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Abstract

The invariant cell initiation mass measured in bacterial growth experiments has been interpreted as a
minimal unit of cellular replication. Here we argue that the existence of such minimal units induces a
coupling between the rates of stochastic cell division and death. To probe this coupling we tracked live
and dead cells in Escherichia coli populations treated with a ribosome-targeting antibiotic. We find that
the growth exponent from macroscopic cell growth or decay measurements can be represented as the
difference of microscopic first-order cell division and death rates. The boundary between cell growth
and decay, at which the number oflive cells remains constant over time, occurs at the minimal
inhibitory concentration (MIC) of the antibiotic. This state appears macroscopically static but is
microscopically dynamic: division and death rates exactly cancel at MIC but each is remarkably high,
reaching 60% of the antibiotic-free division rate. A stochastic model of cells as collections of minimal
replicating units we term ‘widgets’ reproduces both steady-state and transient features of our
experiments. Sub-cellular fluctuations of widget numbers stochastically drive each new daughter cell
to one of two alternate fates, division or death. First-order division or death rates emerge as eigenvalues
of a stationary Markov process, and can be expressed in terms of the widget’s molecular properties.
High division and death rates at MIC arise due to low mean and high relative fluctuations of widget
number. Isolating cells at the threshold of irreversible death might allow molecular characterization of
this minimal replication unit.

Introduction

There are many approaches to define a ‘minimal cell’. Some attempt to construct protocells out of elementary
molecules and chemical processes [ 1, 2]. Others start with a complex cell and reduce it to an essential core [3]. A
third fruitful approach uses natural patterns of cell growth to infer basic requirements for cellular replication
[4-6]. Campbell [5] realized that exponentially growing cellular populations were in a state of ‘balanced growth’:
the chemical composition of a daughter cell immediately after division was invariant from one generation to the
next, leading to a well-defined and constant doubling time. The specific dependence of the exponential growth
rate (the exponent of the cell density versus time curve) on nutrient or antibiotic concentrations can be
summarized as ‘growth laws’ [7]. Models of bacteria as autocatalytic chemical reactors accurately capture many
mathematical features of these growth laws [8—11]. Combining such models with bacterial growth
measurements, Jun and colleagues [11] have demonstrated an invariant cell initiation mass which they interpret
as a minimal unit of cellular replication.

Studies of bacterial growth laws have focused mainly on exponential growth. However, bacterial populations
in the presence of high antibiotic levels can also undergo sustained exponential decay over several orders of
magnitude [12, 13]. This is surprising: exponential growth can arise from deterministic cell doubling, but
exponential decay with first-order kinetics typically occurs when individuals in a population die at random, like
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radioactive nuclei. If some cells die early while others die later, this must be due to some underlying cell-to-cell
variability. The growth of single cells is known to be a stochastic, fluctuating process [14—16]. We should
therefore consider the possibility that the choice between cell division and cell death could be a stochastic event.
This contrasts with models that ascribe changes in exponential growth rates to changes in division rates alone
[8, 9]. No analysis has so far attempted to simultaneously account for molecular fluctuations, cell division, and
cell death within a common framework.

Here we show that observed macroscopic features of cell growth and decay are consistent with the
hypothesis that single cells make a stochastic choice between division and death. We also show that this type of
stochastic choice naturally arises from a microscopic phenomenological model of cells as collections of sub-
cellular replicating units. A replicating unit is an autocatalytic set of molecules and reactions, which might
include ribosomes, DNA replication initiation complexes, and metabolicloops [8, 9, 11, 17]. Such a unit is
termed minimal if the removal of any of its components results in the loss of autocatalytic activity. Here we
sidestep the issue of the precise composition of the minimal unit, grouping the entire replicating set of molecules
and reactions into a single abstract ‘widget’.

We model the synthesis, degradation and partitioning of widgets as stochastic biochemical processes. Cell
division or death occurs when a cell hits high or low thresholds of these widgets. When the average number of
widgets is small, sub-cellular fluctuations in their number drive a stochastic choice between cell division and
death, thus coupling molecular dynamics with cellular dynamics. Remarkably, the predictions of this basic
model match observed qualitative features of cell growth and decay. These observations suggest a fourth
operational definition of a minimal cell: one at the threshold of death due to irreversible loss of its last functional
replicating unit.

Methods

Cell growth and cell density measurement protocols

We grew Escherichia coliMG1655 cells from a single colony overnight in Luria Bertani medium at 37 °C. We
transferred 50 pl of this culture to 25 ml glucose M9 minimal medium in a 100 ml flask at 37 °C. The ODgg of
this culture was monitored until it reached 0.1. At this point, we added the appropriate concentration of
kanamycin, and this was defined as the t = 0 time point of our measurement. Every 40 min up to a maximum of
280 min, 600 yl of this culture was collected for ODggo measurements, and 100 pl was collected for colony
forming unit counts (CFU ml~"). We use a (non-standard) stringent definition of the minimal inhibitory
concentration (MIC) as the lowest kanamycin level at which CFU ml ™' is non-increasing. By serially increasing
[Kan] we found MIC to be between 4.2 and 4.3 ug ml ™. Pipetting errors cause variations beyond this level of
precision. The numerical value [Kan]ygc = 4.21 pg ml™! represents the smallest increment above 4.2 ug ml™!
at which CFU ml ™" was stable over 280 min. We determined ODj, and colony counts using multiple dilutions.
Colony counts were measured for four technical replicates; at MIC we used two biological replicates, each with
four technical replicates. Minimal medium (100 ml): water, 76.8 ml; 10X M9 salts 10 ml; 20% glucose, 2 ml; 1 M
CaCl,, 10 pl; 100 mM thiamine, 1 ml; 4% casamino acids, 10 ml; 1 M MgSO, 200 pl.

Stochastic model of cell division and death
The transition system shown in figure 2(D) defines a Markov process with the following Master equation:

dew

Fral —(awe,, + ywey) + (@(w — Dey—1 + 7y(W + Deyyr)

I (0

Here, each c,, represents the number of cells (or the normalized probability of cells, depending on the context)
with precisely wwidgets for w = 1,...,Q2 — 1, with the stipulation that ¢ = 0. The firstline corresponds to cells
gaining or losing individual widgets. The second line corresponds to the creation of two new daughter cells by
the instantaneous division of a cell that hits {2 widgets, which happens atrate (2 — 1)¢cq_1. The resulting
daughters are defined by w’ and w” such that w’ + w” = 2. The first factor of 2 accounts for two ways of
achieving any given w’, in the left or right daughter. The binomial coefficient arises since each widget has an
equal chance of being inherited by either daughter cell. A cell divides instantaneously when it hits €2 widgets. The
usual normalizing factor of 1/2 isreplaced by 1 /(2% — 2):the partitions {w’, w”} = {0, Q} or {€), 0} are
ignored since cells repeatedly divide until some other partition occurs.

We assume a large number of total cells and widgets, so the branching process never goes extinct. If
¢ = [q... cg_1]" isa column vector, the system of equations equation (1) can be written using a transition
matrix A and solved by matrix exponentiation:
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de(t)/dt = Ac(t) = c(t) = e*c(0). 2)

. . . . -1
It is convenient to write the vector ¢ as a product of two components: the number of live cells ¢ = ZW: L Cw>

and the normalized distribution f,, of those cells over the different numbers of widgets: ¢ (t) = ¢ (t)f (¢). At
long times this distribution approaches the eigenvector of A corresponding to its largest eigenvalue:

f(t — oc0) — f suchthat Af = M. Therefore ¢; (t — c0) ~ e*. We can see by direct substitution that o — ~
is an eigenvalue of A. Since the number of live cells cannot increase any faster than the number of widgets, we
also know this is its largest eigenvalue. Once f (¢) is determined we calculate the specific division and death rates
¢, (t)and ¢ _(t) as the rates at which cells cross the right boundary w = €2 — 1and theleft boundary w = 1. By
measuring time in units of &~ !, we can see that the values ¢, /« depend only on the ratio v/« and on

(figure 4(B)).

Probability of division

An immediate post-division daughter cell can have any widget number in the range w™i* € {1, ..., Q — 1}.
Starting from the initial condition ¢™* = §,, ,,ins, the probability of next division is a first-passage-time problem
with absorbing boundaries at w = 0 and w = Q. This corresponds to a new transition matrix A where the
binomial partition terms have been removed. We can find ¢(t) = exp (At)chit and define

I _ AL init
b_fo c(t)dr = A '¢init 3)

The integrated flux leaving the right and left boundaries, corresponding to probabilities of division or death, are:

division — Oé(Q - l)bﬁfla £death — ’Ybl (4)

Results

Measuring cell growth in the presence of antibiotics
Different classes of antibiotics act through distinct mechanisms [ 18]. Since we focus on replicating units, here we
use the aminoglycoside antibiotic kanamycin which irreversibly binds to and inhibits the ribosome [19].

The effect of an antibiotic is typically quantified in terms of its impact on growth rates. It is common to use
turbidity measurements (ODgg) for this purpose, since these are easy to perform and automate [20]. However,
cell growth is more accurately determined by measuring the density of viable colony-forming units (CFU ml ")
[13]. These two are not equivalent: colony-forming units measure the density of live cells, whereas turbidity
measures the total density of all non-lysed cells, live or dead (figure 1(A)). For the remainder of our analysis we
always compare CFU ml ™" (live cells) with the rescaled value 8 x 10”7 x ODgoy (total cells) as these coincide for
exponentially growing E. coli. cells in the absence of antibiotics. Since we use a fixed volume of media we use the
terms cell number and cell density interchangeably.

The MIC of an antibiotic is often defined as the concentration at which ODgyg no longer increases, but this
depends on the duration and sensitivity of the measurement [21]. Here we rigorously define MIC as the
antibiotic concentration at which CFU ml ™" is asymptotically constant over time.

Live and total cell counts under antibiotic treatment

We monitored the effect of kanamycin addition on E. coli cells grown in an initially antibiotic-free medium
(figure 1; Methods: Cell growth and cell density measurement protocols). To get a detailed picture of the effect of
the antibiotic, we simultaneously measured CFU ml ™" (live cells) and ODjgqy (total cells) over time. After a brief
transient, CFU ml ™' settled into an exponentially growing profile (for low [Kan]; figure 1(B)) or an
exponentially decaying profile (for high [Kan]; figure 1(D)). At the boundary between these two regimes

CFU ml ™' remained constant over time, defining the MIC ([Kan] = 4.21 ug ml~"; figure 1(C)). The behavior of
turbidity was strikingly different: ODgo always monotonically increased, with an exponentially accelerating
profile (for low [Kan]; figure 1(B)) or a concave decelerating profile (for high [Kan]; figure 1(D)). At the
boundary between these two regimes, ODgq increased precisely linearly (figure 1(C), left panel). These trends
persisted until the medium was depleted of nutrients. Together, these observations are consistent with the idea
that CFU ml ™' measures the density of live cells (c;, which can increase or decrease) while ODgo measures the
total density of live plus dead cells (¢ + ¢p, which can only increase). This interpretation assumes a low rate of
celllysis. We have also not considered persister cells that slow their division under antibiotic treatment [22];
these are significant once nearly all cells in the original population have already died.

Exponential growth or decay arises from first-order cell division and death rates
As afirst attempt to understand these dynamics, we decomposed the separate contributions of cell division (¢, )
and death (¢ ) rates using a first-order kinetic model (figure 2(C)):

3



10P Publishing

New J. Phys. 20 (2018) 035004 S Chib etal

9y

A

[ [Kan] = 0 pg/ml
total cells: live cells: .
8x107X0ODgqq CFU/ml

B
A

=
total /

* live
S/

7.0, time (min) |
0 100 200 300

log,, ( cell count )

-
o
o

[Kan] = 4.21 pg/ml
8.0/ - (MIC)

total //

/41__\
live
/ 7.0} / 1

~ time (min) time (min)
0 100 200 300 0 100 200 300

®
=]

total /
/
/ live

.

a =]
=) =]

cell count / 108

log,, ( cell count)

o

@)

sl [Kan] = 5.5 pg/mi
' total
70 7—\

live

log, ( cell count )

69 time (min)\
D 0 100 200 300

Figure 1. Growth and decay of cell populations under antibiotic treatment. (A) We use two methods to estimate cell densities.
Turbidity (ODggo) measures the total density of live cells (¢, filled rectangles) plus dead cells (cp, hollow rectangles). Colony forming
units (CFU ml™") measures the density oflive cells (c ) alone. We always report the rescaled value 8 x 107 x ODggo which can be
directly compared to CFU ml ™. (B)~(D) Cell growth measurements for Escherichia coli populations. Each panel corresponds to
different concentrations of the antibiotic kanamycin. Light curves, triangle symbols: ODgoo measuring total cells. Dark curves, circle
symbols: CFU ml ™" measuring live cells. Errorbars show standard deviations over replicates. Schematics on the right show examples
of cell division and death that would produce such growth curves. (B) At zero antibiotic the total cell and live cell numbers completely
overlap and show perfect exponential growth on alog-lin plot; we have inserted an offset so both can be seen. Schematically: cell
division dominates and cell death is negligible, driving exponential growth each generation. (C) At the MIC of antibiotic live cell
number flattens out while total cell number continues to increase linearly on a lin-lin plot (left). Schematically: each time a cell divides,
on average one of its daughters dies while the other goes on to a next successful division. Thus the live cell number is constant while the
dead cell number increases linearly each generation. (D) At high antibiotic, total cell number flattens out while live cell number decays
exponentially on alog-lin plot. Schematically: though cells transiently go through a few rounds of division, eventually all cells die so
live cell number goes to zero while total cell number reaches a constant limit.

dep/dt = (¢ — ¢ )cr,
dC]_)/dt = ¢7CL. (5)

If there are no constraints on ¢, , equation (5) is a tautology. The first-order kinetics assumption implies that,
once the transient response to the antibiotic has settled but nutrients are not yet depleted, ¢, are constant over
time. The solution to equation (5) is then:

o
c Cinit
D _ D _ L(e(@—d))t — 1), (6)

c init c init ¢+ _ ¢_

where we have scaled cell numbers by their initial values at the end of the transient.
¢, depend on the antibiotic concentration, three values of which are of particular interest. At zero antibiotic
weexpect ¢, = ¢ and ¢ = 0,s0 ¢ = Init 07t and ¢, = 0. Indeed, we see that total cell number and live

cell number are equal, and both grow with exponent ¢fa" = 0.017 min ™' (figure 1(B)). At high antibiotic we
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Figure 2. A stochastic model of cell division and death. (A) A widget is a minimal replicating unit obeying a birth-death process with
rates o and , the latter proportional to antibiotic levels. (B) Cells are collections of widgets. When a cell hits w = 2 it divides; when it
hits w = 0it dies. (C) The widget dynamics can be used to define the cell dynamics, with effective time-dependent division and death
rates ¢... (D) Dynamics of a cell population: c,, represents the number of cells with exactly w widgets. Individual cells move to the
right (gain a widget) or left (lose a widget). ¢_ is the per-cell rate at which cells cross the leftboundary at w = 1and die. ¢, is the per-
cell rate at which cells cross the right boundaryatw = € — 1and divide. At division the widgets binomially partition into two
daughter cells, which re-enter the main distribution. The area of the red bin gives the number of dead cells, the total area of the gray
bins gives the number of live cells. Over time the gray distribution reaches a constant shape but can increase or decrease in area.

expect ¢, = 0and ¢ = ¢™,s0 ¢ = "¢ *""*and cp = ™" — ¢. Thisagain matches the data: we see that

live cell number decays exponentially, while total cell number approaches a flat asymptote (figure 1(D)).

AtMIC the situation is more interesting since by definition ¢, = ¢ = ™M, s0 ¢, (t) = ¢"* and

op(t) = it 4 it pMICs That is, live cell numbers are constant because death and division rates balance, while
dead cell numbers increase linearly because they arise from the continuing death oflive cells. This is precisely
what we observe: the slope of the linear portion of the total cell curve at MIC shows that $MIC = 0,011 min
(figure 1(C), left panel). The total cell curve tracks the live cell curve for the first hour following antibiotic
treatment, after which the live cell curve flattens while the total curve increases linearly. This suggests cell death
only begins after a lag, while cell division is relatively unperturbed by the antibiotic. This is corroborated by the
ratio ¢MIC/ ™™ ~ 0.6 being close to unity: cell division is nearly as rapid at MIC as at zero antibiotic.

In summary, the following three observations support the idea that cell division and death operate at the
single-cell level with apparent first-order kinetics, once transients die out. Atlow antibiotic the growth of total
cell number and live cell number are both exponential. At high antibiotic live cell number decays exponentially,
while total cell number approaches a constant. In between, at MIC, total cell number increases linearly, while live
cell number is constant. Seeing first-order kinetics across the full range of antibiotic concentrations is surprising,
since cells are not elementary chemical entities. In the following section we show how such kinetics emerge from
astochastic model of a cell as a collection of minimal replicating units.

Widgets: sub-cellular replicating units

The phenomenological model of equation (5) fails to predict the transient dynamics because it assumes a cell has
no internal structure. If we wish to determine how ¢, depend on time, this must either be directly measured, or
predicted from a more microscopic model. We therefore consider a cell as a collection of replicating units we
term ‘widgets’ (figure 2; Methods: Stochastic model of cell division and death). The widgets themselves obey a
birth-death dynamics analogous to equation (5), but with microscopic birth and death rate constants & and ~y
(figure 2(A)). For concreteness we imagine & to be constant (e.g. the catalytic efficiency of ribosomes) while
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depends on the antibiotic concentration (e.g. the rate of irreversible ribosome inhibition by kanamycin), but
these assumptions may be relaxed. We specify how cell division and death depend on the widgets as follows
(figure 2(B)). When the widget number hits w = 0 the cell dies since no new widgets can be made without an
existing widget. When the widget number hits a threshold w = (2 the cell instantaneously divides, and the
widgets are partitioned binomially between two daughter cells. This is arguably the simplest possible
microscopic model of cell growth.

We consider a population of cells, binned according to the number of widgets they contain: ¢, is the number
of cells with precisely w widgets, for w = 1, ...,  — 1(figure 2(D); Methods: Stochastic model of cell division
and death). Individual cells do a biased Poisson random walk along the w-axis: moving to the right if they gain a
widget, or to the left if they lose one. The number oflive and dead cells are:

Q-1

=Y. ¢y =co ()

w=1

Cells that cross the left boundary (i = 1) move to bin ¢y and die, so ¢, decreases by one and ¢p increases by
one. Cells that cross the right boundary (i = 2 — 1) move to the bin ¢ and instantaneously divide into two
daughters, so ¢ increases by one. The daughters re-enter the distribution at two positions w’ and w” such that
w’ + w" = Q,with w’ binomially distributed. These processes define a transition matrix A (Methods:
Stochastic model of cell division and death) so:

Q-1

dcv(t)/dt = Z Avw(aa V)Cw(t)- (8)

w=1

This can be easily solved for ¢,, (¢) from any ¢, (t = 0) by matrix exponentiation. Over time the distribution of
live cells over widget number reaches a steady-state, proportional to the eigenvector of the transition matrix

corresponding to its largest magnitude eigenvalue \. If we define a normalized distribution f, (a, ) such that
Af = M, then:

cw(t = 00) = cr()f,, ~ eMf, . 9)

That is, the shape of the distribution becomes constant, while the total number of cells increases or decreases
exponentially.

Comparison of widget model to experimental growth curves

If we measure time in units of a~! the model has two dimensionless parameters: the widget death/birth ratio

v/ &, and the threshold number of widgets at cell division (2. The value of 7/« is some monotonically increasing
function of antibiotic concentration, not necessarily linear, with v/« = 1at MIC. We are left with a single
tunable parameter €2 which controls the number of widgets and therefore influences the scale of stochastic
fluctuations: higher values of {2 correspond to lower fluctuations relative to the mean. We will return to this
point in our discussion.

In our experiments we first grow cells in in the absence of antibiotic and then add kanamycin at the initial
measurement point. To model this we first find the stationary distribution of widgets at zero antibiotic, and set
this as the initial condition: f,, (o = 1, v = 0). The addition of antibiotic is modeled by shifting y to some non-
zero value, causing the cell population to evolve toward a new asymptotic distribution: f, (o = 1, 7). This
corresponds to the transient phase of the experiment, as cells adapt to the presence of the antibiotic. As cells go
through this transient we can use equation (8) to find ¢,, (t) and equation (7) to find ¢; (t) and ¢p (¢) for various
ratios v/ . The transient lasts longer if v/ «v islow or if €2 is high. Its duration is essentially determined by the
inverse of the second-largest eigenvalue of A; {2 = 2 is a singular case where there is no transient (see figure 3(D)
inset).

The predictions of our model for 2 = 10 (figures 3(C), (D)) qualitatively match our experimental
observations (figures 3(A), (B)). In particular, we capture the initial transient increase in cell number as cells
adjust to the addition of antibiotic. We correctly predict the asymptotic exponential growth and decay kinetics of
live cell number at low or high antibiotic levels (figures 3(B), (D)). Finally, we correctly predict the response at
MIC, where the live cell number flattens (figures 3(B), (D)) while total cell number approaches a linear trajectory
(figures 1(C), 3(A), (C)).

Note that the assignment {2 = 10 is not a numerical fit, it is a representative parameter choice. It is not
justifiable to fit the abstract widget model to quantitative measurements of cell growth, which are expected to
depend on more complex aspects of metabolism and cell size control [11]. Nevertheless it is remarkable that
such a basic model captures diverse qualitative aspects of cell growth and decay across a range of antibiotic
concentrations.
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Figure 3. Comparison of widget model to experimental growth curves. (A), (B) E. coli growth curves. We show the same data as in
figure 1, including additional antibiotic levels. Each curve corresponds to different concentrations of kanamycin; see key in panel (A).
[Kan] = 4.21 pg ml ™" is the minimal inhibitory concentration (MIC) at which live cell number is constant over time. The gray area
indicates the nutrient depletion zone where exponential growth stalls. (A) Total cell number (ODgg) over time, mean and standard
deviation over four technical replicates. (B) Live cell number (CFU ml ") over time, mean and standard deviation over four technical
replicates. (C), (D) Predictions of the widget model. Curves show solutions to equation (8) for the division threshold €2 = 10 and
increasing values of v/, corresponding to increasing antibiotic levels; see key in panel (C). 7/a = 1 corresponds to MIC. We label
the asympotic behavior of the predicted curves: linear (lin), logarithmic (log), or flat. (C) Total cell number ¢, + ¢p. (D) Live cell
number ¢;. The inset shows the prediction for a cell that has no internal structure and divides as soon as {2 = 2; no transientis
observed in this case. (E) Two sources of fluctuations: random partitioning and random birth /death of widgets. Immediately after cell
division, the number of widgets w in a daughter cell is binomially distributed (gray histogram). Starting at any widget number,
random birth/death dynamics can take a cell to either boundary. We show the probability that a cell will successfully divide again
rather than die (curves; colors represent different values of v/« for Q = 10).

Widget fluctuations drive a stochastic choice between cell division and death

Akey aspect of the model is the choice of a post-division cell between two ultimate fates: division and death
(Methods: Probability of division). Immediately following division the widgets partition binomially between
daughter cells, leading to an initial post-division variation (histogram, figure 3(E)). At this point, the fluctuating
birth-death widget dynamics take over. Cells with an initially low value of w are more likely to hit the left
boundary and die, while cells with an initially high value are more likely to hit the right boundary and divide
(curves, figure 3(E)). The addition of antibiotics (increasing 7/ ) biases the choice against division. The squared
coefficient of variation of the post-division binomial distribution 1 /€2 is a convenient measure of fluctuations.
Note that increasing 1/ increases fluctuations in both binomial widget partitioning and Poisson birth/death
dynamics. The fewer the number of widgets, the larger the scale of fluctuations relative to the mean.

Deriving cellular parameters from widget properties

Having validated the model against a specific set of experiments, we now use it to predict aspects of cell growth
over a broader range of conditions. The dynamics of the widgets can be used to determine the effective
parameters ¢, thatappear in equation (5) (figure 2(D)). To do this we first find the number of cells in each
widget bin, then track how many cells cross the right or left boundary. We can thus write an equation similar to
equation (5), where ¢, are now time-dependent because the distribution of cells evolves from its initial state:
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Figure 4. Stochastic cell division and cell death. (A) Once sufficient time has passed, distributions of cells over widget number reach a
constant shape f,, as in equation (9). We show widget distributions (gray histograms, scaled to fixed height) as ~/a is increased (top
to bottom) for two different values of  (left and right). v/« = 1 corresponds to MIC; low (2 is high fluctuations, high € is low
fluctuations. Maroon arrows show the resulting rates of cell division (¢, ) and cell death (¢ ). (B) Division rate (¢, ; decreasing curves)
and death rate (¢ ; increasing curves) as a function of antibiotic level (/) for various values of 2. Darker curves (higher §2)
correspond to smaller fluctuations. MIC is defined by the pointat which ¢, = ¢ = ¢MIC. (C) 1/Q is the squared coefficient of
variation of the post-division binomial distribution of widgets, and is a convenient measure of fluctuations. As the scale of fluctuations
decreases pMIC drops, ultimately reaching the classic cell stasis limit of zero division and death.

o (1) = a2 — Dcq_1(t) /e (1),
o (t) = ya(t) /e (t). (10)

Equations (9) and (10) imply that ¢__ eventually become time-independent first-order rates.

Classically, exponentially growing populations are thought to arise when post-division daughter cellsreach a
time-invariant composition [5]. Our analysis suggests a broader pattern in which exponentially growing or
decaying populations arise because the entire population of cells reaches a time-invariant distribution over
compositions, due to which the per-cell rates of division and death appear to be first-order constants. However,
these constants themselves obey certain constraints. Comparing equations (9) to (6) wehave A = ¢, — ¢_.On
the other hand, it is easy to check that the largest eigenvalue of A isgivenby A = a — 7 (Methods: Stochastic
model of cell division and death). This gives us two completely distinct ways to decompose the growth exponent
Ainthelimit t — oo:

A:a_7:¢+_¢—- (11)

This key equation relates cellular parameters to molecular parameters. It shows that cell division and death rates
are fundamentally constrained and coupled by widget birth and death rates.

Cell division and death rates at MIC: cell stasis as a low-fluctuation limit

There are many ways to split ¢, so the constraint of equation (11) is satisfied. In general the division rate (¢, )
decreases and the death rate (¢ ) increases with antibiotic level, but the form of these curves depends crucially on
the scale of fluctuations (1/€2). Atzero antibiotic ¥ = 0so ¢, = ¢ = ,and ¢ = 0. The question is more
interesting at MIC, where a = ys0 ¢, = ¢ = ¢MIC. In this scenario cell division and death rates must be
equal, but it is not obvious how large each rate is individually. To calculate this we track the steady-state
distribution of cells over widget number (figure 4(A)). The more cells at the right boundary, the greater the rate
of division; the more at the left boundary, the greater the rate of death. Addition of antibiotics shifts the
distribution leftward, increasing the death rate (figure 4(A), top to bottom). More interestingly, decreasing the
scale of fluctuations (increasing 2) narrows the distribution away from the boundaries and decreases both
division and death rates while keeping o« — y constant (compare figure 4(A), left and right columns).

When we plothow ¢, and ¢_ vary with ~/a we see a range of behaviors depending on the value of {2
(figure 4(B)). In the low-fluctuation limit of high ) (darkest curves) the cell division and death curves collapse
on to two diagonal lines. This corresponds to the textbook scenario of bacterial dynamics: below MIC,
exponential growth is driven purely by cell division with zero cell death; above MIC exponential decay is driven
purely by cell death with zero cell division; and at MIC we have M€ = 0 so cells neither divide nor die.
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However, we now see that this classic picture of cell stasis under antibiotic treatment is the low-fluctuation limit
of amore general dynamics. As fluctuations are increased by decreasing €2 (lighter curves), cell division and
death curves are both pushed higher, thus ¢M'C also increases. In the high-fluctuation limit 2 = 2 (lightest
curves) each cell contains only one widget, and instantaneously divides as soon as this widget replicates. Cell
dynamics are thus identical to widget birth /death dynamics, so b=, =1, and pMIC js high. Overall we
see that pMIC scales in proportion 1 /€2 (figure 4(C)), demonstrating that cell division and death at MIC are
fundamentally driven by fluctuations in widget number.

Discussion and conclusion

Biological implications of stochastic cell division and death

The very existence of minimal units of replication implies that microscopic division and death continue while
the macroscopic count of live cells remains static. In terms of therapy this is relevant since each dead cell raises
the possibility of sepsis in an infection context. Each cell division is also coupled to a DNA replication event, and
represents a chance for new mutations to arise. Fluctuation-induced divisions therefore indirectly increase the
possibility of antibiotic resistance. There are additional implications for bacterial survival under stress. Suppose
we tracked the fate of a single dividing cell in the presence of antibiotics. Stochastic partitioning of molecules is a
form of asymmetric cell division, so the two daughters could take on different fates. In our simple model
daughters are anti-correlated in their probability of subsequent division: the one that passively inherits more
widgets has the higher probability. We could imagine alternative models in which cells under stress
preferentially partition functional components to one daughter, thus enhancing survival rates. Cell-to-cell
variability has been reported in the response to sub-lethal antibiotic levels [23]. Asymmetric partitioning has also
been implicated in bacterial ageing [24]. Single-cell experiments could be used to track the probability of next
division of immediate post-division cells. Correlations or anti-correlations in this probability between two
daughters would reveal more complex partitioning than we have considered here.

The molecular nature of a widget

Measurements of an invariant cell initiation mass across a wide range of growth conditions [11] suggest thata
bacterial cell comprises only a handful of minimal replication units, ranging from about two to eight. Our
approach based on stochastic division and death also suggests that there are only a few minimal replication units
per cell: in figure 3 we show that the model matches qualitative aspects of our cell growth curves for {2 = 10. For
this value of {2 we would predict the rate of division and death at MIC to be ¢MI€ = 0.17 x P (figure 4(B))
whereas the measured value is much higher at $MI¢ = 0.6 x ¢**. This suggests either an even lower value of ©2
or, more likely, additional sources of fluctuations in real cells. To account for this one could construct a model in
which the division trigger and fluctuation sources were decoupled.

The low inferred number of replicating units per cell immediately shows that a widget is not a single
molecular complex such as a ribosome, but rather a collection of diverse molecules and reactions. However, our
approach does not give further clues about the nature of the replicating unit. We can imagine extending our
model to more realistic cellular compositions, beyond collections of identical widgets. Such a model would
specify the manifolds corresponding to compositional states that trigger cell division or death. Given enough
time we would expect any initial population of cells to reach a steady-state distribution of compositions, from
which first-order division or death rates can be calculated. For each point in composition space we could
calculate the probability of successful next division. In this way we separate the space into regions that have zero
division probability, or non-zero division probability. In practice we might define the locus of points at which
the division probability drops to some low level, say 1%. The fact that a cell recovers at all from such bleak initial
conditions means it must contain at least one minimal replicating unit. If it is feasible to experimentally isolate
and characterize cells along this locus, we would arrive at a new operational definition of a minimal cell: one at
the very boundary of death. Monod [25] might have been pleased with such a definition.
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