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The origin and consequences of noise in
biochemical systems

In which we discover how the microscopic randomness of
chemical reactions can have macroscopic consequences

for living systems.

Surprising things happen when we take the discreteness of molecule number
seriously, abandoning the notion that chemical concentrations may be treated as
continuous variables. Here we will show how ideas of discreteness force us into
dealing with issues of noise and randomness (van Kampen, 1992). We will arrive
at a probabilistic description of reaction kinetics which, in the limit of large
numbers, will reproduce the familiar reaction-rate description. Finally, we will
show how probabilistic systems may be treated numerically using Monte Carlo
simulations.

Analysis
Consider a simple chemical system in which a molecule X is created at some
constant rate k and destroyed in a first-order reaction with rate !. If the total
number n of molecules is large, as is the case in standard chemical systems
(Avogadro’s number is about 1024), we can ignore the fact that n is an integer, but
treat it instead as a continuous variable (Fig. 5.1, dashed line), writing
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However, this is certainly not applicable in living cells, where there are typically
thousands of molecules of a given protein, hundreds of free ribosomes and RNA
polymerases, tens of mRNA molecules of each kind, and one or two copies of
most genes. Moving, then, to a discrete description, we might guess that the
actual time evolution of n would be somewhat coarse, but still completely
predictable. For example, we could imagine a situation in which creation events
occurred, metronome-like, at time intervals %t = %n/(k-!n), with %n = 1.
However, this is physically impossible: it would require the system to somehow
keep track of the time that elapsed between event occurrences. But there is no
internal clock in our simple system – there are only molecules which collide into
one another. The system has no memory of the past, so its response can only
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depend on present conditions. (This is the defining property of a Markov
process.) What therefore happens is that creation and destruction reactions occur
with some probability per unit time, proportional to the reaction rates. This
means that each time the reaction is run with fixed initial conditions, it will
proceed somewhat differently: the system will be stochastic (Fig. 5.1, solid
lines). If we ran several experiments of this kind, recording the number of
molecules present after some fixed time had elapsed, we would find a
distribution of possible values.

Probabilistic formulation of reaction kinetics: the Master Equation
If a reaction occurs at some rate r, then in a large time interval T it will occur, on
average, rT times. If this interval is divided into N smaller sub-intervals, the
chance that the reaction occurred in any one of those sub-intervals is rT/N.
Writing dt = T/N, this shows that the probability of a reaction with rate r
occurring in a small time interval dt is just rdt. (To be careful, we must eliminate
the possibility that more than one reaction occurred in this interval; however, for
small enough dt, the likelihood of that outcome is negligible.)

We now consider an ensemble of identical systems, each having the same
initial conditions, and define pn(t) as the number of these systems which have
precisely n molecules at time t. This number can increase if a molecule of X is
created in some system having n-1 molecules, or if a molecule of X is destroyed
in some system having n+1 molecules; it can decrease if a molecule of X is
created or destroyed in some system having n molecules. For clarity, consider
just one of these for the moment. Suppose there are pn-1 systems having n-1
molecules at some time t. In a small time interval dt, the probability that there
will be a molecule created in any one of these systems is fn-1 dt. Therefore, the
total number of systems in which a molecule is created will be given by pn-1 fn-1

dt. Each of these systems will then enter the pool of systems which have n
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Figure 5.1: Stochastic
biochemical reactions.
Independent runs of the same
reaction proceed differently,
leading to a distribution of final
states (histogram).
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molecules, adding to the number pn that were there to begin with. Thus,
dtfptpdttp nnnn 11)()( ""&$& , or 11/ ""$ nnn pfdtdp . If we now include all

four fluxes, we obtain the Master Equation:
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Note that this is actually an infinite set of equations, one for each n. The Master
Equation is linear in the quantities pn, so it remains unchanged when we divide
the number of systems in a given state n by the fixed total number of systems. In
that case, 'n pn = 1, and we can think of pn(t) as the probability for any given
system to be in state n. To connect with experiments: the ensemble of systems
could be a population of cells, and pn would represent the fraction of cells having
n copies of some protein.

Emergence of the deterministic law
It is possible to obtain all the moments of the probability distribution pn(t)
without explicitly solving the Master Equation. For example, the mean number of
molecules, calculated by averaging over all the systems at a given time, is (n) = '
npn. Summing 5.2 over n, and using fn and gn from 5.1, we obtain
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where we have used the fact that ' h(n) = ' h(n+1) if the sum is carried over all
n. That is, the mean molecule number still obeys the deterministic equation. (This
result is true whenever the rates fn and gn are linear functions of n.)

Steady state: the Poisson distribution
Assume now that we are in steady state, so dpn/dt = 0. Then,
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or, setting !/kn $ ,
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Since this is true for all n, both sides must be equal to a constant; and because pn

must be normalizable, it can be shown that the constant is simply zero. Therefore,
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Setting 'pn = 1 gives nep "$0 . The final steady state result is known as the

Poisson distribution:
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The limit of large numbers
The mean and variance of the Poisson distribution are given by:
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The relative standard deviation is therefore

nn

n 1
2

$
-

. 5.9

This gives us a precise notion of what it means to have a ‘large number’ of
molecules in our system: we can expect deviations from deterministic behavior
of the order of the inverse square root of the number of molecules involved.
Therefore, an ensemble of systems with an average number of 20 molecules will
show a spread of 22% about this value (Fig. 5.2, top), while one with 500
molecules will show a spread of just 4% (Fig. 5.2, bottom).
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Figure 5.2: The limit of large
numbers. Fluctuations can be
neglected as the number of
molecules involved increases.
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The Fokker-Planck equation
For intermediate molecule numbers, when the difference between n and n+1 may
be neglected but fluctuations must still be taken into account, there is a useful
approximation to the Master Equation which provides some physical insight. We
replace n by a continuous variable, and use the notation h(n) in place of the hn

used previously. Any function of n can be Taylor expanded:
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Substituting this into 5.2, we obtain the Fokker Planck equation:
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where J represents a probability flux. This can be thought of as a diffusion
equation: every particle represents a system in our ensemble; the particle position
is analogous to the number of molecules in the system; and J is the flux of
particles across any boundary. In steady state, J must be a constant; however, the
flux at n = 0 must be zero (no system can pass to having negative particle
number), so the flux must be zero everywhere. This gives us the following
equation:
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Setting q = (f + g)p,
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That is, the reaction is analogous to a thermodynamic system in some potential 7.
(Fig. 5.3).

Waiting times between reaction events
Suppose a chemical reaction occurs with rate r. What is the time interval between
successive occurrences of the reaction? The probability that the reaction occurs
in some time interval dt is rdt; the probability that it does not occur is therefore 1
– rdt. The probability that it occurs only after some time 8 can be calculated as
follows:

P(8) # 9(next occurrence is in the interval 8 to 8+d8) =
9 (does not occur for t < 8) 9 (occurs in 8 to 8+d8) 5.15

But

9 (does not occur for t < 8) =
9 (does not occur for t < 8-d8) 9 (does not occur in 8-d8 to 8) 5.16

Setting Q(8) = 9 (does not occur for t < 8), this implies ln(Q(8))-ln(Q(8-d8)) =
ln(1-rd8) : -rd8. Therefore,
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where we have used Q(0) = 1. Inserting this in 5.15, we get

88 8 rdeP r"$)( . 5.18

The waiting times between successive reactions are therefore exponentially

distributed, with mean value r/1$8 , and variance 22 /1 r$-8 .
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Figure 5.3: A stochastic
bistable system. The system
has  the following dynamics:
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with ! = 1, K1K2 =10-4, v0 =
12.5 and v1 = 200. This
results in a double well
potential, with the two stable
states separated by some
energy barrier. The resulting
distribution of expression
levels is bimodal.
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Stochastic simulation of chemical reactions
If u is a random number drawn from a uniform distribution between zero and
one, then the following function of u is distributed precisely as 8 is in 5.18:
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This gives us a very simple prescription for numerically simulating the behavior
of a stochastic system. Start with some initial condition for each molecule type. If
there are m possible types of reactions (m = 2 for 5.2, as there are only creation
and destruction events) occurring with rates ri (i = 1, ..., m), then we can generate
m random variables Ci which are the putative waiting times to the next occurrence
of each reaction type. The smallest of these gives the time interval after which
the first reaction which will actually occur. At this stage, simply update the
variables (for 5.2, we would increment n if a creation event occurred, or
decrement it if a destruction event occurred), recalculate the rates, and repeat the
generation of putative times. Continue this until some convenient time limit is
reached. This procedure is a slight simplification of the Gillespie algorithm
(Gillespie, 1977). This is how the timecourses in Fig. 5.1 were generated. To
obtain a histogram, simply repeat this procedure several times (2,500 times for
Fig. 5.1), recording the final state of the system, then calculate the histogram of
final states. As a further example, Fig. 5.4 shows a simulated timecourse for the
bistable system of Fig. 5.3. Notice that a single cell transitions stochastically
between the two available states, so the distribution of expression levels in the
population is bimodal.
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Figure 5.4: Timecourse of a
stochastic bistable system. The
system is the same one that is
shown in Fig. 5.3. The
expression level intermittently
switches between the two
available states.


