
Randomness in Biology [ICTP Spring College 2019] 
 
HW problems numbered according to Lectures 1 – 7. 
 
1A. Random number generators. In class we discussed how to make random number generators 

using fair coin flips (i.e. using a Bernoulli random variable X whose outcome is X = 1 with 
probability p and X = 0 with probability (1-p)). 

 
a. On a computer, using Bernoulli bits, simulate a 10-bit random number generator that 

produces numbers uniformly distributed between 0 and 1. Plot the histogram of the output of 
this process and verify that it approaches a uniform distribution. 

 
b. We discussed how the random walk approaches a Gaussian distribution. Based on this idea, 

how would you use Bernoulli bits to simulate a random number generator whose output is a 
Gaussian distribution with mean 0 and variance 1? Optional: Simulate this approach on a 
computer to see how well it works. 

 
1B. Central limit theorem. I have a fair die, which generates each of the numbers 1 to 6 with 

equal probability at each roll. Let the outcome of the die roll X be represented by the random 
variable 𝑥 ∈ {1,2,3,4,5,6}. 

 
a. Compute the following: < 𝑋 >,< 𝑋! >,𝜎!! 
 
b. If I define 𝑌 = 𝑋! + 𝑋! +⋯+ 𝑋! for large n, approximately what distribution will Y obey? 

Give a precise mathematical formula for the approximate distribution. 
 
 
2.  Markov processes. The game of monopoly is played by moving tokens on a board with 40 

locations. 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



At each step, a pair of dice is rolled and the player moves ahead by the corresponding number of 
steps. The player starts at “GO” (bottom right) and move clockwise. Two other important 
locations are “Jail” (bottom left) and “Go to jail” (top right). If you land on “Go to jail” then the 
token is immediately moved to “Jail”. I.e. the probability of being found in the “Go to jail” 
location is always zero, so in reality there are only 39 accessible locations. 
 
a.  Write down the 39x39 Markov transition matrix A for this game. Number as follows: 

“GO”=1, “Jail”=11, “Free Parking”=21, “Mayfair”=39. Remember, the game wraps around, 
and throws that would otherwise have landed in “Go to jail” must be made to land in “Jail” 
itself. 

 
b.  Find the distribution after 50 steps if the token starts at “GO”. 
 
c.  Find the eigenvector of A with the largest eigenvalue. This should be similar to what you 

found in (b). 
 
d.  Bonus. Apart from “Jail”, some locations are more likely than others after a large number of 

steps. What do you think are the most overvalued properties and the best value-for-money 
properties? (Prices are listed as numbers on each location.) 

 
 
3. Stochastic differential equations. The velocity of a Brownian particle is an example of an 
Ornstein-Uhlenbeck process described by the following Fokker-Planck equation: 
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This is equivalent to the Langevin equation 
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Or, more explicitly, 
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where 𝛼 is normally distributed with mean 0 and variance 1. Let measure time in units where the 
relaxation time is unity (𝑚/𝛤 = 1), and measure distance in units such that the RMS velocity is 
unity (𝑘𝑇/𝑚   =   1). 
 
a.  Focus just on the velocity equation. Find a numerical solution to the Langevin equation as 

follows. 
 
 1.Start with 𝑣(𝑡 = 0  ) = 0 and choose a timestep Δ𝑡=0.1. 
 2. Compute Δ𝑣 as above. 
 3. Update: 𝑣 = 𝑣 + Δ𝑣, and 𝑡 = 𝑡 + Δ𝑡. 
 4. Continue up to a maximum time 𝑡 = 100. 
 5. Repeat for e.g. 100 realizations, storing just the final velocity in each case. 



 6. Run again for all combinations of 𝑣 𝑡 = 0 = 0, 10; and Δ𝑡 = 0.1, 0.01, 0.001. For your 
solution, submit five sample trajectories each for all 6 cases above. 

  
b. Do velocities converge to a reproducible distribution independent of Δ𝑡 and 𝑣(𝑡 = 0)? 
c. What is the RMS value of the final velocity for the six cases? 
d.  [Optional] For 𝑣 𝑡 = 0   = 0 and Δ𝑡 = 0.001, numerically solve the full equation for 𝑥, 𝑣. 

What is the apparent value of the diffusion coefficient? (Plot x vs t for many realizations, 
and check how the value of < 𝛿𝑥2 > changes with t. The slope of this curve will be 2D.) 

 
 
4. Stochastic chemical kinetics: flipping a genetic switch. We have seen in class that the 
following differential equation describes a protein which activates its own transcription. This is 
equivalent to a double-well potential, where the two wells correspond to states of low (𝑥!"#!! ) and 
high (𝑥!!"!!! ) gene expression. 
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Use the following parameters: 𝑣! = 12.5, 𝑣! = 200, 𝛾 = 1,𝐾!𝐾! = 10!! or 𝐾!𝐾! = 10!!. 
 
For each value of 𝐾!𝐾!, estimate the steady-state distribution of gene expression levels using the 
following approaches: 
 
a. The deterministic stable steady states 𝑥!"#!!  and 𝑥!!"!!! . 
 
b. The approximate form 𝒫 𝑥 = !

! ! !! !
exp 2 ! ! !! !

! ! !! !
𝑑𝑥 . Plot this as a graph, and 

mark the deterministic steady states. 
 
c.  A Langevin stochastic differential equation by adding an appropriate noise term, for 1000 

replicates starting at 𝑥 = 𝑥!"#!!  and running until you think steady state is reached. Overlay 
this with the graph from (b). 

 
d. A Gillespie simulation, for 1000 replicates starting at 𝑥 = 𝑥!"#!!  and running until you think 

steady state is reached. Overlay this with the graph from (b). 
 
e. [Optional] Use the Langevin method to find the mean first passage time to transit between 

the two deterministic steady states for the case 𝐾!𝐾! = 10!!. I.e. start with states 𝑥!"#!!  or 
𝑥!!"!!!  and keep running until you hit the other state. Run this for 100 replicates and see how 
much time each of these trajectories take. 

 
 
5A. Instantaneous code. Consider the following set of codewords: 
 
 (A,B,C,D,E,F,G,H) = (01, 11, 001, 0000, 0001, 1001, 1010, 1011). 
 
a.  Is this an instantaneous (prefix) code? 
b.  Verify that it satisfies the Kraft inequality 
c.  Construct a string which has no meaning under this system 
 



5B. Entropy and mutual information. Given a joint distribution, calculate various quantities: 
 
 

  
𝑦\𝑥 0 1
0 1/4 1/4
1 0 1/2

 

 
 a. H(X,Y). b. H(X). c. H(Y). d. H(X|Y). e. H(Y|X).  
 f. H(X) + H(Y) – H(X,Y)  g. H(X) – H(X|Y) h. H(Y) – H(Y|X) i. I(X;Y) 
 
 
6. Typical sequences. We had defined a stringently typical sequence as one containing exactly as 
many occurrences of each symbol as expected. Let’s find out (a) what the probability of each 
such sequence is and (b) how many such sequences there are exactly (i.e. not using Stirling’s 
approximation). Then let’s see how much of the total probability space is occupied by these 
typical sequences. 
 
Consider a DNA sequence of length 8 generated iid from the distribution  
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a.  What is the single most probable sequence? What is its probability of occurrence? 
b.  What is the probability of a given ‘stringently typical’ sequence, defined as one in which 

letters occur precisely as often as expected? 
c.  How many stringently typical sequences are there (exact answer required)? 
d.  What is the total probability of getting some stringently typical sequence? 
e.  Redo the whole calculation if the length is 16. What is the total probability of getting a 

stringently typical sequence? Are we converging to 1? 
 
You should find that, as the sequences get longer, fewer and fewer of them are ‘typical’ by this 
definition. This motivates the new definition of typical sequence we will make this week. 
 
 
7. Channel capacity. The Z channel has binary input and output alphabets and transition 

probabilities 𝑝(𝑦|𝑥) given by the following matrix: 
 

  𝑄 = 1 0
1/2 1/2          𝑥, 𝑦 ∈ {0, 1}. 

   
 Find the capacity of the Z channel and the maximizing input probability distribution. 
  
  


