

Large power factor improvement in a thermoelectric oxide using liquid electrolytes

Jorge García-Cañadas, Lourdes Márquez-García, Braulio Beltrán-Pitarch,

Department of Industrial Systems Engineering and Design Universitat Jaume I, Castellón (Spain) E-mail: <u>garciaj@uji.es</u> Website: <u>www.jgarciacanadas.blogspot.com</u>

<u>Outline</u>

- 1. Introduction
- 2. The solid-liquid hybrid system
- 3. Ionic liquids in the hybrid system
- 4. Summary
- 5. Acknowledgements

Problems for widespread application

Thermoelectrics are not widely implemented due to:

- Toxicity of common materials, e.g. Bi₂Te₃, PbTe
 - High cost and scarcity
 - **Low efficiency** (4 6%)

J. He, T.M. Tritt, *Science* 357, eaak9997 (2017)

In the last years efficiency (ZT) has been improved, mainly by **decreasing** λ by **nanostructuring**.

But λ is already reaching its lowest possible values (amorphous limit).

$$ZT = \frac{S^2 \sigma}{\lambda} T$$

Improvements in the power factor (*PF=S²* σ) are required.

Current strategies: Seebeck coefficient enhancement

The Seebeck coefficient can be improved by introducing **sharp features** in the **density of states** (DOS) of the semiconductor

a) <u>Quantum confinement:</u> Sharp features in the DOS can be reached in **low-dimensional materials** such as quantum well superlattices (2D), nanowires or nanotubes (1D), and quantum dots (0D).

b) <u>Resonant levels</u>: Introducing **resonant states** in the conduction or valence band **by doping** a material **with** certain atoms can also create sharp features in the DOS.
 ZT of p-type PbTe was doubled (from 0.71 to 1.5) by doping with Tl using this strategy.

a) Hicks, LD; Dresselhaus, MS. Effect of Quantum-Well Structures on the Thermoelectric... Phys. Rev. B 1993, 47 (19), 12727
b) Heremans, JP; Jovovic, V; Toberer, ES; Saramat, A; Kurosaki, K; Charoenphakdee, A; Yamanaka, S; Snyder, GJ.
Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic DOS. Science 2008, 321, 554–557.

<u>Current strategies: Electrical conductivity enhancement</u>

c) <u>Modulation doping</u>: high carrier concentration (10¹⁸-10²¹ cm⁻³) is usually achieved by **conventional doping** (uniformly distributed dopant atoms), but this can **reduce** the carrier **mobility** due to the **scattering with the dopants**.

By doping the material with **embedded nanograins** (3D modulation doping) the **scattering** can be **reduced**.

In p-type SiGe 3D modulation doping led to around **40% PF enhancement** (Zebarjadi, M et al. **Nano Lett.** 2011, 11, 2225**)**.

Pei, Y. L.; Wu, H.; Wu, D.; Zheng, F.; He, J. High Thermoelectric Performance Realized in a BiCuSeO System by Improving Carrier Mobility through 3D Modulation Doping. J. Am. Chem. Soc. 2014, 136 (39), 13902

Current strategies: Electrical conductivity and Seebeck enhancement

d) <u>Band convergence</u>: By **doping or changing the composition** certain materials allow having a large number of energy bands in a close energy range (**band degeneracy**), which can simultaneously increase σ and S.

In PbTe doped with Sn, allowed obtaining a **ZT=1.8**.

Pei Y1, Shi X, LaLonde A, Wang H, Chen L, Snyder GJ. Convergence of electronic bands for high performance bulk thermoelectrics. **Nature** 2011, 473, 66.

Current strategies

They have **not** produced **very large increments** in the *PF* and are usually **difficult to implement** and restricted to **only certain materials**.

Our approach

Use of a **porous material** and **modify** its **thermoelectric properties** with a **liquid electrolyte** (dissolved ions). Can be extended to a **wide range of materials** and be more **generally applied**.

The solid-liquid hybrid device

Photograph of sealed device

The porous solid: mesoporous Sb:SnO₂

Prepared from commercial **colloidal water dispersion** (Keeling and Walker Ltd., UK) mixed with 60% v/v **ethanol**. Deposited by **spin coating** (several layers) and **annealed at 550 °C** for 45 min.

(SEM image)

(Same SEM image with pores indicated in red)

Pores in the 2-50 nm range (mesoporous) are present. Image analysis provides 9.9% porosity.

The porous solid: nanostructured and mesoporous Sb:SnO₂

Film is formed by interconnected **nanoparticles** of around **4 to 10 nm** diameter. The film thickness varied from 0.5 to 1.0 μm (Dektack 6, Veeco).

(SEM image)

(TEM image)

Thermoelectric characterisation

Thermoelectric measurements: No electrolyte

Seebeck coefficient: Extracted from the slope of the $V_{oc} - \Delta T$ plot. Device electrical resistance: Extacted from the slope of the V – I curve under no T difference.

Device permeated with LiBF₄ 1 M in 3-metoxipropionitrile (3-MPN)

A 66 % reduction of the electric resistance is achieved without a change in the Seebeck coefficient.

This leads to **3.3 improvement** in the **power factor** by the addition of the electrolyte.

Electrolytes with 3-MPN solvent

Electrolyte	Dovico	Seebeck (μV	coefficient //K)	Electric re	DE /DE		
	Device	Without	With	Without	With	with without	
		electrolyte	electrolyte	electrolyte	electrolyte		
	1	-37.2	-39.3	9.8	3.3	3.3	
	2	-35.6	-37.8	11.0	3.3	3.8	
I WI LIBF ₄	3	-35.8	-44.5	9.7	4.9	3.1	
	No film	-	-759	-	147.6	-	
1 M NaBF ₄	1	-42.8	-47.8	6.9	13.0	0.7	
	2	-43.5	-37.4	9.3	12.1	0.6	
	3	-41.5	-34.4	5.1	8.7	0.4	
	No film	-	-582.2	-	641.7	-	
1 M KBF ₄	1	-41.3	-33.9	6.1	8.6	0.5	
	2	-39.0	-38.4	5.2	6.7	0.7	
	3	-35.6	-41.0	4.8	10.3	0.6	
	No film	-	N/A	-	414.6	-	
3-MPN	-	-32.2	-32.1	4.9	6.4	0.8	

Average 61.9 % decrease of *R* and 3.4 times *PF* improvement. Larger ions than Li⁺ increase the electric resistance.

Suggested mechanism

The **ions** in the electrolyte **screen** part of the **electric field** and **new charges** are separated to **restore it**, leading to a **higher current output** (lower resistance).

(Open circuit potential dc voltage, 10 mV ac amplitude, 50 mHz -50 kHz frequency range)

Fabregat-Santiago, F. et al. Dynamic Processes in the Coloration of WO3 by Lithium Insertion. J. Electrochem. Soc. **2001**, 148, E302

Device stability

	Device	Seebeck coefficient (µV/K)				Electric	DF / DF						
Electrolyte		Without	With electrolyte			Without	With electrolyte			S. S. WIR S. S. WIChout			
		electrolyte	lst	2nd	3rd	electrolyte	lst	2nd	3rd	lst	2nd	3rd	
	1-Li	-37.2	-39.3	-36.6	-36.0	9.8	3.3	4.5	5.6	3.3	2.1	1.6	
1 M LiBF4	2-Li	-35.6	-37.8	-40.0	-52.4	11.0	3.3	5.8	6.3	3.8	2.4	3.8	
in 3-MPN	3-Li	-35.8	-44.5	-42.0	-35.1	9.7	4.9	5.9	8.0	3.1	2.3	1.2	
	No film-Li	-		-759.0		-		147.6			-		
1 M NaBF4 in 3-MPN	1-Na	-42.8	-47.8	-43.2	-40.3	6.9	13.0	14.9	15.1	0.7	0.5	0.4	
	2-Na	-43.5	-37.4	-38.1	-36.6	9.3	12.1	13.4	13.0	0.6	0.5	0.5	
	3-Na	-41.5	-34.4	-33.4	-34.7	5.1	8.7	9.2	8.9	0.4	0.4	0.4	
	No film-Na	-		-582.2		-		641.7			-		
1 M KBF4 in 3-MPN	1-K	-41.3	-33.9	-31.1	-32.9	6.1	8.6	11.0	10.6	0.5	0.3	0.4	
	2-K	-39.0	-38.4	-36.5	-34.9	5.2	6.7	10.3	11.2	0.7	0.4	0.4	
	3-K	-35.6	-41.0	-38.1	-38.8	4.8	10.3	12.9	15.1	0.6	0.4	0.4	
	No film-K	-	N/A		-	414.6			-				
3-MPN	-	-32.2	-32.1		4.9	6.4			0.8				

The Seebeck coefficient does not significantly change after several cycles in most cases, but the electric resistance experiences an increase for the LiBF₄ salt, producing a decrease of the PF enhancement.

<u>1-Butyl-3-methylimidazolium (BMI X, X=I⁻, BF4⁻) ionic liquids</u>

Electrolyte	Device	Seebeck (μV	coefficient //K)	Electric re	PF _{with} /PF _{wit}	
		Without	With	Without	With	hout
		electrolyte	electrolyte	electrolyte	electrolyte	
BMI I	1	-42.3	-24.7	11.5	2.0	2.0
	2	-36.0	-23.8	10.1	1.8	2.4
	3	-35.2	-24.6	24.4	4.2	2.8
	No film	-	N/A	-	207.8	-
BMI BF ₄	1	-37.8	-37.6	4.7	5.8	0.8
	2	-40.7	-34.2	6.8	5.9	0.8
	3	-36.0	-35.8	5.1	4.6	1.1
	No film	-	N/A	-	2868.1	-

- The BMI I ionic liquid produces an average 82.5 % drop in electric resistance but reduces the Seebeck coefficient by 35 %. The power factor improvement is 2.4.
- The BMI BF₄ produces no significant changes in the Seebeck coefficient, and small differences in the electric resistance, not influencing significantly the power factor.

Device stability

	Device	Seebeck coefficient (µV/K)				Electric resistance (kΩ)						
Electrolyte		Without	With electrolyte			Without	With electrolyte			5.6. with C.C. without		
		electrolyte	Ist	2nd	3rd	electrolyte	lst	2nd	3rd	lst	2nd	3rd
BMI I	1-I	-42.3	-24.7	-25.5	-24.3	11.5	2.0	2.0	2.3	2.0	2.1	1.6
	2-I	-36.0	-23.8	-24.2	-24.2	10.1	1.8	1.9	2.1	2.4	2.4	2.2
	3-I	-35.2	-24.6	-24.0	-25.3	24.4	4.2	5.4	5.4	2.8	2.1	2.3
	No film-I	-	N/A			-	207.8			-		
BMI BF4	1-BF4	-37.8	-37.6	-38.9	-35.1	4.7	5.8	5.8	5.9	0.8	0.9	0.7
	2-BF4	-40.7	-34.2	-39.5	-34.5	6.8	5.9	6.1	5.8	0.8	1.0	0.8
	3-BF4	-36.0	-35.8	-37.6	-36.7	5.1	4.6	5.2	5.3	1.1	1.1	1.0
	No film-BF4	-	N/A			-	2868.1			-		

PF improvements introduced by the presence of the **BMII ionic liquid** were **predominantly maintained** along the different cycles and only slight variations (from an average 2.4 improvement to 2.1) were produced.
The **BMIBF**₄ **ionic liquid** remained also **stable**.

With ionic liquids **intercalation** is **more restricted** and the **drop in** *R* **also takes place**, this supports that the **screening mechanism is governing** this effect. Intercalation could influence the device stability.

4. Summary

- A new hybrid system formed by a nanostructured mesoporous solid permeated by a liquid electrolyte has been conceived to improve the thermoelectric power factor.
- The concept has been **demonstrated** employing **Sb:SnO₂** and different electrolytes.
- More than 3 times improvement in the power factor has been achieved by a 61.9 % reduction of the electric resistance of the system without modifying the Seebeck coefficient using LiBF₄ 1 M in 3-methoxipropionitrile.
- An imidazolium iodide ionic liquid produces an 82.5 % drop in the electric resistance although with a reduction in the Seebeck coefficient, leading to 2.4 times improvement in the *PF*.

ACS APPLIED ENERGY MATERIALS Cite This: ACS Appl. Energy Mater. 2018, 1, 254–259

www.acsaem.org

Letter

Large Power Factor Improvement in a Novel Solid-Liquid Thermoelectric Hybrid Device

Lourdes Márquez-García,[†] Braulio Beltrán-Pitarch,[†] Damian Powell,[‡] Gao Min,[‡] and Jorge García-Cañadas^{*,†©}

Financial support

- **Iberdrola España Foundation** under the project "Conversion of heat into electricity with solid-liquid thermoelectric materials".
- Ramón y Cajal program (RYC-2013–13970) from the Ministry of Economy, Industry and Competitiveness (Spain).

<u>Others</u>

- Iván Calvet and Diego Fraga at Universitat Jaume I for allowing the use of their spin coating.
- Raquel Oliver and Pepe Ortega at Univeritat Jaume I for technical support.

