chlorophyll content and scattering properties
 - Outcome for optical properties:
 - low correlation with firmness: ~50% (Magness Taylor)
 - better correlations with sensory profiles in some cases: contrasted results
- Potential (future)
 - instrumental viewpoint: there is room for smaller (more portable) instrument with reduced number of wavelengths (probably 2)
- Gaps to be covered (technological)
 - measurements speed: now TRS measures are too slow for inserting TRS in a sorting line. Instrument developments and feasibility test are needed
- Alternatives
 - possibility to non-destructively predict sensory characteristics of apples

Development of a transportable TRS set-up for measurements in the orchards

USER-PA Project:

Usability of environmentally sound and reliable techniques in precision agriculture

Non-destructive evaluation of apple quality TRS measurements in the orchards

Experimental protocol

- Apple, cv. "Gala Brookfield"
- Orchards in Changins (Switzerland)
- 21 trees = 3 trees x 7 irrigation sectors

(at least 4 apples from each tree)

	25/06/2014	22/07/2014	03/09/2014
# fruit	108	105	126

Preliminary results of field trials 2014

Absorption coefficient

Scattering coefficient

Chlorophyll absorption and scattering decrease during fruit growth (agreement with Seifert *et al.* Physiologia Plantarum 53(2):327–336 (2015)

No changes with irrigation due to excess raining in season

Conclusions

A portable TRS setup was developed to allow TRS measurements in the orchards

TRS measurements in the orchards are feasible

- need to shield the fruit from sun light during measurement
- June seems too early for reliable chlorophyll absorption measurements

Results are in agreement with previous measurements on harvested fruits

- chlorophyll absorption in the fruit pulp decreases during growth
- scattering changes may affect readings by continuous wave optical sensors

Non-destructive optical characterisation of internal optical properties and correlation with quality parameters

- Basic studies in apples, kiwifruits, nectarines, tomatoes, ...
- Changes in optical properties during growth in Elstar apples and Tophit plums
- Texture in Jonagored apples, Braeburn apples and Pink Lady apples during storage
- Non-destructive assessment of fruit maturity at harvest and correlation with quality parameters
 - Basic studies in apples, kiwifruits, nectarines, peaches, mangoes, ...
 - Sensory attributes, aroma composition, ethylene production Ambra nectarines
 - Softening prediction (based on biological age) in Spring Belle nectarines and in Tommy Atkins mangoes

Non-destructive detection of internal disorders and defects

- Browning in Granny Smith apples, Braeburn apples and Conference pears
- Watercore in Fuji apples
- Mealiness in Braeburn apples and Jonagored apples
- Chilling injuries in Jubileum plums and Morsiani 90 nectarines

Nondestructive detection of internal defects Brown heart in Conference pears

Brown heart for μ_a @ 720 nm > 0.04 cm⁻¹

Lorenzo Spinelli

Eccher Zerbini et al., Postharvest Biology and Technology 25:87-99 (2002)

Non-destructive detection of internal defects Internal browning in "Braeburn" apples

BROWN CORE

SEVERE

BROWN PULP

Largest differences between healthy and browned apples at 740-780 nm

 μ_a @ 740-780 nm can be selected to distinguish healthy from browned apples

Classification table according to internal browning presence

Overall, healthy apples and apple with internal browning are classified well in about 70% of the cases

Lorenzo Spinelli

Vanoli et al., Postharvest Biology and Technology 91:112-121 (2014)

Non-destructive detection of internal defects Internal browning in "Braeburn" apples

Brown core – well classified

Brown core – misclassified

Brown pulp – well classified

Brown pulp – misclassified

Low temperature disorders limit the storage life of peaches and nectarines under refrigeration.

Chilling injury (CI) is classified as internal breakdown

Wooliness

Internal browning

Internal bleeding (flesh reddening)

Non-destructive detection of internal defects Chilling injury in "Morsiani 90" nectarines

Fruit stored @ 0°C and 4°C for 4 weeks

Percentage of healthy fruit during shelf life

¹ Days of shelf-life @ 20°C In fruit stored @ 4°C after 4 days there were no healthy fruit

Severity index $0.3 \rightarrow \text{no fruit with defect}$ $1.0 \rightarrow \text{all fruit with defects}$

ວ°0 ↓

Close symbols

Absorption coefficients

At harvest, $\mu_a @ 670$ nm decreases due to fruit ripening After storage @ 0°C, $\mu_a @ 780$ nm increases

After storage @ 4°C, μ_a @ 670 nm and μ_a @ 780 nm increase

Lurie et al., Postharvest Biology and Technology 59:211-218 (2011)

Non-destructive detection of internal defects Chilling injury in "Morsiani 90" nectarines

Absorption coefficients @ 670 and 780 nm

H – Healthy BL – Internal bleeding BR – Internal browning G – Gel breakdown

μ_a @ 780 nm can distinguish healthy fruit from chilling injured ones

Lorenzo Spinelli

Lurie et al., Postharvest Biology and Technology 59:211-218 (2011)

During cold storage plums are susceptible to developing internal disorders:

- Flesh browning
- Jellying (gel-like glassy structure)

CI depends on cultivar, fruit maturity, orchard factors and storage temperature.

Non-destructive detection of internal defects Chilling injury in "Jubileum" plums

Fruit stored @ 1°C and 4°C for 3 weeks

The amount of jellying and internal browning was graded on a scale ranging from 0 =healthy to 10 = 100% of affected area.

Vangdal et al., Acta Horticolturae 945:197-203 (2012)

Non-destructive detection of internal defects Chilling injury in "Jubileum" plums

After storage, μ_a @ 670 nm and μ_a @ 780 nm increase during shelf life

This trend reflects the development of CI

Vangdal et al., Acta Horticolturae 945:197-203 (2012)

Correlation coefficients between internal disorders and TRS parameters after storage at 1°C and 4°C (*n* = 275).

Parameters		Jellying	Browning area
		(0-10 scale)	(0-10 scale)
	$\mu_{a}670$	0.68***	0.77***
TDC managements	$\mu_{\mathrm{a}}780$	0.70***	0.76***
TKS parameters	μ 's670	$-0.01^{n.s.}$	$0.03^{n.s.}$
	μ 's780	$-0.06^{n.s.}$	$-0.09^{\text{n.s.}}$
*** <0.001		1	/ 1 1

*** p<0.001; n.s.=Not significant correlation at 5% level.

- $\mu_a @ 670$ nm and $\mu_a @ 780$ nm can distinguish healthy fruit from those affected by internal disorders
- Reduced scattering coefficients not influenced by CI development

Vangdal et al., Acta Horticolturae 945:197-203 (2012)

Projects • DIFFRUIT, EU FP4, 1996-1999

- TRS APPLE, MAFF (UK), 2000
- AGROTEC, MIUR (I), 2000-2002
- CUSBO, LASERLAB, EU FP5+FP6+FP7, 2004-2014
- INSIDEFOOD, EU FP7 2009-2013
- TROPICO, Regione Lombardia (I), 2010-2012
- 3D Mosaic, EU ICT-AGRI, 2011-2013
- USER-PA EU ICT-AGRI 2013-2016
- MONALISA 2014-2016

Publications (2001-2013) • >30 papers published on peer reviewed international journals

- >30 papers on international books and proceedings
- >30 talks on international conferences
- **Collaborations** CREA-IT, Milan (I), Anna Rizzolo, Maristella Vanoli, Maurizio Grassi
 - Laimburg (I), Angelo Zanella
 - Agricultural Research Organization, Bet Dagan (Israel), Susan Lurie, Victor Alchanitis
 - Wageningen Universiteit (NL), Pol Tijskens, Olaf Van Kooten, Rob Schouten
 - Planteforsk, Lofthus (N), Eivind Vangdal
 - Potsdam (D), Manuela Zude-Sasse
 - Leuven (B), Bart Nicolai, Bert Verlinden, Wouter Sayes, Pieter Verboven, Maarten Hertog
 - UPM, ETSI Agronomos Madrid (E), Margarita Ruiz-Altisent, Constantino Valero
 - Horiculture Research International, East Malling, (UK) David Johnson, Colin Dover

Acknowledgements

- Politecnico di Milano Dipartimento di Fisica, Milan (Italy)
 - Antonio Pifferi
 - Davide Contini
 - Alberto Dalla Mora

• CREA-IT (ex CRA-IAA, ex IVTPA), Milan (Italy)

- Anna Rizzolo
- Maristella Vanoli
- Maurizio Grassi
- (Paola Eccher Zerbini)

• Research Centre for Agriculture and Forestry, Laimburg (Italy)

Angelo Zanella

