

Ramón Fuentes Franco - Danijel Belusich - Gustav Strandberg

The impact of roughness length change on extratropical cyclones density and their associated precipitation over Europe

Aim of the study

- To assess the impact of the roughness length change in the extratropical cyclones over Europe, considering especifically:
 - Spatial distribution and density
 - Duration
 - Precipitation associated to them

Roughness length

Z is equivalent to the height at which the wind speed theoretically becomes zero. It is typically related to the height of terrain roughness elements.

the roughness length is approximately one-tenth of the height of the surface roughness elements

Simulations

- Control
- Deforestation
- Afforestation
- Roughness length (Z0) from afforestation with deforestation values for albedo, evapotranspiration, etc.
- All simulations were performed with RCA model over the EURO-CORDEX domain, for the period 1981-2010 forced by ERA Interim.

Cyclone detection and tracking algorithm

Identification of objects:

- Surface pressure > 100000 Pa
- Windspeed at 850 hPa > 5 ms⁻¹

If Object:

- Eccentricity > 0.95
- Pressure gradient within it > 200 Pa

then it is considered a cyclone and its centroid is saved.

Tracking:

 Centroids from objects within a spatio-temporal window of 24h and 6 degrees are considered to belong to the same track.

Precipitation associated to cyclone:

5 degrees windows were extended to the border gridpoints of every object to consider the precipitation as part of the cyclone.

Cyclone density

Cyclone density differences among experiments

Duration of extratropical cyclones

Maximum wind speed reached by the cyclones

Precipitation climatology

Precipitation climatology differences SMHI

% Cyclone precip / Total precip

Difference Cyclone/Total precipitation percentages among experiments

Difference NO Cyclone/Total precipitation percentages among experiments

Deforest-Ctl No cycl

Aforest-Ctl No cycl

Aforest-Deforest No cycl

Preliminary conclusions

- Roughness length increase caused:
 - Cyclone disipation, resulting in shorter cyclone tracks, and therefore
 - A reduction of cyclones travelling from West to East within Europe.
 - Wetter conditions over the western European coasts due to cloud saturation caused by an induced rising motion above the coastline due to roughness difference (roughness convergence).
- Roughness lenght decrease caused opposite results, as expected.
- Z0 experiments using same evapotranspiration, albedo, etc. as for deforestation produced similar results as afforestation, allowing us to confirm the role of roughness length change on cyclone tracks.

SMHI

THANK YOU!!