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• It is widely used in a lot of different fields (solar cells, fuel cells, corrosion, supercapacitors, 
batteries, etc.).
• Powerful and very reliable equipment are available in the market.
• It allows the separation of the physical processes occurring in a device.

Why exploring impedance in thermoelectrics?

1. Introduction to the impedance method
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• A small amplitude sinusoidal current wave of a certain frequency is applied
• The system responds with a voltage wave proportional to the current that can be shifted in time (phase)

The perturbation and the system response
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Z is obtained for a wide range of frequencies (e. g. 1 MHz to 10 mHz), obtaining one point 
in the spectrum per each frequency.

The impedance spectrum

Impedance spectrum (Nyquist plot) Parameters vs frequency (Bode plots)

frequencies
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Equivalent circuits
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2. Equivalent circuits in thermoelectricity

• Module of 2N thermoelements with the typical 
architecture.
• Adiabatic conditions (no heat exchanged with 
surroundings), i.e. suspended module in vacuum.
• All thermal and TE parameters independent on 
temperature.
• System is initially at thermal equilibrium at 
temperature Tinitial.
• Joule effect is neglected both in the bulk and at the 
junctions.
• Spreading-constriction effects due to differences in 
areas between legs and ceramics is discarded.
• Thermal influence of the Cu contacts is neglected.

Model considerations
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time domain (t)

Impedance function

V=V(0)-V(L), RΩ=total ohmic resistance, ω=2πf, f is the frequency,  𝑗 = −1
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To know the impedance function we need to know 
the T difference at x=0 as a function of frequency
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Equivalent circuit elements

2. Equivalent circuits in thermoelectricity
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From the thermoelement: S=Seebeck coefficient, ρ=electrical resistivity, αTE=thermal diffusivity, λTE=thermal conductivity
From the contact: αC=thermal diffusivity, λC=thermal conductivity
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The fitting of experimental measurements to the equivalent circuit provides: RΩ, RTE, ωTE, RC and ωC. 
The resistances contain all the interesting TE properties (S and λ of the legs and the RΩ of the module).
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3. Module characterisation
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IMPEDANCE ANALYZER
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3. Module characterisation
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Extracted parameters

The Seebeck coefficient and thermal conductivity can be extracted if the thermal conductivity of the 
ceramic is known. The module internal resistance and the ZT can be directly extracted.

All properties show good agreement with values of the manufacturer.
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4. Convection heat transfer coefficient determination
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Model considerations
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4. Convection heat transfer coefficient determination
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B. Beltrán-Pitarch and J. García-Cañadas. Influence of convection at outer ceramic surfaces on

the characterization of thermoelectric modules by impedance spectroscopy. J. Appl. Phys. 123 (2018) 084505.

Extracted parameters

The convection resistance can be obtained from a fitting to the suspended module in vacuum and 
other fitting in air (or the condition to be evaluated). From Rconv, h can be obtained if S is known.
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S=192 µV/K

=21.75 Ω

h=40.12 W/(m2K)

Similar order of magnitude as natural convection 5-25 
W/(m2K). Potential h sensor application.

Higher accuracy [21.6 W/(m2K)] was reached 
considering spreading-constriction effects 

[see Mesalam et al. Applied Energy 226 (2018) 1208]



5. Thermal contact resistance determination
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Model considerations
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5. Thermal contact resistance determination
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Experimental results

The impedance response significantly changes with the thermal contact resistance value. Good 
fittings (lines) to the equivalent circuit.

With / without 
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grease



5. Thermal contact resistance determination
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Extracted parameters

The RTC can be obtained from a fitting to the module in vacuum and in the contacted module setup. 
The thermal contact resistance can be obtained from RTC if the Seebeck coefficient of the module is 

known (S=186.42 µV/K).

RΩ (Ω) RTE (Ω)
ωTE

(rad s-1)
RC (Ω)

ωC

(rad s-1)
RTC (Ω) rTC (m2mKW-1)

Suspended in 
vacuum

1.16 0.869 0.392 0.0812 5.48 --- ---

Without thermal 
grease

1.15 --- --- --- --- 0.259 0.311

With thermal 
grease

1.16 --- --- --- --- 0.012 0.014

The obtained value is in agreement with 
literature results. 

Impedance is an excellent tool to monitor and 
evaluate the influence of the thermal contact.

B. Beltrán-Pitarch, J. García-Cañadas. Characterization of the thermal contacts between heat exchangers 
and a thermoelectric module by impedance spectroscopy (under preparation).
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