

Thermodiffusion of charged nanoparticles dispersed in Ionic Liquids and in mixtures of molecular solvents

M. Sarkar¹, J. Riedl¹, G. Demouchy^{1,2}, F. Gélébart¹, F. Cousin³, G. Mériguet¹, V. Peyre¹, E. Dubois¹ and R. Perzynski¹

¹ Sorbonne Univ., CNRS, PHENIX, F-75005, Paris, France.
 ² Univ. Cergy-Pontoise, Dpt. de Phys., F-95011, Cergy-Pontoise, France
 ³ Lab. Léon Brillouin – CE-Saclay, F-91191 Gif-sur-Yvette cedex, France

Conference on Modern Concepts and New Materials for Thermoelectricity International Centre for Theoretical Physics - Trieste - Italy - March 11-15 2019

Outlook

- **Background** on Magnetic Fluids / Ferrofluids (FF)
- Synthesis methods for dispersing charged NPs
- SAS determination of interparticle interaction
- Forced Rayleigh Scattering (FRS) technics
- Thermophoretic properties of FF in Molecular Solvents
 FRS at T=295 K

Hydroxyl-coated NPs in water and DMSO

Citrate-coated NPs in water

FRS at T>295K

Hydroxyl-coated NPs in water and DMSO Citrate-coated NPs in water

- Thermophoretic properties of FF in Ionic Liquids at T>295 K
 - Citrate-coated NPs in EAN

TFSI-SMIM-coated NPs in EMIM-TFSI

- Summary – Perspectives

Target :

Study of thermophoretic effects in ionic colloidal dispersions

Systems with big ionic species, and a lot of small ones

 $\vec{\nabla}T$ induces $\vec{E}_e = S_e \vec{\nabla}T$ thanks to Seebeck effect and also $\vec{\nabla}n = -nS_T \vec{\nabla}T$ thanks to Soret effect

n : number of NPs per volume unit

Thermophoretic and thermoelectric properties are interconnected They both depend on \hat{S}_i of all the ionic species (i) in solution \hat{S}_i : Eastman entropy of transfer of species (i) in the medium characteristic of their interaction with the external medium (Heat transport/T)

Thus necessary :

to limit the number of different species, identify them and their n_i to choose media suitable for thermoelectric voltage measurements.

Background on Magnetic Fluids / Ferrofluids (FF)

Colloidal suspensions of magnetic nanoparticles

A material which is fluid and magnetic with spectacular instabilities and numerous applications

Automotive : Shock-absorbers (Magneride[®]) Electronic devices : liquid seals for Hard Disks, loudspeakers Optics : obturators, modulators Heat transfer : coolant (Smart-fluids[®]) Medecine : MRI contrast agent, antibody titration, cell labelling, magneto-thermocytolysis, drug delivery

Under-field anisotropy of thermodiffusive and thermophoretic properties

M. Kouyaté et al Phys. Chem. Chem. Phys. 21 (2019) 1895-1903

Ionic Magnetic Fluid in water

• = hydroxyl groups, citrate ions, ...

• d ~ 10 nm • μ ~10⁴ μ_B

ferrite nanoparticles γ -Fe₂O₃, chemically synthesized by coprecipitation in alkaline media*

R. Massart I.E.E.E. Trans.Mag. Magn. **17** (1981) 1247 *F. A.* Tourinho et al J. Mat. Sci. **25** (1990) 3249

Aqueous dispersions of ferrite nanoparticles Evolution of the structural charge with pH and coating Surface groups Citrate **Hydroxyl** FERROFLUID PRECURSOR ligand -LH pН Alkaline 14 _0_ SOL 12 pH 7 SOL (Na+ PZC _он FLOC -- OH2+ PZC _LH SOL FLOC ∑(C.m²) 0.2 - 0.2 0 ligand - OH (+ counter-ions)

Synthesis method for dispersing charged NPs in polar solvents (Molecular Solvents or Ionic Liquids)

What is needed in this study ?

(i) Prepare and stabilize FF in a reproducible manner, precisely controlling the nature and the quantity of ions in the solution

- (ii) Prepare them in different media(DMSO, various Ionic Liquids, ..),
- (iii) Test different types of contreions(... specific effects of counterions)

Ex.: in water

- Hofmeister series (protein solubility)
- Jones-Dole coefficients of ionic solution viscosity (ion-solvent interaction, chaotropic & kosmotropic nature of the ions),
- Eastman entropy of tranfer of the ions (*)

(ion-solvent interaction)

(*) J. Agar, C. Mou, J. Lin *J.Phys. Chem.* **93** (1989) 2079 N. Takeyama, K. Nakashima *J. Solution Chem.* **17** (1988) 305

Efficient method for exchanging solvent & counter-ions in polar molecular solvents (*)

- Starting from flocculated dispersion at PZC,
- Repeated washing out of free ions and removable water,
- Re-charging of the NPs in the chosen medium with the

chosen counter-ions with a controlled and reproducible method

(*) C. L. Filomeno et al J. Phys. Chem. C 121 (2017) 5539-5550

It allows to change in a controlled way :

- the solvent (water, DMSO, EAN, other ILs)
- the counter-ions (broad spectrum)
- their global quantity

- Concentrated FF obtained by ultracentrifugation

- Conductivity measurements of the supernatant : [electrolyte]_{free}
- Comparison to the introduced quantity : structural NP charge
- Nano-ZS electrophoretic measurements + QELS in dilute

- sol : dynamic effective charge ξ_0 (in molecular solvents)
- SAXS RFS

C. L. Filomeno et al J. Phys. Chem. C 121 (2017) 5539-5550

Coating	Counter- ions	Solvent	Φ -range	<d<sub>NP> (nm)</d<sub>
hydroxide	CIO ₄ -	Water	0.5-2.5% up to 80°C	9
hydroxide	CIO ₄ -	DMSO and mixtures	0.5-2.5% up to 80°C	9
hydroxide	CIO ₄ -	DMSO	0.5-3.5% Room T	6.7
citrate	TBuA+ TMA+ Na+ Li+	Water	0.5-5% Room T 1% up to 80°C	8.5
citrate	Na⁺ Rb⁺ Li⁺	EAN	0.5-4% up to 105°C	7.4
hydroxide	TFSI⁻ - SMIM⁺/⁻	EMIM ⁺ - TFS ⁻	1% up to 190°C	9.2

Small Angle Scattering* determination of interparticle interaction

(*) of neutrons SANS or of x-rays SAXS

Typical *structure factor* of an assembly of nanoparticles with repulsive interparticle interaction, as obtained by *SAXS*

E. Wandersman et al Soft Matter 9 (2013) 11480

Small Angle X-ray or Neutron scattering

NP's compressibility C given by the Carnahan-Starling model of effective Hard Spheres (far from the glassy transition)

E. Wandersman et al Soft Matter 9 (2013)11480

Limit of validity of Carnahan-Starling model

Small Angle X-ray or Neutron scattering

FF in water : citrated NPs with Na⁺ counterions at ≠ [cit]

R. Cabreira Gomes et al Phys. Chem. Chem. Phys. 20 (2018) 16402-16413

Forced Rayleigh Scattering (FRS)

RFS device

 Spatial modulations of temperature
 ⇒ Spatial modulations of concentration (Soret effect)

> Heating beam

> > on

2

3

5

4

6

5

4

3

2

1

0

-1

0

1

I(a.u)

RFS device

Spatial modulations

 of temperature
 ⇒ Spatial modulations
 of concentration
 (Soret effect)

In stationary conditions :

$$\vec{\nabla}\Phi = -\Phi S_T \vec{\nabla}T$$

$$\uparrow$$
Soret coefficient

 $S_T < 0$: NPs migrate towards hot regions $S_T > 0$: NPs migrate towards cold regions

In stationary conditions :

$$\vec{\nabla}\Phi = -\Phi S_T \vec{\nabla}T$$

$$\uparrow$$
Soret coefficient

 $S_T < 0$: NPs migrate towards hot regions $S_T > 0$: NPs migrate towards cold regions

Concentration grating : $|\Delta \Phi| = |\Delta n_{\Phi}| / |\delta n / \delta \Phi|$

Time (Sec)

Example : FF in DMSO at T= 295 K

- hydroxyl-coated NPs with $[H^+] \approx 10^{-2} \text{ mole.L}^{-1}$

ξ₀>0

- ClO₄⁻ counter-ions

FF in water and in DMSO at T= 295 K

- Same hydroxyl-coated NPs with [H⁺]≈ 10⁻² mole.L⁻¹

 $\xi_0 > 0$

- Same ClO₄⁻ counter-ions

Thermodiffusive and thermophoretic properties

FF in molecular solvents* at room temperature (*) water, DMSO and their mixtures

FF in water-DMSO mixtures at T = 295 K

- Same hydroxyl-coated NPs with [H⁺]≈ 10⁻² mole.L⁻¹
- ξ₀>0

- Same ClO₄⁻ counter-ions

Φ

FF in water-DMSO mixtures at T = 295 K

- Same hydroxyl-coated NPs with [H⁺]≈ 10⁻² mole.L⁻¹
- Same ClO₄⁻ counter-ions

$S_{T} = \frac{\chi}{k_{B}T} \left(\hat{S}_{NP} - e\xi_{0}S_{e}^{st} \right)$ Soret coefficient $eS_{e}^{st} = \frac{n_{+}\hat{S}_{+} - n_{-}\hat{S}_{-} + Zn\chi\hat{S}_{NP}}{n_{-} + n_{-}\hat{S}_{-} + Zn\chi\hat{S}_{NP}}$ $S_{T} = \frac{0.6}{0.4}$ $S_{T} > 0$ $S_{T} > 0$ $S_{T} > 0$ $DMSO \xi_{0} = 43$ $x_{w} = 0.15$ $x_{w} = 0.83$ $y_{w} = 0.15$ $x_{w} = 0.83$ $y_{w} = 0.96$ $y_{w} = 1$ $y_{w} = 0.96$ $y_{w} = 0.96$

 $\xi_0 > 0$

 $eS_{e}^{st} = \frac{n_{+}\hat{S}_{+} - n_{-}\hat{S}_{-} + Zn\chi\hat{S}_{NP}}{n_{+} + n_{-} + Zn\chi\xi_{0}} \xrightarrow{-0.4} \underbrace{\int_{-0.4}^{-0.4} \underbrace{\int_{-0.4}^{-0.4} \underbrace{\int_{-0.4}^{-0.4} \underbrace{\int_{-0.4}^{-0.4} \underbrace{\int_{-0.4}^{-0.2} \underbrace{\int_{-0.2}^{-0.2} \underbrace{\int_$

 \hat{S}_{NP} , \hat{S}_{+} , \hat{S}_{-} : Eastman entropy of transfer of the charged species

FF in water at pH = 7 and T = 295 K

- Same citrate-coated NPs $\xi_0 < 0$
- Different counter-ions : TBuA⁺, TMA⁺, Na⁺, Li⁺

Another method in water to modulate the sign of Soret coefficient S_T

FF in water at pH=7 and T = 295 K

- Same citrate-coated NPs
- Different counter-ions : TBuA⁺, TMA⁺, Na⁺, Li⁺ $-40 \le \xi_0 < -28$

M. Kouyaté et al Phys. Chem. Chem. Phys. 21 (2019) 1895-1903

FF in water at pH=7 and T = 295 K

- Same citrate-coated NPs
- Different counter-ions : TBuA⁺, TMA⁺, Na⁺, Li⁺

M. Kouyaté et al Phys. Chem. Chem. Phys. 21 (2019) 1895-1903

FF in water at pH=7 and T = 295 K

- Same citrate-coated NPs
- Different counter-ions : TBuA⁺, TMA⁺, Na⁺, Li⁺ $\xi_0 < 0$

$$S_{T} = \frac{\chi}{k_{B}T} \left(\hat{S}_{NP} - e\xi_{0}S_{e}^{st} \right) \qquad S_{e}^{st} = \frac{n_{+}\hat{S}_{+} - n_{-}\hat{S}_{-} + Zn\chi\hat{S}_{NP}}{n_{+} + n_{-} + Zn\chi\xi_{0}}$$

Hyp Z= ξ_0 - Here the only unknown parameter is \hat{S}_{NP}

N. Takeyama, K. Nakashima J. Solution Chem. **17** (1988) 305 M. Kouyaté et al Phys. Chem. Chem. Phys. **21** (2019) 1895-1903

Backwards analysis of FF in water-DMSO mixtures

 \hat{S}_{ion} deduced from: (I) Born model and (II) Enthalpy transfer model

In our range of Φ measurements $-e\xi_0 S_e/kT$ is almost constant but there is a large variation at lower Φ 's

Illustrated with another FF sample in pure DMSO (smaller NPs, smaller ξ_0)

 TS_T/χ is almost constant in the range $1\% \le \Phi \le 4\%$ but there is a large variation at lower Φ 's

T. Salez et al (submitted) ; B. Huang et al J. Chem. Phys 2015

Thermoelectric measurements (*) on a similar FF sample in pure DMSO

Same order of magnitude of \hat{S}_{NP} is found by both determinations :

FRS and thermoelectric measurements in the initial regime

(*) B. Huang et al J. Chem. Phys 143 (2015) 054902 – see Sawako Nakamae presentation

Thermodiffusive and thermophoretic properties of FF in molecular solvents* at T ≥ 295K

(*) acidic NPs in water and DMSO

Acid FF in water at T \ge 295 K

- Same hydroxyl-coated NPs with [H⁺]≈ 10⁻² mole.L⁻¹
- Same ClO₄⁻ counter-ions

ξ₀ > 0

Acid FF in water at T \ge 295 K

- Same hydroxyl-coated NPs with [H⁺]≈ 10⁻² mole.L⁻¹
- Same ClO₄⁻ counter-ions

Contr. lons at Φ = 0 : -180

ξ₀ > 0

Acid FF in DMSO at T \ge 295 K

- Same hydroxyl-coated NPs with [H⁺]≈ 10⁻² mole.L⁻¹
- Same ClO₄⁻ counter-ions

Contr. lons at Φ = 0 : - 45

ξ₀>0

Acid FF in water and DMSO at T ≥ 295 K

- Same hydroxyl-coated NPs with [H⁺]≈ 10⁻² mole.L⁻¹
- ξ₀>0

- Same ClO₄⁻ counter-ions

At room T, TS_T/χ results from the balance of two large terms of opposite sign.

For $\Phi \rightarrow 0$, TS_T/ $\chi \rightarrow$ larger values + 235 in DMSO -280 in water

FF in water at pH=7 and T \ge 295 K

- Same citrate-coated NPs

 $\xi_0 < 0$

- Different counter-ions : TBuA⁺, TMA⁺, Na⁺, Li⁺

FF in water at pH=7 and T \ge 295 K

- Same citrate-coated NPs
- Different counter-ions : TBuA⁺, TMA⁺, Na⁺, Li⁺

 $\xi_0 < 0$

Here also the T-dependence of \hat{S}_{+} , \hat{S}_{-} and ξ_{0} are unknown,

Hyp χ indt of T

Summary of FRS results in molecular solvents at T ≥ 295 K

At room T, TS_T/ χ results from the balance of two large terms either in competition of sign or with the same sign

Thermodiffusive and thermophoretic properties of FF in Ionic Liquids* at T ≥ 295K

(*) Two examples in EAN (several counter-ions) and in EMIM-TFSI

FF based on EAN

Ethyl ammonium nitrate EAN

M. Mamusa et al, Soft Matter 10 (2014) 1097-1101; Faraday Discuss. 181 (2015) 193-209

н

H₂

CH2

Ethylammonium +

FF based on EAN at 295K – SAXS measurements

Nature of the counter-ions in the mother-solution influence

- the colloidal stability of the dispersion

- the interparticle interaction

In case of repulsion: some counter-ions remain close to the NPs surface (chemical titration, ASAXS)

FF based on EAN at T≥ 295K

In the Φ -range 1-4%, diffusion coefficient D_m is ruled by viscosity $\eta(T)$ and interparticle interaction $\chi(\Phi)$ at 295K

FF based on EMIM-TFSI at T≥ 295K

M. Sarkar et al – Communication to INCF 2019 – Castello – Spain – June 26-28, 2019

M. Sarkar et al – Communication to INCF 2019 – Castello – Spain – June 26-28, 2019

M. Sarkar et al – Communication to INCF 2019 – Castello – Spain – June 26-28, 2019

An example of Φ -dependence at room temperature for FF based on EAN with Na⁺ counterions

Tentative adjustment neglecting \hat{S}_{+} and \hat{S}_{-} in front of \hat{S}_{NP}

Summary

Thank you for your attention

We acknowledge :

- Synchrotron SOLEIL for time-allocation at the SWING beamline,
- Horizon 2020 FET-PROACTIVE project, MAGENTA, associated with the Grant n° 731976,

Contributions Ŝ+ and Ŝ- (of ions H+ and ClO4-) in mixtures of water and DMSO deduced from:

- Born model (dotted lines)
- Enthalpy transfer model (dashed lines) $\hat{S}_{ion}(x_w) = \hat{S}_{ion}^{water} \frac{\Delta_t H_{ion}^o(x_w)}{TN_a}$

N. Takeyama, K. Nakashima *J. Solution Chem.* **17** (1988) 305 Y. Marcus, *Ion properties* (Marcel Dekker, New York 1997).

Influence of volume fraction Φ on the structure factor

SANS (LLB – ILL) $d_{NP} \sim 10 \text{ nm} [cit]_{free} = 0.03 \text{ mol/L}$

Relaxation of the concentration grating under magnetic field

Under-field anisotropy of the diffusion coefficient

J.-C. Bacri et al Phys. Rev. Lett. 74 (1995) 5232-5035; Phys. Rev. E 52 (1995) 3936-3942

Soret coefficient measurements under magnetic field (in stationary conditions)

Local ∇T either in phase or out-of-phase with respect to $\nabla \Phi$ depending on S_T sign

Under-field anisotropy of the Soret coefficient

T. Salez et al Entropy 20 (2018) 405 1-27

Under-field anisotropy of the Soret coefficient

The ordering between $S_T^{H_\perp}$ and $S_T^{H_\parallel}$ depends on the sign of $S_T^{H=0}$ thus on the nature of the counterions

Increasing Soret coefficient by field application may allows increasing thermoelectric energy conversion in thermocells (*).

(*) T. Salez et al Phys. Chem. Chem. Phys. 19 (2017) 9409