
SOLUTIONS 
 
1.  Random number generators. I provide you with a uniform random number generator (i.e. an RNG 

that will give you a number X uniformly distributed between 0 and 1; left graph). I am interested in 
generating another number Y with the triangular distribution shown (right graph). How can you use the 
uniform RNG for X to generate values of Y? Hint: you are allowed to call the RNG for X more than 
once for each number Y you need to generate.      [5]  

 
 
 
 
  
  
 
 
 
 Soln: Draw two values from the RNG, and set 𝑦 = !!!!!

!
. Alternatively, compute 𝑞 𝑦 = 𝑝 𝑦′ 𝑑𝑦′!

!  
and output 𝑦 = 𝑞!!(𝑥) where x is the output of the RNG.  

 
 
2. Markov processes. Examine the following matrices. 
  

𝐴 = 0.25 0.5
0.75 0.5           𝐵 =    0.25 0.1

0.4 0.25           𝐶 = 0.2 0.8
0.9 0.1  

 
a. Which of these matrices (A, B, or C) can be interpreted as a Markov transition matrix for a single time 

step 𝛥𝑡 of a stochastic process? Remember, we use the convention that probability distributions are 
column vectors.         [3] 

 
 Soln: 𝐴 is the only one whose columns are normalized, so it is the only possible Markov matrix. 
 
b. For your choice from part (a), what is the corresponding Markov matrix for a time step 3𝛥𝑡? [2] 
 
 Soln: 𝐴! = !

!"
25 26
39 38  

 
 
3. Master equation. Radioactive decay is governed by the following Master equation 
 
 !

!"
𝑝! = 𝛾 −(𝑛)𝑝! + 𝑛 + 1 𝑝!!!  

 
where n represents the number of radioactive nuclei in a lump of uranium, and 𝑝! is the probability that a 
lump has precisely n radioactive nuclei (∑𝑝! = 1).  
 
a.  We derived in class that the equation for the first moment 𝑛  is the standard radioactive decay 

equation: 𝑑 𝑛 /𝑑𝑡   =   −𝛾 𝑛 . Now use the Master equation to derive the equation obeyed by the 
second moment   𝑛! .          [10]  

 
Soln:  !

!"
< 𝑛! >  = 𝛾∑ −𝑛!𝑝! + 𝑛! 𝑛 + 1 𝑝!!! = 𝛾∑ −𝑛! + 𝑛 𝑛 − 1 ! 𝑝! = 𝛾∑ 𝑛 − 2𝑛! 𝑝! 

 
 So 
 !

!"
< 𝑛 >
< 𝑛! > = 𝛾 −1 0

1 −2
< 𝑛 >
< 𝑛! >   

 
 

 



b.  A nucleus has a probability 𝛾𝑑𝑡 of decaying in any time interval 𝑑𝑡. What is the probability 𝑞(𝑇) that 
a single nucleus that was present at 𝑡 = 0 is still present at some time 𝑡 = 𝑇?  [5] 

 

 Soln: 𝑞 𝑇 = lim!"→! 1 − 𝛾𝑑𝑡
!
!" = 𝑒!!! 

 
c.  We know that each nucleus in a lump behaves independently. Assume you started with 𝑁 nuclei in a 

lump at 𝑡 = 0. Based on your answer from (b), what is the probability  𝑝!(𝑇) that 𝑛 out of 𝑁 nuclei 
are still present in that lump at time 𝑡 = 𝑇?      [5] 

 
 Soln: The number of nuclei obeys a binomial distribution with probability 𝑞(𝑇) = 𝑒!!!. I.e. 
 
  𝑝! 𝑇 = 𝑁

𝑛 𝑞 𝑇 ! 1 − 𝑞 𝑇
!!!

 
 
 
4.  Coding. In a two-horse race, the probabilities that horse A or B wins are 𝑝!, 𝑝! = [!

!
, !
!
  ]. 

Answer the following questions. 
 
a.  What is the entropy of this distribution? We know this will be the smallest number of bits per race 

possible in any coding scheme. You can use log! 3 = 1.585.     [5] 
  
  Soln: 𝐻 !

!
= − !

!
𝑙𝑜𝑔2 !

!
− !

!
𝑙𝑜𝑔2 !

!
= 𝑙𝑜𝑔2 3 − !

!
= 1.585 − 0.666 ≈ 0.918 

 
 b.  If you use the code 𝐴 → 0,𝐵 → 1 then this is a one bit per race instantaneous code. Suppose instead 

you are satisfied with transmitting the results every three races. Build a code using the alphabet {0,1}   
that has an average length of less than one bit per race. Please show your reasoning.  [15] 

 
  Soln: 
 
   Outcome Probability   
   AAA  8/27 
   AAB  4/27 
   ABA  4/27 
   BAA  4/27 
   ABB  2/27 
   BAB  2/27 
   BBA  2/27 
   BBB  1/27 
 
 
  We need to push more unlikely events to longer codes. The prefix-free code shown here has an average 

per-race length of 79/81 = 0.975 < 1 as required. It’s still not as compressed as possible if we’re 
willing to wait it out for more races. 

 


