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Abstract
The invariant cell initiationmassmeasured in bacterial growth experiments has been interpreted as a
minimal unit of cellular replication.Herewe argue that the existence of suchminimal units induces a
coupling between the rates of stochastic cell division and death. To probe this couplingwe tracked live
and dead cells inEscherichia coli populations treatedwith a ribosome-targeting antibiotic.Wefind that
the growth exponent frommacroscopic cell growth or decaymeasurements can be represented as the
difference ofmicroscopic first-order cell division and death rates. The boundary between cell growth
and decay, at which the number of live cells remains constant over time, occurs at theminimal
inhibitory concentration (MIC) of the antibiotic. This state appearsmacroscopically static but is
microscopically dynamic: division and death rates exactly cancel atMICbut each is remarkably high,
reaching 60%of the antibiotic-free division rate. A stochasticmodel of cells as collections ofminimal
replicating units we term ‘widgets’ reproduces both steady-state and transient features of our
experiments. Sub-cellular fluctuations of widget numbers stochastically drive each newdaughter cell
to one of two alternate fates, division or death. First-order division or death rates emerge as eigenvalues
of a stationaryMarkov process, and can be expressed in terms of thewidget’smolecular properties.
High division and death rates atMIC arise due to lowmean and high relative fluctuations of widget
number. Isolating cells at the threshold of irreversible deathmight allowmolecular characterization of
thisminimal replication unit.

Introduction

There aremany approaches to define a ‘minimal cell’. Some attempt to construct protocells out of elementary
molecules and chemical processes [1, 2]. Others start with a complex cell and reduce it to an essential core [3]. A
third fruitful approach uses natural patterns of cell growth to infer basic requirements for cellular replication
[4–6]. Campbell [5] realized that exponentially growing cellular populationswere in a state of ‘balanced growth’:
the chemical composition of a daughter cell immediately after divisionwas invariant fromone generation to the
next, leading to awell-defined and constant doubling time. The specific dependence of the exponential growth
rate (the exponent of the cell density versus time curve) on nutrient or antibiotic concentrations can be
summarized as ‘growth laws’ [7].Models of bacteria as autocatalytic chemical reactors accurately capturemany
mathematical features of these growth laws [8–11]. Combining suchmodels with bacterial growth
measurements, Jun and colleagues [11] have demonstrated an invariant cell initiationmass which they interpret
as aminimal unit of cellular replication.

Studies of bacterial growth laws have focusedmainly on exponential growth.However, bacterial populations
in the presence of high antibiotic levels can also undergo sustained exponential decay over several orders of
magnitude [12, 13]. This is surprising: exponential growth can arise fromdeterministic cell doubling, but
exponential decaywithfirst-order kinetics typically occurs when individuals in a population die at random, like
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radioactive nuclei. If some cells die early while others die later, thismust be due to some underlying cell-to-cell
variability. The growth of single cells is known to be a stochastic, fluctuating process [14–16].We should
therefore consider the possibility that the choice between cell division and cell death could be a stochastic event.
This contrasts withmodels that ascribe changes in exponential growth rates to changes in division rates alone
[8, 9]. No analysis has so far attempted to simultaneously account formolecular fluctuations, cell division, and
cell deathwithin a common framework.

Here we show that observedmacroscopic features of cell growth and decay are consistent with the
hypothesis that single cellsmake a stochastic choice between division and death.We also show that this type of
stochastic choice naturally arises from amicroscopic phenomenologicalmodel of cells as collections of sub-
cellular replicating units. A replicating unit is an autocatalytic set ofmolecules and reactions, whichmight
include ribosomes, DNA replication initiation complexes, andmetabolic loops [8, 9, 11, 17]. Such a unit is
termedminimal if the removal of any of its components results in the loss of autocatalytic activity. Herewe
sidestep the issue of the precise composition of theminimal unit, grouping the entire replicating set ofmolecules
and reactions into a single abstract ‘widget’.

Wemodel the synthesis, degradation and partitioning of widgets as stochastic biochemical processes. Cell
division or death occurs when a cell hits high or low thresholds of these widgets.When the average number of
widgets is small, sub-cellular fluctuations in their number drive a stochastic choice between cell division and
death, thus couplingmolecular dynamics with cellular dynamics. Remarkably, the predictions of this basic
modelmatch observed qualitative features of cell growth and decay. These observations suggest a fourth
operational definition of aminimal cell: one at the threshold of death due to irreversible loss of its last functional
replicating unit.

Methods

Cell growth and cell densitymeasurement protocols
WegrewEscherichia coliMG1655 cells from a single colony overnight in Luria Bertanimedium at 37 °C.We
transferred 50 μl of this culture to 25 ml glucoseM9minimalmedium in a 100 mlflask at 37 °C. TheOD600 of
this culture wasmonitored until it reached 0.1. At this point, we added the appropriate concentration of
kanamycin, and this was defined as the t=0 time point of ourmeasurement. Every 40 min up to amaximumof
280 min, 600 μl of this culturewas collected forOD600measurements, and 100 μl was collected for colony
forming unit counts (CFUml−1).We use a (non-standard) stringent definition of theminimal inhibitory
concentration (MIC) as the lowest kanamycin level at whichCFUml−1 is non-increasing. By serially increasing
[Kan]we foundMIC to be between 4.2 and 4.3μg ml−1. Pipetting errors cause variations beyond this level of
precision. The numerical value [Kan]MIC=4.21 μg ml−1 represents the smallest increment above 4.2 μg ml−1

at whichCFUml−1 was stable over 280 min.We determinedOD600 and colony counts usingmultiple dilutions.
Colony countsweremeasured for four technical replicates; atMICwe used two biological replicates, eachwith
four technical replicates.Minimalmedium (100 ml): water, 76.8 ml; 10XM9 salts 10 ml; 20%glucose, 2 ml; 1 M
CaCl2, 10 μl; 100 mM thiamine, 1 ml; 4% casamino acids, 10 ml; 1 MMgSO4 200 μl.

Stochasticmodel of cell division and death
The transition system shown infigure 2(D)defines aMarkov process with the followingMaster equation:

c

t
wc wc w c w c

c
w

d

d
1 1

2 1
1

2 2
. 1

w
w w w w1 1

1

a g a g

a

= - + + - + +

+ W -
-

W

- +

W- W ( )
( ) ( ( ) ( ) )

( ) ( )

Here, each cw represents the number of cells (or the normalized probability of cells, depending on the context)
with preciselywwidgets for w 1, , 1,= ¼ W - with the stipulation that c 0.=W Thefirst line corresponds to cells
gaining or losing individual widgets. The second line corresponds to the creation of two new daughter cells by
the instantaneous division of a cell that hits Wwidgets, which happens at rate c1 .1a W - W-( ) The resulting
daughters are defined by w¢ and w such that w w .¢ +  = W Thefirst factor of 2 accounts for twoways of
achieving any given w ,¢ in the left or right daughter. The binomial coefficient arises since eachwidget has an
equal chance of being inherited by either daughter cell. A cell divides instantaneously when it hits Wwidgets. The
usual normalizing factor of1 2W/ is replaced by 1 2 2 :-W( )/ the partitions w w, 0,¢  = W{ } { }or , 0W{ }are
ignored since cells repeatedly divide until some other partition occurs.

We assume a large number of total cells andwidgets, so the branching process never goes extinct. If
c c c T

1 1= ¼ W-[ ] is a column vector, the systemof equations equation (1) can bewritten using a transition
matrix A and solved bymatrix exponentiation:
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It is convenient towrite the vector c as a product of two components: the number of live cells c c ,L w w1

1å= =
W-

and the normalized distribution fw of those cells over the different numbers of widgets: c ft c t t .Lº( ) ( ) ( ) At
long times this distribution approaches the eigenvector of A corresponding to its largest eigenvalue:
f ft  ¥ ( ) such that f fA .l= Therefore c t e .L

t ¥ ~ l( ) Wecan see by direct substitution that a g-
is an eigenvalue of A. Since the number of live cells cannot increase any faster than the number of widgets, we
also know this is its largest eigenvalue. Once f t( ) is determinedwe calculate the specific division and death rates

tf+( ) and tf-( ) as the rates at which cells cross the right boundary w 1= W - and the left boundary w 1.= By
measuring time in units of ,1a- we can see that the values f a/ depend only on the ratio g a/ and on W
(figure 4(B)).

Probability of division
An immediate post-division daughter cell can have anywidget number in the range w 1, , 1 .init Î ¼ W -{ }
Starting from the initial condition c ,w w w

init
, initd= the probability of next division is afirst-passage-time problem

with absorbing boundaries at w 0= and w .= W This corresponds to a new transitionmatrix Â where the
binomial partition terms have been removed.We can find c ct Atexp init=( ) ( ˆ ) and define

b c ct t Ad . 3
0

1 initò= =
¥ -( ) ˆ ( )

The integrated flux leaving the right and left boundaries, corresponding to probabilities of division or death, are:

b b1 , . 4division 1 death 1a gÃ = W - Ã =W-( ) ( )

Results

Measuring cell growth in the presence of antibiotics
Different classes of antibiotics act through distinctmechanisms [18]. Sincewe focus on replicating units, here we
use the aminoglycoside antibiotic kanamycinwhich irreversibly binds to and inhibits the ribosome [19].

The effect of an antibiotic is typically quantified in terms of its impact on growth rates. It is common to use
turbiditymeasurements (OD600) for this purpose, since these are easy to perform and automate [20]. However,
cell growth ismore accurately determined bymeasuring the density of viable colony-forming units (CFUml−1)
[13]. These two are not equivalent: colony-forming unitsmeasure the density of live cells, whereas turbidity
measures the total density of all non-lysed cells, live or dead (figure 1(A)). For the remainder of our analysis we
always compareCFUml−1 (live cells)with the rescaled value 8×107×OD600 (total cells) as these coincide for
exponentially growing E. coli. cells in the absence of antibiotics. Sincewe use afixed volume ofmedia we use the
terms cell number and cell density interchangeably.

TheMICof an antibiotic is often defined as the concentration at whichOD600 no longer increases, but this
depends on the duration and sensitivity of themeasurement [21]. Herewe rigorously defineMIC as the
antibiotic concentration at whichCFUml−1 is asymptotically constant over time.

Live and total cell counts under antibiotic treatment
Wemonitored the effect of kanamycin addition onE. coli cells grown in an initially antibiotic-freemedium
(figure 1;Methods: Cell growth and cell densitymeasurement protocols). To get a detailed picture of the effect of
the antibiotic, we simultaneouslymeasuredCFUml−1 (live cells) andOD600 (total cells) over time. After a brief
transient, CFUml−1 settled into an exponentially growing profile (for low [Kan];figure 1(B)) or an
exponentially decaying profile (for high [Kan];figure 1(D)). At the boundary between these two regimes
CFUml−1 remained constant over time, defining theMIC ([Kan]=4.21μg ml−1;figure 1(C)). The behavior of
turbidity was strikingly different: OD600 alwaysmonotonically increased, with an exponentially accelerating
profile (for low [Kan];figure 1(B)) or a concave decelerating profile (for high [Kan];figure 1(D)). At the
boundary between these two regimes, OD600 increased precisely linearly (figure 1(C), left panel). These trends
persisted until themediumwas depleted of nutrients. Together, these observations are consistent with the idea
that CFUml−1measures the density of live cells (c ,L which can increase or decrease)whileOD600measures the
total density of live plus dead cells (c c ,L D+ which can only increase). This interpretation assumes a low rate of
cell lysis.We have also not considered persister cells that slow their division under antibiotic treatment [22];
these are significant once nearly all cells in the original population have already died.

Exponential growth or decay arises fromfirst-order cell division and death rates
As afirst attempt to understand these dynamics, we decomposed the separate contributions of cell division (f+)
and death (f-) rates using a first-order kineticmodel (figure 2(C)):
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If there are no constraints on ,f equation (5) is a tautology. Thefirst-order kinetics assumption implies that,
once the transient response to the antibiotic has settled but nutrients are not yet depleted, f are constant over
time. The solution to equation (5) is then:
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wherewe have scaled cell numbers by their initial values at the end of the transient.
f depend on the antibiotic concentration, three values of which are of particular interest. At zero antibiotic

we expect maxf fº+ + and 0,f =- so c c eL L
tinit max

= f+ and c 0.D = Indeed, we see that total cell number and live
cell number are equal, and both growwith exponent 0.017maxf =+ min−1 (figure 1(B)). At high antibiotic we

Figure 1.Growth and decay of cell populations under antibiotic treatment. (A)Weuse twomethods to estimate cell densities.
Turbidity (OD600)measures the total density of live cells (c ,L filled rectangles) plus dead cells (c ,D hollow rectangles). Colony forming
units (CFU ml−1)measures the density of live cells (cL) alone.We always report the rescaled value 8×107×OD600which can be
directly compared toCFU ml−1. (B)–(D)Cell growthmeasurements for Escherichia coli populations. Each panel corresponds to
different concentrations of the antibiotic kanamycin. Light curves, triangle symbols: OD600measuring total cells. Dark curves, circle
symbols: CFU ml−1measuring live cells. Errorbars show standard deviations over replicates. Schematics on the right show examples
of cell division and death that would produce such growth curves. (B)At zero antibiotic the total cell and live cell numbers completely
overlap and showperfect exponential growth on a log–lin plot; we have inserted an offset so both can be seen. Schematically: cell
division dominates and cell death is negligible, driving exponential growth each generation. (C)At theMICof antibiotic live cell
number flattens out while total cell number continues to increase linearly on a lin–lin plot (left). Schematically: each time a cell divides,
on average one of its daughters dies while the other goes on to a next successful division. Thus the live cell number is constant while the
dead cell number increases linearly each generation. (D)At high antibiotic, total cell number flattens outwhile live cell number decays
exponentially on a log–lin plot. Schematically: though cells transiently go through a few rounds of division, eventually all cells die so
live cell number goes to zerowhile total cell number reaches a constant limit.
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expect 0f =+ and ,maxf fº- - so c c eL L
tinit max

= f- - and c c c .D L L
init= - This againmatches the data: we see that

live cell number decays exponentially, while total cell number approaches aflat asymptote (figure 1(D)).
AtMIC the situation ismore interesting since by definition ,MICf f f= º+ - so c t cL L

init=( ) and

c t c c t.D D L
init init MICf= +( ) That is, live cell numbers are constant because death and division rates balance, while

dead cell numbers increase linearly because they arise from the continuing death of live cells. This is precisely
whatwe observe: the slope of the linear portion of the total cell curve atMIC shows that 0.011MICf = min−1

(figure 1(C), left panel). The total cell curve tracks the live cell curve for the first hour following antibiotic
treatment, after which the live cell curve flattenswhile the total curve increases linearly. This suggests cell death
only begins after a lag, while cell division is relatively unperturbed by the antibiotic. This is corroborated by the
ratio 0.6MIC maxf f ~+/ being close to unity: cell division is nearly as rapid atMIC as at zero antibiotic.

In summary, the following three observations support the idea that cell division and death operate at the
single-cell level with apparent first-order kinetics, once transients die out. At low antibiotic the growth of total
cell number and live cell number are both exponential. At high antibiotic live cell number decays exponentially,
while total cell number approaches a constant. In between, atMIC, total cell number increases linearly, while live
cell number is constant. Seeing first-order kinetics across the full range of antibiotic concentrations is surprising,
since cells are not elementary chemical entities. In the following sectionwe showhow such kinetics emerge from
a stochasticmodel of a cell as a collection ofminimal replicating units.

Widgets: sub-cellular replicating units
The phenomenologicalmodel of equation (5) fails to predict the transient dynamics because it assumes a cell has
no internal structure. If wewish to determine how f depend on time, thismust either be directlymeasured, or
predicted from amoremicroscopicmodel.We therefore consider a cell as a collection of replicating units we
term ‘widgets’ (figure 2;Methods: Stochasticmodel of cell division and death). Thewidgets themselves obey a
birth-death dynamics analogous to equation (5), but withmicroscopic birth and death rate constants a and g
(figure 2(A)). For concreteness we imagine a to be constant (e.g. the catalytic efficiency of ribosomes)while g

Figure 2.A stochasticmodel of cell division and death. (A)Awidget is aminimal replicating unit obeying a birth-death process with
rates a and ,g the latter proportional to antibiotic levels. (B)Cells are collections of widgets.When a cell hitsw=Ω it divides; when it
hitsw=0 it dies. (C)Thewidget dynamics can be used to define the cell dynamics, with effective time-dependent division and death
ratesf±. (D)Dynamics of a cell population: cw represents the number of cells with exactly w widgets. Individual cellsmove to the
right (gain awidget) or left (lose a widget).f− is the per-cell rate at which cells cross the left boundary atw=1 and die. f+ is the per-
cell rate at which cells cross the right boundary atw=Ω−1 and divide. At division thewidgets binomially partition into two
daughter cells, which re-enter themain distribution. The area of the red bin gives the number of dead cells, the total area of the gray
bins gives the number of live cells. Over time the gray distribution reaches a constant shape but can increase or decrease in area.
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depends on the antibiotic concentration (e.g. the rate of irreversible ribosome inhibition by kanamycin), but
these assumptionsmay be relaxed.We specify how cell division and death depend on thewidgets as follows
(figure 2(B)).When thewidget number hits w 0= the cell dies since no newwidgets can bemadewithout an
existingwidget.When thewidget number hits a threshold w = W the cell instantaneously divides, and the
widgets are partitioned binomially between two daughter cells. This is arguably the simplest possible
microscopicmodel of cell growth.

We consider a population of cells, binned according to the number of widgets they contain: cw is the number
of cells with precisely w widgets, for w 1, , 1= ¼ W - (figure 2(D);Methods: Stochasticmodel of cell division
and death). Individual cells do a biased Poisson randomwalk along the w-axis:moving to the right if they gain a
widget, or to the left if they lose one. The number of live and dead cells are:

c c c c . 7L
w

w D
1

1

0å= =
=

W-

( )

Cells that cross the left boundary (i 1= )move to bin c0 and die, so cL decreases by one and cD increases by
one. Cells that cross the right boundary (i 1= W - )move to the bin cW and instantaneously divide into two
daughters, so cL increases by one. The daughters re-enter the distribution at two positions w¢ and w such that
w w ,¢ +  = W with w¢ binomially distributed. These processes define a transitionmatrix A (Methods:
Stochasticmodel of cell division and death) so:

c t t A c td d , . 8v
w

vw w
1

1

å a g=
=

W-

( ) ( ) ( ) ( )/

This can be easily solved for c tw ( ) from any c t 0w =( ) bymatrix exponentiation. Over time the distribution of
live cells over widget number reaches a steady-state, proportional to the eigenvector of the transitionmatrix
corresponding to its largestmagnitude eigenvalue .l If we define a normalized distribution f ,w a g( ) such that

f fA ,l= then:

c t c t f fe . 9w L w
t

w ¥ = ~ l( ) ( ) ( )

That is, the shape of the distribution becomes constant, while the total number of cells increases or decreases
exponentially.

Comparison ofwidgetmodel to experimental growth curves
If wemeasure time in units of 1a- themodel has two dimensionless parameters: thewidget death/birth ratio

,g a/ and the threshold number of widgets at cell division .W The value of g a/ is somemonotonically increasing
function of antibiotic concentration, not necessarily linear, with 1g a =/ atMIC.We are left with a single
tunable parameter Wwhich controls the number of widgets and therefore influences the scale of stochastic
fluctuations: higher values of W correspond to lowerfluctuations relative to themean.Wewill return to this
point in our discussion.

In our experiments wefirst grow cells in in the absence of antibiotic and then add kanamycin at the initial
measurement point. Tomodel this wefirst find the stationary distribution of widgets at zero antibiotic, and set
this as the initial condition: f 1, 0 .w a g= =( ) The addition of antibiotic ismodeled by shifting g to some non-
zero value, causing the cell population to evolve toward a new asymptotic distribution: f 1, .w a g=( ) This
corresponds to the transient phase of the experiment, as cells adapt to the presence of the antibiotic. As cells go
through this transient we can use equation (8) tofind c tw ( ) and equation (7) tofind c tL ( ) and c tD ( ) for various
ratios .g a/ The transient lasts longer if g a/ is low or if W is high. Its duration is essentially determined by the
inverse of the second-largest eigenvalue of A; 2W = is a singular case where there is no transient (see figure 3(D)
inset).

The predictions of ourmodel for 10W = (figures 3(C), (D)) qualitativelymatch our experimental
observations (figures 3(A), (B)). In particular, we capture the initial transient increase in cell number as cells
adjust to the addition of antibiotic.We correctly predict the asymptotic exponential growth and decay kinetics of
live cell number at low or high antibiotic levels (figures 3(B), (D)). Finally, we correctly predict the response at
MIC,where the live cell number flattens (figures 3(B), (D))while total cell number approaches a linear trajectory
(figures 1(C), 3(A), (C)).

Note that the assignment 10W = is not a numericalfit, it is a representative parameter choice. It is not
justifiable tofit the abstract widgetmodel to quantitativemeasurements of cell growth, which are expected to
depend onmore complex aspects ofmetabolism and cell size control [11]. Nevertheless it is remarkable that
such a basicmodel captures diverse qualitative aspects of cell growth and decay across a range of antibiotic
concentrations.
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Widgetfluctuations drive a stochastic choice between cell division and death
Akey aspect of themodel is the choice of a post-division cell between two ultimate fates: division and death
(Methods: Probability of division). Immediately following division thewidgets partition binomially between
daughter cells, leading to an initial post-division variation (histogram, figure 3(E)). At this point, the fluctuating
birth-deathwidget dynamics take over. Cells with an initially low value of w aremore likely to hit the left
boundary and die, while cells with an initially high value aremore likely to hit the right boundary and divide
(curves, figure 3(E)). The addition of antibiotics (increasing g a/ ) biases the choice against division. The squared
coefficient of variation of the post-division binomial distribution 1 W/ is a convenientmeasure offluctuations.
Note that increasing 1 W/ increasesfluctuations in both binomial widget partitioning and Poisson birth/death
dynamics. The fewer the number of widgets, the larger the scale of fluctuations relative to themean.

Deriving cellular parameters fromwidget properties
Having validated themodel against a specific set of experiments, we nowuse it to predict aspects of cell growth
over a broader range of conditions. The dynamics of thewidgets can be used to determine the effective
parameters f that appear in equation (5) (figure 2(D)). To do this we firstfind the number of cells in each
widget bin, then track howmany cells cross the right or left boundary.We can thus write an equation similar to
equation (5), where f are now time-dependent because the distribution of cells evolves from its initial state:

Figure 3.Comparison of widgetmodel to experimental growth curves. (A), (B)E. coli growth curves.We show the same data as in
figure 1, including additional antibiotic levels. Each curve corresponds to different concentrations of kanamycin; see key in panel (A).
[Kan]=4.21 μg ml−1 is theminimal inhibitory concentration (MIC) at which live cell number is constant over time. The gray area
indicates the nutrient depletion zonewhere exponential growth stalls. (A)Total cell number (OD600) over time,mean and standard
deviation over four technical replicates. (B) Live cell number (CFU ml−1) over time,mean and standard deviation over four technical
replicates. (C), (D)Predictions of thewidgetmodel. Curves show solutions to equation (8) for the division threshold 10W = and
increasing values of ,g a/ corresponding to increasing antibiotic levels; see key in panel (C). 1g a =/ corresponds toMIC.We label
the asympotic behavior of the predicted curves: linear (lin), logarithmic (log), orflat. (C)Total cell number c c .L D+ (D) Live cell
number c .L The inset shows the prediction for a cell that has no internal structure and divides as soon as 2;W = no transient is
observed in this case. (E)Two sources of fluctuations: randompartitioning and randombirth/death ofwidgets. Immediately after cell
division, the number of widgets w in a daughter cell is binomially distributed (gray histogram). Starting at anywidget number,
randombirth/death dynamics can take a cell to either boundary.We show the probability that a cell will successfully divide again
rather than die (curves; colors represent different values of g a/ for 10W = ).
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Equations (9) and (10) imply that f eventually become time-independent first-order rates.
Classically, exponentially growing populations are thought to arise when post-division daughter cells reach a

time-invariant composition [5]. Our analysis suggests a broader pattern inwhich exponentially growing or
decaying populations arise because the entire population of cells reaches a time-invariant distribution over
compositions, due towhich the per-cell rates of division and death appear to befirst-order constants. However,
these constants themselves obey certain constraints. Comparing equations (9) to (6)we have .l f f= -+ - On
the other hand, it is easy to check that the largest eigenvalue of A is given by l a g= - (Methods: Stochastic
model of cell division and death). This gives us two completely distinct ways to decompose the growth exponent
l in the limit t : ¥

. 11l a g f f= - = -+ - ( )

This key equation relates cellular parameters tomolecular parameters. It shows that cell division and death rates
are fundamentally constrained and coupled bywidget birth and death rates.

Cell division and death rates atMIC: cell stasis as a low-fluctuation limit
There aremanyways to split f so the constraint of equation (11) is satisfied. In general the division rate (f+)
decreases and the death rate (f-) increases with antibiotic level, but the formof these curves depends crucially on
the scale offluctuations (1 W/ ). At zero antibiotic 0g = so ,maxf f aº =+ + and 0.f =- The question ismore

interesting atMIC,where a g= so .MICf f f= º+ - In this scenario cell division and death ratesmust be
equal, but it is not obvious how large each rate is individually. To calculate this we track the steady-state
distribution of cells over widget number (figure 4(A)). Themore cells at the right boundary, the greater the rate
of division; themore at the left boundary, the greater the rate of death. Addition of antibiotics shifts the
distribution leftward, increasing the death rate (figure 4(A), top to bottom).More interestingly, decreasing the
scale offluctuations (increasing W)narrows the distribution away from the boundaries and decreases both
division and death rates while keeping a g- constant (comparefigure 4(A), left and right columns).

Whenwe plot how f+ and f- varywith g a/ we see a range of behaviors depending on the value of W
(figure 4(B)). In the low-fluctuation limit of high W (darkest curves) the cell division and death curves collapse
on to two diagonal lines. This corresponds to the textbook scenario of bacterial dynamics: belowMIC,
exponential growth is driven purely by cell divisionwith zero cell death; aboveMIC exponential decay is driven
purely by cell deathwith zero cell division; and atMICwe have 0MICf = so cells neither divide nor die.

Figure 4. Stochastic cell division and cell death. (A)Once sufficient time has passed, distributions of cells over widget number reach a
constant shape f ,w as in equation (9).We showwidget distributions (gray histograms, scaled to fixed height) as g a/ is increased (top
to bottom) for two different values of W (left and right). 1g a =/ corresponds toMIC; low W is highfluctuations, high W is low
fluctuations.Maroon arrows show the resulting rates of cell division (f+) and cell death (f-). (B)Division rate ( ;f+ decreasing curves)
and death rate ( ;f- increasing curves) as a function of antibiotic level (g a/ ) for various values of .W Darker curves (higher W)
correspond to smallerfluctuations.MIC is defined by the point at which .MICf f f= º+ - (C) 1/W is the squared coefficient of
variation of the post-division binomial distribution ofwidgets, and is a convenientmeasure of fluctuations. As the scale offluctuations
decreases MICf drops, ultimately reaching the classic cell stasis limit of zero division and death.
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However, we now see that this classic picture of cell stasis under antibiotic treatment is the low-fluctuation limit
of amore general dynamics. Asfluctuations are increased by decreasing W (lighter curves), cell division and
death curves are both pushed higher, thus MICf also increases. In the high-fluctuation limit 2W = (lightest
curves) each cell contains only onewidget, and instantaneously divides as soon as this widget replicates. Cell
dynamics are thus identical towidget birth/death dynamics, so ,f a=+ ,f g=- and MICf is high.Overall we

see that MICf scales in proportion 1 W/ (figure 4(C)), demonstrating that cell division and death atMIC are
fundamentally driven byfluctuations inwidget number.

Discussion and conclusion

Biological implications of stochastic cell division anddeath
The very existence ofminimal units of replication implies thatmicroscopic division and death continuewhile
themacroscopic count of live cells remains static. In terms of therapy this is relevant since each dead cell raises
the possibility of sepsis in an infection context. Each cell division is also coupled to aDNA replication event, and
represents a chance for newmutations to arise. Fluctuation-induced divisions therefore indirectly increase the
possibility of antibiotic resistance. There are additional implications for bacterial survival under stress. Suppose
we tracked the fate of a single dividing cell in the presence of antibiotics. Stochastic partitioning ofmolecules is a
formof asymmetric cell division, so the two daughters could take on different fates. In our simplemodel
daughters are anti-correlated in their probability of subsequent division: the one that passively inheritsmore
widgets has the higher probability.We could imagine alternativemodels inwhich cells under stress
preferentially partition functional components to one daughter, thus enhancing survival rates. Cell-to-cell
variability has been reported in the response to sub-lethal antibiotic levels [23]. Asymmetric partitioning has also
been implicated in bacterial ageing [24]. Single-cell experiments could be used to track the probability of next
division of immediate post-division cells. Correlations or anti-correlations in this probability between two
daughters would revealmore complex partitioning thanwe have considered here.

Themolecular nature of awidget
Measurements of an invariant cell initiationmass across awide range of growth conditions [11] suggest that a
bacterial cell comprises only a handful ofminimal replication units, ranging from about two to eight. Our
approach based on stochastic division and death also suggests that there are only a fewminimal replication units
per cell: infigure 3we show that themodelmatches qualitative aspects of our cell growth curves for 10.W = For
this value of Wwewould predict the rate of division and death atMIC to be 0.17MIC maxf f= ´ + (figure 4(B))
whereas themeasured value ismuch higher at 0.6 .MIC maxf f= ´ + This suggests either an even lower value of W
or,more likely, additional sources offluctuations in real cells. To account for this one could construct amodel in
which the division trigger andfluctuation sources were decoupled.

The low inferred number of replicating units per cell immediately shows that awidget is not a single
molecular complex such as a ribosome, but rather a collection of diversemolecules and reactions. However, our
approach does not give further clues about the nature of the replicating unit.We can imagine extending our
model tomore realistic cellular compositions, beyond collections of identical widgets. Such amodel would
specify themanifolds corresponding to compositional states that trigger cell division or death. Given enough
timewewould expect any initial population of cells to reach a steady-state distribution of compositions, from
which first-order division or death rates can be calculated. For each point in composition spacewe could
calculate the probability of successful next division. In this waywe separate the space into regions that have zero
division probability, or non-zero division probability. In practice wemight define the locus of points at which
the division probability drops to some low level, say 1%. The fact that a cell recovers at all from such bleak initial
conditionsmeans itmust contain at least oneminimal replicating unit. If it is feasible to experimentally isolate
and characterize cells along this locus, wewould arrive at a new operational definition of aminimal cell: one at
the very boundary of death.Monod [25]might have been pleasedwith such a definition.
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